
HAL Id: hal-01088006
https://hal.science/hal-01088006

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-driven modeling for water resource quality over
long term trends

Vincent Laurain, Marion Gilson, Marc Benoît

To cite this version:
Vincent Laurain, Marion Gilson, Marc Benoît. Data-driven modeling for water resource quality over
long term trends. 7th International Congress on Environmental Modelling and Software, iEMSs 2014,
Jun 2014, San Diego, United States. 605 p. �hal-01088006�

https://hal.science/hal-01088006
https://hal.archives-ouvertes.fr


International Environmental Modelling and Software Society (iEMSs)
7th International Congress on Environmental Modelling and Software

San Diego, California, USA, D.P. Ames, N. Quinn (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

Data-driven modeling for water resource
quality over long term trends

V. Laurain a, M. Gilson a, M. Benoı̂t b
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Abstract: Since the 50 last years, the rapid development of modern agriculture in industrialised
countries has considerably affected the quality of water resources, up to the point to jeopardise the
capacity of rural territories to produce drinking water. Hence, there has been interest within the
field of agronomy to study complex nitrogen biogeochemical interactions over a long time period.
Nevertheless, if the agronomists are able to produce very accurate models at different scales,
they have a limited number of available tools in order to cope with quality measurements in water
sources for which very little information about the geological information is available. It prevents the
specialists of being affirmative about the prediction of their current actions on the water quality. By
opposition, system identification can deliver dynamical models from measured data: they cannot
be generalised but offer strong insight without any a priori. This applicative paper introduces a data-
driven model software for both modelling the nitrogen propagation in drinking water and offering
new decision tools to stakeholders.
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1 INTRODUCTION

Agriculture is challenged by large scale issues, like impacts of land system changes on the preser-
vation of environmental resources, urging agronomy to evolve. Landscape agronomy has been
proposed as new perspective to address these issues [Benoı̂t et al., 2012]. In European Union,
the WFD (Water Framework directive) is built on a strict basis: water policy is a result based policy.
Therefore, States and Agencies have to maintain water in a good state, link to chemical norms and
dates to obtain these results [2000/60/EC, 2000]. It has hence become compulsory to deal with
two main parameters to help decision makers in this domain: the evolution of concentration and
the level of chemical contents at precise dates (2015, 2021, 2025). This work is hence dedicated
to water quality depletion or improvement.

During the past decades many different models have been proposed in order to analyse the com-
plex biogeochemical behaviour of Nitrogen (N) in agricultural soils. In [Manzoni and Porporato,
2009], 250 different models are classified in terms of mathematical features such as spatial and
temporal scale or isotropy approximations. These models take into account different phenomena
(denitrification, biomass growth and decay, water flux ...) and therefore require the tuning of a large
number of parameters. They also require quite a large number of input such as the type of culture
(cereals,vegetables...), the N density at different depths or the soil type [Bacsi and Zemankovics,
1995; de Willigen and Neeteson, 1985]. Hence, they are mostly exclusively validated on dedi-
cated experimental parcels [Cavero et al., 1999; Bacsi and Zemankovics, 1995; de Willigen and
Neeteson, 1985], where each required information is available from measurements. The strength
of those models is their deep physical insight and the respect of a modelling protocol allowing their
generalisation to other parcels.

Nevertheless, their main drawback is their inability to be tuned on parcels where some of the
required knowledge is unavailable: in this case, some assumptions are required, which can av-
erage favourably at large scales, but that cannot be applied at smaller scales such as catchment
or parcels scales [Del Grosso et al., 2006]. In the presented application, the only available infor-
mation is the compulsory N concentration measure in drinkable water sources. There is not any



V. Laurain et al. / Data-driven modelling for water resource quality over long term trends

knowledge about the depth of these sources, the surface of water they drain, their flow or the soil
type. Modelling and understanding the N propagation into the water is a challenging issue in such
a situation which actually represents the most realistic scenario in most of drinkable sources.

In opposition to the traditional approaches, a “top-down” approach is proposed in this paper: the
model is determined using the measured data and despite some slight vocabulary divergences,
these approaches link directly to the field of system identification. The field of system identification
uses statistical methods to build mathematical models of dynamical systems from measured data.
Their are many environmental fields where system identification was successfully used, and one
of the most prosperous field related to the presented application is the rainfall/runoff modelling
[Laurain et al., 2010; Young and Beven, 1994].

This paper main contribution is to propose a data-driven model, along with its physical validation
process. The obtained model aims at bridging the gap between the modelling possibilities with
regards to slow/complex dynamics effects and the stakeholders expectations. It is organised as
follows. In Section 2, the issues and dead-end of traditional modelling and nitrogen propagation are
detailed. In Section 3, the proposed data-driven model is explained along with some algorithmic
aspects. Finally, the results are exposed and validated using physical principles in Section 4.1.
Conclusions and some future directions of research are given in Section 5.

2 PROBLEM FORMULATION

The 2000 European Directive, the Water Framework Directive (WFD), proposed three new articles:
preservation of water bodies as a whole (taking into account non-point pollution instead of only
point-source pollution), an imposed schedule, and objectives defining quantified results aiming for
the ecological restoration of the environment. This text is complex (because it includes several
types of regulatory tools), ambitious, and is a cornerstone of the European Union’s environmental
policy. However, its application is delicate for a number of countries [Dworak et al., 2009] in which
achieving consistency within the law has followed other pathways or which do not know how to
achieve this result. France partially conformed to this directive only 6 years later through its Law
on Water and Aquatic Environments [Dworak et al., 2009] where for the first time in French law, the
notion of non-point pollution appeared.

In 1990, nitrate peaks reaching 70 mgNO3-/L (exceeding the European drinking standard of 50
mgNO3-/l) caused a lively debate on management strategies to deal with this N contamination.
The public service delegated for water proposed a strategy to protect all of the sources used for
drinking water. With the European directive in mind, a collective action called “Ferti-Mieux” started
on the sources of the Haut-Saintois plateau (800 ha= 8 km2), Lorraine, France. A list of agricul-
tural new practices has been proposed to farmers and many of them ( 85 % of cultivated surface)
adopted these improvements to protect water resources. The main changes are i) farmyard man-
agement through low amount of compost (less than 20 t/ha/y) and ii) mineral fertilisation control
taking into account soil mineralization (the global decreasing of input is 60 kg N/ha/y). These im-
provements are near from other European agricultural improvement operations for water quality
protection [Kunkel et al., 2010; Lam et al., 2011].

Since then, six sources are monitored by measuring the N concentration at a fortnight rhythm dur-
ing 20 years by technicians of Inra research unit (Lionel Caudy, Gilles Rouyer and Damien Foissy).
The samplings have been realised directly in the source catchment, with all the legal security pro-
cesses. The location of these sources is characterized by an agricultural landscape. The land
use is: Forests (12 %), small rural roads (4 %) and agricultural fields (84 %). Hence, the pollution
sources are only diffuse pollution one, without any building and houses in the watersheds. In this
paper, due to space restrictions, we focus on two of these sources which nitrate ion concentration
CN (t) is displayed in Figure 1 in grey. It must be noticed that the same modelling strategy with
similar results was applied on all the available data. The goal is to study the link between the
practice changes and the water quality. As there is not any available model of water dynamics in
this karstic zone, and no N concentration measure in the soil is available, we propose a data-driven
modelling strategy.

3 THE PROPOSED TOOL : DATA -DRIVEN MODEL

3.1 The physical-based modelling problem

In practice, long-time trend forecasting and decision help requires a dynamical model able to sim-
ulate the concentration in the water with respect to some given scenario. Nevertheless, in the
presented problem, no model is available to link the agricultural N mass to the actual N concentra-
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Figure 1. Measured nitrogen concentration CN
1 (t) and CN

2 (t) in two similar sources S1 and S2

along with a 3rd order polynomial approximation MN
1 (t) andMN

2 (t)

tion measured in the water. Should there be one, it would also not be possible to tune it in order
to fit the current measured data : indeed, none of the N input have been measured. Hence, the
commonly used modelling technique for this problem is to use a simplistic polynomial fit such as
exposed in Figures 1 in red. Unfortunately, such a static model indicates the current trend but
is not suitable for future forecasting. Finally and most importantly, despite the similar region, soil
and agricultural policy, it appears that the polynomial curves indicate opposite results for these two
sources: no conclusion can be drawn from this measured data.

3.2 The data-driven modelling problem

The solution proposed in this paper relies on the identification of a model under its transfer function
form which offers the ability to interpret a posteriori the data-driven model in physical or ecological
terms: this process is the so-called data-driven mechanistic modelling [Young and Beven, 1994].
The main advantages in using such a modelling paradigm are:

• A simplified model is obtained without requiring any physical assumption or model reduc-
tion. The obtained model might not even be possibly derived from physical assumptions.
Nonetheless, only a physics-based validation and its capacity to predict physical phenom-
ena legitimate its validity.

• If a very simple model is obtained, it also means that a source can be characterised us-
ing only a small set of parameters, helping a lot in terms of data compression in big data
contexts.

• Finally, even though the obtained model cannot be directly applied to other sources with-
out measures, the data-driven mechanistic process can be applied directly to any kind of
relationship (rainfall/runoff...), at any scale as soon as some measures are available.

Regarding the specific nitrogen propagation problem, from a system theory viewpoint, two main
issues have to be dealt with and are not detailed here due to space restrictions:

1 The lack of nitrogen input: none of the nitrogen soil concentration is measured. Conse-
quently, a preliminary data-mining phase has been realised. It is based on a simple correla-
tion analysis and the result is a possible correlation between CN (t) and both the raw rainfall
R(t)(mm/day) and the temperature T (t) (oC) (downloaded from the European Climate As-
sessment website, Source 741, [Tank and Coauthors, 2002].

2 System identification is dedicated to dynamical models: the drift represented by the polyno-
mial approximation MN (t) varies too slowly to be identified from a reduced set of data and
needs to be removed. Hence, the considered output is CN

c (t) = CN (t)−MN (t).

The proposed model which is the main contribution of this paper is described by the following
so-called Output-Error model:

M

{

CN
c (t)=

b1
s+a1

Rc(t) +
β1

s+ α1

Tc(t) + e(t), (1)
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where s is the Laplace variable and e(t) is assumed to be a white noise stochastic process.
CN

c (t),Rc(t) and Tc(t) are the centred Nitrogen concentration, rainfall and temperature respec-
tively, defined as CN

c (t) = CN (t) − MN (t), Rc(t) = R(t) − mean(R(t)) and Tc(t) = T (t) −
mean(T (t)). b1, a1, α1, b1 are the parameters to be identified and they fully characterise the pre-
sented structure. The same structure was proposed from the data for all the sources analysed in
this study (6 in total). Hence, this dynamical model is a simple first order model, with two inputs and
one output. Please note that other more complicated models such as nonlinear Hammerstein and
Wiener structures along with nonparametric approaches (Support Vector Machines) have been
tested. Nevertheless, probably due to the amount of noise and the relatively low number of data
points, the results were not significantly better (or worse), lead to an harder interpretation, and
therefore, the simplest structure was retained.

This model implies that the temperature and the rainfall should affect consistently the nitrogen
concentration in water. This statement can naturally not be derived from any physical logic. Hence,
one would think that this type of model does not have any legitimacy. However, should this model
be physically validated (temperature could be correlated to an actual N source), it would be very
interesting in the sense that temperature and rainfall are widely available measures. Before drawing
any conclusion identification must be performed. Nonetheless, identification is not a trivial matter
either in such context. While the white noise assumption is fair when measurement noise is the
major perturbation source, the problem is more complicated here : noise on the inputs (the rain and
the temperature are not measured exactly above the considered parcel), missing inputs, system
approximation... Hence, the identification needs to be robust to noise modelling errors. For this
application, the so-called simplified refined instrumental variable algorithm (SRIVC) [Young and
Jakeman, 1980] has been chosen. It hands out unbiased estimates in case the true noise is zero
mean, independently of its distribution and it was successfully used in many other environmental
applications [Laurain et al., 2010; Young and Beven, 1994]. Consequently, before presenting the
results, here are all the steps necessary for the identification of the proposed N propagation model:

Step 1: Force all the data to the same sampling period : in our application CN (t) was
sampled every 15 days, and was linearly interpolated to fit the one day sam-
pling period of the rainfall and temperature.

Step 2: Compute the polynomial curve and subtract it to the original measured data.
Step 3: Split the data into a identification dataset and a validation dataset.
Step 4: Use the identification dataset to identify a linear structure using the SRIVC

function (a free Matlabrversion can be downloaded with the Contsid Toolbox
at http://www.cran.uhp-nancy.fr/contsid/) using different model orders.

Step 5: Use the validation dataset in order to choose the most suitable order (for exam-
ple using Young’s Information criterion [Young and Jakeman, 1980] and display
the obtained model (resulting here in (1)).

The obtained results are provided in the next section.

4 MODEL VALIDATION

4.1 Physical propositions

In this section, the identification results are depicted in the form of physical propositions and data fit.
Before detailing the results, it must be emphasised here that no a priori has been used in order to
build this model and it has been solely built using commonly measured data. The identification data
has been chosen as a period of 4 years between 1997 and 2001 as they contain the most different
rainfall scenarii and the rest is used for validation purpose. The coefficients of the identified models
for the two presented sources are exposed in table 1. Naturally, the equations are not homogenous
and therefore, the absolute value of these parameters are of little interest. Nevertheless, it can be
seen that the b1 coefficients are negative for both sources (and actually all other studied sources).

Source rainfall temperature
a1 b1 α1 β1

S1 0.016 −0.050 0.021 0.0007

S2 0.003 −0.023 0.007 0.0002

Table 1. Identified parameters
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This indicates a negative static gain on the rainfall transfer function. The exact opposite statement
can be concluded for the temperature transfer function.

The simulated output of the identified model can be computed. The estimation data, validation
data and simulated output are exposed in Figure 2. Two striking facts appear from the simulation
results. Even though these two parcels behave differently from the trend perspective, their dynamic
is actually quite similar. The identified model outputs are actually nearly identical for both of these
sources. Furthermore, the model output fits quite well the original data (at least from in the esti-
mation dataset) considering that the rainfall and temperature are not actual sources of nitrogen. In
order to quantify this fit, a local score inspired from the NASH score [Nash and Stucliffe, 1970] is
used and is defined as:

NASH(tk) = 1−
||ĈN

c (tk)−CN
c (tk)||

2
k−N,k+N

‖ĈN
c (tk)−mean(CN

c )‖2k−N,k+N

. (2)

where ĈN
c (tk) is the output simulated from the identified model and the notation ||.||2k−N,k+N de-

picts the ℓ2 norm on the samples between k −N and k +N . Here, N is chosen as 365 days. In
other words, the presented score represents the NASH score on a local 2 years long window on
each time sample k. It must be noticed that NASH = 1 means perfect fit, NASH = 0 means that
the simulated output is only as predictive as the output average, while NASH < 0 means that the
simulated output is not predictive.
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Figure 2. Original centred concentration CN
c (t) (estimation data in green and validation data in

grey) along with the model output simulated from the rainfall and temperature data, for sources S1

(left) and S2 (right).

The fitting score quantification is displayed in
Figure 3. It quantitatively appears now that both
sources (actually all studied sources) evolve
from a non-predictive to a predictive zone
around 1994. From a system theory viewpoint,
it could be argued that the obtained fit is rather
poor. Nevertheless, the main unpredicted part
is located in the high frequencies which is not
surprising considering the relatively high sam-
pling period taken for concentration measure-
ments with respect to rainfall and temperature.
Finally, by taking into account that the true model
inputs are unknown, this models fits the data re-
ally well.
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Figure 3: Local NASH score for S1 and S2

To sum it up, the result of the data-driven modelling are the following physical statements:
H1: The rainfall acts negatively on the nitrogen concentration.
H2: The temperature acts positively on the nitrogen concentration.
H3: The dynamic behaviour of S1 and S2 are similar.
H4: The sources undergo a major change around the beginning of year 1994, even

though this year was not used for identification.
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4.2 The physical validation

In agronomy, temperature is a good indicator of vegetation growth season. In our temperate zones,
the 6◦C is the basis of two main phenomena: vegetation growth, and nitrate mineralization in the
soil. Therefore, temperature is used as an indicator of biological activity in the fields, which is
strongly involved in soil nitrification which validates H1. For agronomists, rainfall minus evapotran-
spiration is a pertinent indicator of nitrate movement in the soils and in the aquifer: without rainfall,
N are stable in the soils while with high level of rainfall, they are moving through the soils to the
aquifers. When the amount of rain is low, the N solubility being high, the concentration of N will
raise in the water. On the contrary, if the amount of rain is high, once the N soil nitrification de-
creases under a critic mass, the N concentration will decrease. This fact strongly validates H2.
Consequently, these two variables are in the heart of N leaching model and strongly correlated to
N inputs [Brisson et al., 2010].

For our situation, these sources are situated very closely in the same geographic location on this
karstic plateau with a similar situation in terms of climate and soil behaviours: they should behave
the same (H3). Finally, the only change on these parcels is the farmers’ practice changes, from a
high level of inputs until 1992, to a strong decreasing in 1993 with the initiation of “Ferti-Mieux” local
water resource management operation. For all studied sources, it seems that the simple proposed
model is able to emphasise this change clearly in time despite the fact that this a priori knowledge
was not used in the modelling process (H4).

Consequently, while this model could not have been possibly derived from physical reasoning, it
seems that it is strongly supported by the physical validation. This model takes as an input only
natural measurements. Naturally, it means that this model is unable to emphasize agricultural
practice changes when most of the nitrogen source take origins from human activity. That could
also mean that this model indicates how naturally behaves the source. More data would be needed
in order to assess this statement. While some of the dynamics are well predicted by this model,
the slow trends and the high frequencies phenomena could though not be captured. Hence, either
the trends are caused by earlier data and a slower dynamic integrative effect is present or they
are caused by measures taking place in the unmodelled high-frequencies phenomena. In order
to study the latter assumption, a high frequency sampled-data would be needed and the current
acquisition might not be sufficient to assert the future behaviour of the sources. Nevertheless,
should the proposed model represent a natural behaviour, then the closer the N concentration to
this model output, the more likely to see the N concentration decrease at some point. However,
Further study is needed for this purpose.

5 CONCLUSIONS

In conclusion, a data-driven model has been proposed for nitrogen propagation in drinking water.It
must be well understood that such an approach can be applied only on instrumented lands as
the model drives the model definition. Hence, it does not require the same amount of a priori
as physical based-model, but it has other limitations. For example, an identified model cannot
therefore not be directly extended to other similar parcels as its parameters cannot be directly linked
to any actual physical process. Nevertheless, it was shown that most of the yearly dynamics could
be predicted by solely using the rainfall and temperature when the human nitrogen source is low,
giving a completely different insight on the system as usual. It can be pointed out that this data was
not acquired for system identification purposes and therefore, the method can be considered as
applicable on commonly available data. Even though the data-driven model does not represent any
physical relationship it still can be validated from physical principles. The fact that it is able to detect
a change in the agricultural policy from strong nitrogen loads to considerable decreased loads
could even support the fact that this model can well represent the natural behaviour of a source.
The more the model fits, the more the source is natural. Nevertheless, deeper investigations are
required in order to validate this assumption. Hence, the presented model could not estimate yet
the long terms trends. Nevertheless, the current trends might be a residual of past effects. Should
it be the case, and depending on the time constants (which might be several dozens of years) the
trends will never be possibly forecasted. However, should this model represent the naturalness of
a source, then it would give the stakeholders a tool to assess the naturalness of their watershed
and assert whether the current trends are caused by current policies or not.
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