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We study the basic mechanisms allowing light to photoswitch 

at molecular scale a spin-crossover material from low- to 

high-spin state. Combined femtosecond x-ray absorption 

performed at LCLS X-FEL and optical spectroscopy reveal 

that the structural stabilization of the photoinduced HS state 

results from a two step structural trapping. Molecular 

breathing vibrations are first activated and rapidly damped as 

part of the energy is sequentially transferred to molecular 

bending vibrations. During the photoswitching, the system 

follows a curved trajectory on the potential energy surface. 

 
PACS Codes : 42.70.Gi, 75.30.Wx, 78.47.J-, 82.53.Xa 

 
Introduction. A wide range of phenomena in matter are 

driven by changes that occur after illumination with light.
1
 

This includes chemical, bio-chemical or solid-state 

reactions,
2,3,4

 as well as switching of functionality of 

materials such as conductivity
5
 or magnetism.

6
 During a 

transformation triggered by a femtosecond (fs) laser pulse 

the excited system is launched onto a complex pathway, 

from the initial photoexcited to the final photoinduced state, 

whereby non-equilibrium phenomena, coherent dynamics 

and interconversion of energy are interconnected.
1
 

Transition metal complexes undergoing spin-crossover 

(SCO) from low-spin (LS) to high-spin (HS) state are 

prototypes of molecular photoswitching in materials.
7
 On 

the shortest time scales the molecule undergoes intersystem 

crossing (ISC) from the initial photoexcited LS to 

HSstate. The structural reorganization of the ligand around 

the metal centre gives rise to an energy barrier between the 

trapped HS and the ground LS state. The initial mechanism 

behind the extremely fast ISC, between states that differ in 

both spin and structure, defy conventional descriptions. 

Recent theoretical studies by van Veenendaal
8,9 

on ISC in 

Fe
II
 SCO, mediated by the spin-orbit coupling, discussed the  

 
 
Fig. 1 (color online). (a) LS (140 K, blue) and HS (200 K, red) 

structures of [Fe(phen)2(NCS)2] (phen=1,10-phenanthroline). The 

central Fe atom is bounded by N to the phenantroline and NCS groups. 

Green arrows represent the breathing mode and purple ones the 

bending mode. b) XANES spectra and difference XANES measured 

between the LS and HS states. 

 

role of significant changes of the metal-ligand distance 

(molecular breathing). It was proposed that the ultrafast ISC 

results from the dephasing of the photoexcited state into the 

HS phonon states. A monotonous decay of the photoexcited 

state to the HS state becomes efficient when this breathing 

mode is rapidly damped as energy is dissipated into the 

environment.  

By combining femtosecond x-ray absorption near edge 

structure (XANES) and optical spectroscopy, we provide an 

experimental evidence of the ultrafast activation and 

damping of molecular breathing accompanying the ISC, 

which were lacking up to now. This process is followed by 

vibrational cooling in the HS potential observed on the 

bending mode. With respect to conventional models 

describing SCO photoswitching in terms of potential energy 

curve along a single breathing coordinate, our work reveals 

a more complex reality involving a curved trajectory, along 

breathing and bending, on a multi-dimensional potential 

energy surface. 

Results. The SCO [Fe(phen)2(NCS)2] crystal 

investigated here, undergoes a first-order phase transition 

from LS (S=0, t2g
6
eg

0
L

0
) to HS (S=2, t2g

4
eg

2
L

0
) states above 

180 K and exhibits photomagnetism and  
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Fig. 2 (color online). Kinetic traces of XANES at 7125 and 7148 eV, fit 

with a single-exponential function of the rising edge (Fe-N=170 (10) fs) 

represented by red solid lines (a). Kinetic traces of OR and OT at 760 

nm (b), OR at 900 nm & 550 nm and OT at 900 nm (c) and OT 850 nm 

(d). Fits by a single-exponential function describing the fast change 

plus a fifth order polynomial are represented by red solid lines. 

 

photochromism.
7,10,11 

Here, L
 
corresponds to the LUMO of 

the ligand. This molecular bi-stability is associated with 

important structural reorganizations around the FeN6 

octahedron between both spin states (Fig. 1(a), S1 & S2)
12

,
 

131415161718
. The less bonding character of the HS state leads 

to the expansion of the average Fe-N bond length from <Fe-

N>LS= 1.97 Å to <Fe-N>HS=2.16 Å, often observed for Fe
II
 

SCO 
7,19

.
 
That changes the XANES spectrum as shown in 

Fig. 1b, in agreement with the published data on this 

molecular crystal.
20 

 

 
 

Fig. 3 (color online). (a-c), oscillating component of OR at 760 nm, OR 

at 900 nm and OT at 850 nm. (d-f), time dependent FFT of the 

experimental data, showing the activation of the breathing mode and 

the delayed activation of the bending mode. Combined fits of OR at 

900 nm and OT at 850 nm (red line) by the coupled oscillator model, 

which show the contribution of the bending () mode (b) and the 

superposition of bending () and breathing (D) modes (c). The time 

course of the oscillating component Dosc (300 fs) and  

osc (390 fs) obtained by the fit in (b) and (c) are displayed in (g) and the 

average evolutions of Dmean  and mean obtained by the fit in Fig. 3 are 

displayed in (h). 

 

The ultrafast photoswitching dynamics of 

[Fe(phen)2(NCS)2] is investigated in the LS phase at 140 K 

by two complementary pump-probe methods
12

. A 50 fs 

laser pulse (650 nm) photo-switches LS state to HS via a 

metal-to-ligand charge-transfer process (MLCT).
10

 The 

changes in XANES are recorded with 30 fs x-ray pulses at 

the XPP station of the LCLS X-FEL,
21

 while changes in 

optical reflectivity (OR) and transmission (OT) are recorded 

with 50 fs VIS-NIR  spectroscopy. Fig. 2(a) shows the 

time course of the XANES signal measured at two energies 

most sensitive to the structural change (Fig. 1). The increase 

of XANES signal at 7.125 keV and the decrease at 7.148 

keV mainly result from Fe-N elongation
20

 and are the 

fingerprints of the formation of HS structures.  
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Fig. 4 (color online). (a) schematic representation of the elongation and 

damping of the breathing mode along the D coordinate . (b) Classical 

trajectory in the (D,) space. Molecules in the LS (blue) potential reach 
1MLCT state by light excitation. Fast ISC, through possible INT states, 

drives D elongation during step 1 with the generation and damping of 

breathing phonon, followed by activation of additional bending 

phonons such as distortion , during step 2. The sequence is sketched 

at the bottom.  

 

We fit the rising time by convolving a Gaussian 

temporal Instrument Response Function (IRF) with an 

exponential rise (Fe-N). The 110 (10) fs FWHM IRF, 

obtained by using a timing tool
21

 designed to synchronize 

the optical and the x-ray laser pulses, allows an accurate 

determination of Fe-N = 170 (20) fs.  

Figs. 2(b-d) & S4 show time traces of OR and OT (with 110 

fs IRF) in different spectral zones, revealing two main steps: 

the onset of OR change or a peak in OT immediately after 

laser excitation, relaxing towards a plateau during the first 

100's fs. The increase of optical absorption on the plateau, 

which translates into a simultaneous decrease of OR and OT 

in all probed regions, is another fingerprint of the LS-to-HS 

photo-switching, also observed during the thermal LS-to-HS 

conversion
10

 (see also Fig. S3). Density of state 

calculations
22

 explain the stronger absorption of the HS state 

around 760 nm (1.6 eV) by a decrease of the energy gap 

between t2g and eg bands from  1.9 eV (LS) to 1.6 eV 

(HS), due to the molecular ligand field weakening (see also 

Fig. S5). OT and OR data at 760 nm indicate that the gap 

narrowing in HS state, resulting from the Fe-N elongation, 

occurs within Fe-N140 (20) fs. It correlates well with the 

170 (20) fs time constant obtained by XANES.  

The transient OT peak corresponds to the absorption of the 

photoexcited singlet 
1
MLCT state (t2g

5
eg

0
L

1
), and other 

possible intermediate (INT) electronic states
9
, and results 

from transition from a ligand level L to higher energy states 

(see Fig. S5)
10,12

. 760 nm therefore probes both INT and HS 

(t2g-eg) absorptions. The t2g-eg absorption is no more 

accessible at 850 nm and above, and the main effect in the 

time traces is the absorption of the INT electronic state. This 

transient OT peak above 850 nm (Fig. 2(c-d) & S4) better 

characterizes the depopulation of the INT state, which 

decays within less than 50 fs. Thus far, our results determine 

an ISC of tens of fs and a 160 fs Fe-N bond elongation in a 

solid, both of which are similar to those reported for Fe
II
 

molecules in solution
23,24,25,26,27,28

. 

On top of such changes, clear oscillating components are 

present in the optical data. Fig. 3a-c show the residuals after 

exponential fit. Data at 760 nm show a coherent vibration 

around 113 cm
-1

 (300 fs oscillation period) in the [0  700 

fs] range. The corresponding time-dependent Fourier 

transforms are presented in Fig. 3(d-f) & S4 and the 

apparent rising time of the 113 cm
-1

 mode is limited by the 

Gaussian temporal window used
12

. It was already discussed 

above that OT and OR at 760 nm are sensitive to the Fe-N 

elongation, hereafter referred to as the breathing coordinate 

D. Therefore, the oscillations riding on 760 nm signals 

reflect the breathing mode, i.e. the totally symmetric Fe–N 

stretching, in relation with the symmetry conserving picture 

of the displacive spin-state switching. This observation is 

supported by calculations, according to which the only 

totally symmetric mode (symmetry A in the C2 point group 

of the complex) in this frequency range is the breathing 

mode (125 cm
-1

) in the HS state
29,30

. The breathing mode is 

represented by green arrows in Fig. 1 and shown in video 

S1
12

. XANES data do not reveal such small oscillating 

features after the 0.2 Å elongation, because of the noise 

limit of the measurements, but we underline that the main 

Fe-N elongation occurs on a timescale approaching the half 

period of the breathing mode (Fig. 4(a)). 

Optical data at 550, 900 nm (Fig. 2(c)) and 950 nm (Fig. 

S4) reveal another coherent vibration, in-phase for all these 

probing wavelengths. These oscillations around 85 cm
-1

 

correspond to the butterfly mode (also of A symmetry) 
29,30

 , 

which bends the ligand and the N-Fe-N angles without 

significantly changing Fe-N distances (see purple arrows in 

Fig. 1 & video S2). This is a bending coordinate 31and 

such a coherent ligand vibration was also observed for 

another Fe
II
 SCO molecular system in solution.

26
 Unlike the 

breathing mode, we observed that the bending mode with 

390 fs period is only activated coherently during a second 

step, after  500 fs, with a maximum spectral weight around 

1300 fs (Fig. 3 & S4). This bending occurs well after the 

160 fs initial Fe-N elongation.  

Such oscillations cannot be attributed to impulsive 

Raman process in the ground LS state because the LS 

breathing frequency is significantly higher (156 cm
-1

)
29,30

. In 

addition, there is no optical transitions from LS state to other 

excited states which can be probed in the 760-950 nm region 

(Fig. S5) and consequently the LS state is optically silent in 

our data. 

 

Discussion. In SCO materials the Fe-N elongations 

during LS-to-HS conversion are very similar, but the ligand 

bending12,19,31
 also plays an important role for the relative 

stability of LS and HS states. Hauser evidenced in the 

kinetic studies of HSLS relaxation a breakdown of the 

single mode model and proposed to describe such systems 

by qualitatively splitting the reaction coordinate into the 

breathing and the bending modes
32

. Fig. 4(b) is a cartoon of 

a likely potential energy surface (PES) of [Fe(phen)2(NCS)2] 

in the breathing and bending (D,) coordinate space. At 

thermal equilibrium (see ref 13 and Fig. S2) the LS potential 

is centred at (DLS=1.97 Å, LS=35°) and the one of the HS 



 4 

state at (DHS2.16 Å, HS=65°). The delayed activation of 

the bending , with respect to breathing D is schematically 

represented in Fig. 4(b) on (D,) PES from stable LS to 

stable HS locations.
 
 

XANES, OT and OR data at 760 nm give an average 

elongation Dmean(t) with a 160 fs time constant. OR at 900 

nm, no more sensitive to D but only to the change of , 

gives an average torsion mean (t) with 250 fs time constant. 

We thus deduce from these different breathing and bending 

timescales a curved trajectory in the relevant coordinate 

space (D,) on PES. If we simply assume that the 

photoinduced HS state is not significantly different from the 

HS structure at thermal equilibrium, we can plot a trajectory 

in Fig. 3(h). It indicates that around 1 ps the motion is 

mainly along also simultaneously manifested by the 

strong spectral weight of the bending mode (Fig. 3(e-f)) 
The coupling of instantly photo-activated phonons to other 

modes can drive major structural reorganization in 

solids.
4,33,34

 In the present case, the energy transfer between 

the two totally symmetric breathing (D) to bending () 

modes can be described by a linear coupling, with the 

classical equations of motion of coupled harmonic 

oscillators: 

 
                        

                        
  

 µi are the reduced masses of the oscillators (obtained from 

Gaussian calculations
12

), ki are the force constants refined to 

reproduce 113 and 85 cm
-1

 frequencies of the oscillations, 

i/µi are the damping rates and kDΣ is the coupling between 

the two modes. A numerical fit of the oscillating part of the 

time dependent data
12

 with these equations of motion gives 

the time evolution of the oscillating components Dosc(t) 

andosc(t)Fig. 3(g)). These curves reproduce well the 

initial activation of the 113 cm
-1

 breathing oscillation, in 

agreement with the displacive description of the ISC along 

D. The fit also evidence a very fast damping of the breathing 

mode within 166 fs (D/µD=6ps
-1

). These results are in 

agreement with the theoretical model
8
 introduced above, 

which considers an ISC of tens of femtoseconds 

accompanied by a structural elongation of the order of 

100200 fs and a damping time constant shorter than the 

period of the breathing mode (300 fs here). The observed 

delayed coherent activation of  characterizes the energy 

transfer from the breathing to the bending modes 

schematically represented in Fig. 4b and the smaller 

damping of the bending mode (/µ=1.16 ps
-1

) indicates 

that the system oscillates (in the HS potential) as it gets 

vibrationally cooled within 900 fs. The additional transfer to 

other modes, for instance to lower frequency optical lattice 

phonons, can also be considered. A lattice mode is observed 

at 33 cm
-1

 (Fig. 3d), but its spectral weight is weaker. Thus, 

the major part of energy of the absorbed photon (1.9 eV) is 

dissipated, since each coherent molecular phonon only 

accounts for a small fraction of that energy. For instance, the 

energy of the breathing mode, E=½ mω
2
D

2
, can be 

estimated to only 40 meV, with reduced mass m=8.5 amu, 

angular frequency =2*113cm
-1

 and elongation D0.2Å.  

 

Conclusion. In the emerging field of control science, 

understanding the physical processes allowing 

functionalization with light on ultrafast time scale is a key 

issue. Our results confirm the fast intersystem crossing 

observed in such transition-metal systems
23-28

, as the change 

of electronic state is shorter than 50 fs and followed by a 

significant metal-ligand elongation within 160 fs. This 

initial structural change is directly coupled to the change of 

electronic state because of the less bonging nature of the HS 

state. Our experimental studies more importantly provides 

an experimental demonstration that the fast and highly 

efficient ISC is driven by the dephasing of the photoexcited 

state into the HS phonon states. The activated breathing 

mode is damped on a timescale (160 fs) close to its half-

period, which allows an efficient trapping in the HS state as 

the decrease of the oscillation amplitude hinders recurrence 

to the initial state. We also show that the molecular bending 

is involved too, since the Fe-N elongation once established 

triggers the increase of the N-Fe-N bending because of 

ligand rigidity. Its delayed activation reveals a curved 

trajectory  on a multi-dimensional potential energy surface, 

which underlines the limits of conventional descriptions 

along a single breathing coordinate on potential energy 

curves. This  description of the photoswitching at the 

molecular scale, accompanied by important energy 

redistribution, sets the initial conditions for the slower 

transformation at material scale 
35,36

. Such combination of x-

ray and optical spectroscopies is key to disentangle the role 

of different degrees of freedom of electronic and/or 

structural nature in photoinduced phenomena. 
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1 Samples:  

Single crystals of [Fe(phen)2(NCS)2] compound were obtained by slow diffusion as indicated in 

reference (13). The powder films of [Fe(phen)2(NCS)2] compound have been prepared according to the 

description of Gütlich and co-workers (14); i.e. i) by reacting 0.77 g (2.77 mmol) of FeSO4・7H2O and 

0.539 g (5.55 mmol) of KSCN in dry and freshly distilled methanol (6 ml), ii) by filtered off the K2SO4 

precipitate, and iii) by adding the solution to 1 g (5.55 mmol) of 1,10-phenanthroline in 3 ml of methanol. 

The red precipitate was filtered off, washed with methanol and diethyl ether and further purified by the 

Soxhlet technique during 48 hours corresponding to the form I of [Fe(phen)2(NCS)2] showing a first order 

spin transition around 180 K and LIESST, confirmed by magnetic measurements shown in Fig. S1. The 

powder film consists in µm size crystals in a polymeric matrix. XANES spectra measured on single 

crystal or on powder film are very similar. 

Fig. 1B shows the XANES spectra for the 

LS (140 K) and HS (200 K) states 

measured on the powder film.  

 

 

Figure S1. Magnetic (black) and 

photomagnetic (colored properties of a 

polycrystalline sample of 

[Fe(phen)2(NCS)2]. Light excitation was 

performed at 650 nm.  

 

2 X-ray structure analysis of thermal LS to HS phase transition.  

Structural investigations at thermal equilibrium in the 100-250 K range were performed by X-ray 

diffraction on single crystals. Data were collected on a four-circle Oxford Diffraction Xcalibur 3 

diffractometer (MoKα radiation) with a 2D Sapphire 3 CCD detector, on samples with typical sizes 

around 200  150  50 m
3
. The single crystals of form I were mounted in an Oxford Cryosystems 

nitrogen-flow cryostat. The structural refinements gave similar results as the ones already reported in the 

literature (see ref 19 in the letter), allowing to follow the evolution of the main structural changes around 

the coordination sphere of the Fe atom are shown in Fig. S2:  

- the distances between the Fe and the bonded N atoms (there are 2 Fe-Nphen and 1 Fe-NNCS independent 

bonds) and the average: 



6

16

1

i

iNFeNFe   

- the distortion Σ of the FeN6 octahedron is measured by the sum of the deviation from 90° of the 12 N-

Fe-N cis angles in the coordination sphere:   


12

1

90
i

i  
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In the LS phase <Fe-N>LS  1.97 Å and LS  35° and these parameters discontinuously change in the HS 

phase to <Fe-N>HS  2.16 Å and HS  65°. This discontinuous change of the structure is related to the 

discontinuous change of the spin state of 

[Fe(phen)2(NCS)2] and illustrate that structure 

and electronic states are strongly coupled. 

 

Figure S2. Temperature dependence of Fe-N 

bonds and  parameter, showing the first-order 

phase transition around 180 K between LS and 

HS states. 

 

 

 

3 Experimental details of femtosecond pump-probe studies 

We have investigated the LS-to-HS photoswitching dynamics by performing pump-probe 

measurements at 140 K, where [Fe(phen)2(NCS)2] is in the pure LS state. The sample was cooled by a 

nitrogen cryostream. For x-ray and optical studies, the pump wavelength was set to 650 nm where it 

efficiently induces LS-to-HS transition through MLCT process (see also Fig. S1 & S6).  

3.1 x-ray absorption probe: 

Optical pump and x-ray probe studies were performed at the XPP beamline of the LCLS X-FEL. 

A femtosecond laser operating at 120 Hz delivered 50 fs pump pulses at 650 nm focused to 500×500 µm
2
 

on the sample, with intensities of the order of 2-5 µJ. The x-ray beam was monochromatised using the 

XPP double Si(111) crystal monochromator. To ensure pulse durations limited time resolution and avoid 

thermal drifts of the timing, the recently developed “timing tool” has been used (see ref 21 in the letter). 

This has the capability of measuring the relative arrival time between x-ray and infrared laser pulses with 

few tens of femtoseconds resolution and on a shot-to-shot basis. The x-ray fluorescence was collected 

using a Si diode (Canberra FD450-18-300RM) positioned horizontally at a 90° angle with respect to the 

x-ray beam propagation direction. The incoming intensity was measured using noninvasive diagnostics 

(after the x-ray monochromator) developed for pulsed x-ray radiation. We detected the total x-ray 

fluorescence yield to obtain the XANES spectra in the vicinity of the Fe K-edge (7.120 keV). Optical 

pump - XAS probe studies on single crystal gave weak signal because of the limited matching of the 

penetration depths of optical pump and x-ray probe. Therefore, we used the powder films (~few 

centimeters square) and yet thin (5 µm) samples for increasing the signal/noise ratio.  
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3.2 Optical probe: 

The spin-state switching is associated with important changes of optical properties of the 

[Fe(phen)2(NCS)2] crystals. Absorption and reflectivity spectra are shown in Fig. S3 for the LS (100 K) 

and HS (210 K) states. The MLCT band of the LS state is centered around 650 nm, the wavelength used 

as a pump, whereas the d-d band is around 760 nm. The spectra are not very structured and the LS to HS 

thermal conversion results in a global increase of absorption and decrease of reflectivity below 670 nm 

and above 720 nm, as illustrated by the temperature dependence of optical transmission at 900 nm.  

 

Figure S3. optical absorption (left) and reflectivity (middle) spectra measured in the LS (100 K) and  

HS (210 K) states. The wavelengths used for time-resolved transmission and reflectivity measurements 

are indicated by the vertical lines. Temperature dependence of transmission at 900 nm (right). 

Optical pump-probe studies were performed in Rennes, with a wavelength tunable femtosecond 

laser operating at 1 kHz and delivering 50 fs pump and probe pulses. Two-colour pump-probe 

spectroscopy studies were performed on single crystals (10-20µm thick). Time-resolved reflectivity 

measurements were performed at 550, 760 and 900 nm. Time-resolved transmission measurements were 

performed at 760, 850, 900 and 950 nm, since the absorption is too high in the visible range. A typical 

measurement of transient optical density (OD) at 900 nm is presented in Fig. S4.  

Single-wavelength measurements probed the resulting dynamics through changes of optical 

reflectivity (OR) and optical transmission (OT) of the single crystal. In addition to data presented in Fig. 

2 we show in Fig. S4 OT data at 760 nm and 950 nm (A&D) and their oscillating component (B&E). The 

time-dependent FFT (C&F) were obtained by sliding a 700 fs width Gaussian window. The Fe-N 

breathing mode at 113 cm
-1

 (with 300 fs period) observed at 760 nm is observed just after excitation, 

whereas the mode observed at 950 nm, corresponding to the bending mode also observed in Fig. 3 is 

activated later. FFT of the oscillating component of time-dependent optical spectroscopy indicate that 

mainly the breathing and bending modes are observed in the time-dependent data.  
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The time dependent OR and OT data are fitted with: 

                                   and                                 

where  is the exponential population of the HS state and  is the overall 140 fs instantaneous response 

function (IRF) of this experiment.  

 

 

 

 

 

 

 

 

 

 

 

Figure S4. OT at 760 nm (A), oscillating component (B) with 300 fs period (=113 cm
-1

) mode and 

time-dependent FFT showing the 113 cm
-1

 mode (C). OT at 950 nm (D), oscillating component (E) with a 

85 cm
-1

 mode and time-dependent FFT (F). FFT of OR at 760 nm and OT at 760, 850 and 950 nm are 

shown below and indicate the two main modes at 113 cm
-1

 (breathing) and 85 cm
-1

 (bending). 

4 Solid-state Computations of the density of state and molecular dynamics:  

Density Of State (DOS) calculations were already performed for in the LS phase of [Fe(phen)2(NCS)2] 

and detailed presentation is given in ref (16). The same method was used here for comparing the change 

of DOS in the HS phase. Results are given in Fig. S5. The major feature is the low dispersion of the peaks 

which is descriptive of a molecular system, i.e. in opposition to a metal or an intermetallic system where 

the DOS are broadened. Somehow, even in the organized periodic solid state, [Fe(phen)2(NCS)2] exhibits 

a molecular behavior. The key information regarding the time-resolved optical studies presented here is 

that on both sides of the gap the DOS correspond the Fe d states which are respectively t2g- and eg-like , 

as indicated by the colored bands. The DOS calculations indicate that  

 - in the LS state the t2g-eg gap is around 1.9 eV  

 - in the HS state the t2g-eg gap is around 1.6 eV  

The LMCT process induced by femtosecond excitation in the LS state is shown by the red arrow.  
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Figure S5. Total DOS for [Fe(phen)2(NCS)2] in its LS (blue) and HS (red) states with the t2g and eg like 

bands (colored). Is the LS state (left) two nearly degenerates eg like bands are 1.9 eV above the t2g. The 

light excitation (h red arrow) generates metal-to-ligand charge-transfer from metal (t2g-like) to ligand (L-

like) states (MLCT). The photoexcited L state gives rise to absorption peak around 760-850 nm (arrows 

left). In the HS state the main absorption around 760 nm is the t2g-eg transition.  

The LUMO (lowest unoccupied molecular orbitals) lying  2 eV above the LS HOMO (highest 

occupied molecular orbital) orbitals with paired electrons, are shown in Fig. S6 and have electron density 

on the phen groups only. The HS t2g-like orbital of lower energy is of ionic character and shows electron 

density mainly on the Fe-NNCS bonds (Fig. S6).  

 
 

Figure S6. Schematic energy diagram and molecular orbitals obtained from DFT calculation. The LS 

LUMO molecular orbitals L of the ligand indicates that the laser pump induces a MLCT process from t2g 

to L occurs on the phen groups. The HS HOMO with paired electron corresponds to the Fe-NNCS bonds 

and the probe signal is modulated by the t2g-eg splitting. Fe atom is in the center, N atoms are blue, C 

atoms are grey, S atoms are yellow, H atoms are white.    
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Molecular vibration frequencies calculations were carried out for [Fe(phen)2(NCS)2] after geometry 

optimization, by using hybrid B3LYP functional with LANL2DZ basis set within Gaussian09 code (15). 

Frequencies are determined from the second derivatives of the energy with respect to the atomic positions 

and then operating transformation to mass-weighted coordinates. Exploring the results especially for the 

vibrations and their animations with screen captures was done with Gaussview annex module to 

Gaussian. Video S1 shows the breathing mode and video S2 show the ligand bending mode. A complete 

analysis will be published elsewhere.  

 

5 Coupled oscillators model:  

The motion of two elastically coupled oscillators are described by the classical equations of motions: 

 
                        

                        
  

    is the coupling between the two modes D and i the damping constants due to the coupling to the 

phonon bath, µi the reduced masses. The frequencies of the modes are i =
 

  
  

  

  
 .  

Given a set of constants                    and initial conditions: 

                                   

numerical integration (using the python module scipy.integrate.odeint (17)) yields the displacements of D 

and  as function of time. The model functions S
900nm

 in Fig. 4B and S
850nm

 in Fig. 4C of the measured 

signals y
900nm

 and y
850nm

 are then build as 

 
                                            

                           
  

The model functions allow to define a like hood function as follows 

                      
                              

         
 
 

This function has been minimized using the Minuit library (18) on the data in the time interval [0.2:2.5] 

ps. The results together with the 1-standard-deviation error bars are reported in the table S1 hereafter. 

Since the relations displacements/change of optical density are unknown,    ,    ,    are in arbitrary 

units as well as the amplitudes D and . In our analysis the reduced masses (µD = 8.5 AMU, µ = 6 AMU) 

of the oscillators D and  were obtained from the Gaussian calculations. The only parameters with 

physical dimensions are the damping rates       of the oscillators.  

The fit gives D =113cm
-1 

and   =85cm
-1

.  
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Table S1. Results and standard-deviation of the fit of the motion of two elastically coupled oscillators.  

 

Parameter Unit Best Fit error bar 

   /µD ps
-1  6.2 0.25 

  /   ps
-1  1.16 0.1 

       AMU.ps
-2

 4050 60 

   AMU.ps
-2

 1570 8 

    AMU.ps
-2

 29.3 0.3 

    arbitrary 2.6·10
-3 0.1·10

-3 

    arbitrary 3.2·10
-3 0.2·10

-3 

    arbitrary 6.8·10
-5 

0.3·10
-5 

   ps -0.13 0.002 

       arbitrary -8.4 1.5 

        arbitrary 1072 12 

       arbitrary 1.62 0.04 

        arbitrary -9.0 0.6 
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