J. Beale, A. Majda, S. Huberson, and E. Rivoalen, High order accurate vortex methods with explicit velocity kernels Simulation of anisotropic diffusion by means of a diffusion velocity method, Journal of Computational Physics Journal of Compu- tational Physics, vol.5885, issue.186103, pp.188-208, 1985.

J. Bonet and T. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.97-115, 1999.
DOI : 10.1016/S0045-7825(99)00051-1

P. Chatelain, S. Backaert, G. Winckelmans, and S. Kern, Large eddy simulation of wind turbine wakes. Flow, Turbulence and Combustion, pp.587-605, 2013.

A. Chertock and D. Levy, Particle Methods for Dispersive Equations, Journal of Computational Physics, vol.171, issue.2, pp.708-730, 2001.
DOI : 10.1006/jcph.2001.6803

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Chertock and D. Levy, A particle method for the KdV equation, J Sci Comput, vol.1714, pp.491-4991015106210404, 2002.

A. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics, vol.23, issue.04, pp.448-475, 1973.
DOI : 10.1017/S0022112073002016

R. Cortez, Convergence of high-order deterministic particle methods for the convection-diffusion equation, Communications on Pure and Applied Mathematics, vol.50, issue.12, pp.1235-1260, 1997.
DOI : 10.1002/(SICI)1097-0312(199712)50:12<1235::AID-CPA2>3.0.CO;2-9

G. Cottet, P. Poncet, and . Doi, Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods, Journal of Computational Physics, vol.193, issue.1, pp.136-158, 2004.
DOI : 10.1016/j.jcp.2003.08.025

P. Degond and S. Mas-gallic, The Weighted Particle Method for Convection-Diffusion Equations. Part 1: The Case of an Isotropic Viscosity, Mathematics of Computation, vol.53, issue.188, pp.485-507, 1989.
DOI : 10.2307/2008716

P. Degond and F. Mustieles, A Deterministic Approximation of Diffusion Equations Using Particles, SIAM Journal on Scientific and Statistical Computing, vol.11, issue.2, pp.293-310, 1990.
DOI : 10.1137/0911018

Y. Dynnikov and G. Dynnikova, Numerical stability and numerical viscosity in certain meshless vortex methods as applied to the Navier-Stokes and heat equations, Computational Mathematics and Mathematical Physics, vol.51, issue.10, pp.1792-1804163, 2011.
DOI : 10.1134/S096554251110006X

J. Eldredge, A. Leonard, and T. Colonius, A General Deterministic Treatment of Derivatives in Particle Methods, Journal of Computational Physics, vol.180, issue.2, pp.686-709, 2002.
DOI : 10.1006/jcph.2002.7112

J. Fronteau and P. Combis, A lie admissible method of integration of folkler-plank equations with non linear coefficients (exact and numerical solutions), Hadronic J, vol.7, pp.911-930, 1984.

G. Gambino, M. Lombardo, and M. Sammartino, A velocity???diffusion method for a Lotka???Volterra system with nonlinear cross and self-diffusion, Applied Numerical Mathematics, vol.59, issue.5, pp.1059-1074, 2009.
DOI : 10.1016/j.apnum.2008.05.002

J. Grant and J. Marshall, Diffusion velocity for a three-dimensional vorticity field, Theoretical and Computational Fluid Dynamics, vol.540, issue.6, pp.377-390, 2005.
DOI : 10.1007/s00162-005-0004-8

S. Guvernyuk and G. Dynnikova, Modeling the flow past an oscillating airfoil by the method of viscous vortex domains, Fluid Dynamics, vol.42, issue.1, pp.1-11, 2007.
DOI : 10.1134/S0015462807010012

S. Kempka and J. Strickland, A method to simulate viscous diffusion of vorticity by convective transport of vortices at a non-solenoidal velocity, pp.383-386, 1993.
DOI : 10.2172/10190654

G. Lacombe and S. Mas-gallic, Presentation and analysis of a diffusion-velocity method, ESAIM: Proceedings, vol.7, pp.225-233, 1999.
DOI : 10.1051/proc:1999021

A. Leonard, Vortex methods for flow simulation, Journal of Computational Physics, vol.37, issue.3, pp.289-335, 1980.
DOI : 10.1016/0021-9991(80)90040-6

P. Lions and S. Mas-gallic, Une m??thode particulaire d??terministe pour des ??quations diffusives non lin??aires, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.369-376, 2001.
DOI : 10.1016/S0764-4442(00)01795-X

W. Liu, S. Jun, and Y. Zhang, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, vol.45, issue.8-9, pp.1081-1106, 1995.
DOI : 10.1002/fld.1650200824

W. Liu, Y. Chen, R. Uras, and C. Chang, Generalized multiple scale reproducing kernel particle methods, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.1-491, 1996.
DOI : 10.1016/S0045-7825(96)01081-X

J. Mansfield, M. Mansfield, J. Knio, O. Meneveau, and C. , Towards lagrangian large vortex simulation, ESAIM: Proceedings, vol.1, pp.49-64, 1996.
DOI : 10.1051/proc:1996019

J. Mansfield, O. Knio, and C. Meneveau, A dynamic LES scheme for the vorticity transport equation: Formulation and a priori tests, Journal of Computational Physics, vol.1456051, issue.2, pp.693-730, 1998.

S. Mas-gallic, P. Leach, S. Bouquet, and J. Rouet, A presentation of the diffusion velocity method, Lecture Notes in Physics, vol.518, pp.74-81, 1999.
DOI : 10.1007/BFb0105914

C. Meneveau and J. Katz, Scale-Invariance and Turbulence Models for Large-Eddy Simulation, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.1-32, 2000.
DOI : 10.1146/annurev.fluid.32.1.1

R. Milane and S. Nourazar, On the turbulent diffusion velocity in mixing layer simulated using the vortex method and the subgrid scale vorticity model, Mechanics Research Communications, vol.22, issue.4, pp.327-333, 1995.
DOI : 10.1016/0093-6413(95)00032-M

R. Milane, S. Nourazar, and . Doi, Large-eddy simulation of mixing layer using vortex method: Effect of subgrid-scale models on early development, Mechanics Research Communications, vol.24, issue.2, pp.215-221, 1997.
DOI : 10.1016/S0093-6413(97)00015-3

R. Milane, Large eddy simulation(2D) using diffusion???velocity method and vortex-in-cell, International Journal for Numerical Methods in Fluids, vol.44, issue.8, pp.837-860, 2004.
DOI : 10.1002/fld.673

F. Mustieles, É. P. Mycek, P. Pinon, G. Germain, G. Rivoalen et al., Étude mathématique et simulation numérique A self-regularising DVM-PSE method for the modelling of diffusion in particle methods, Comptes Rendus Mécanique, vol.341, pp.9-10709, 1990.

O. Ypii, /. S0021999107000630-pinon, G. Mycek, P. Germain, G. et al., DOI 10 Numerical simulation of the wake of marine current turbines with a particle method) Numerical simulation of axisymmetric viscous flows by means of a particle method, ESAIM: Proc Simulation numérique des équations de Navier- Stokes 3D par une méthode particulaire. Comptes Rendus de l'Académie des Sciences -Series IIB -Mechanics-Physics-Chemistry-Astronomy, pp.313-324111, 1051.

P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series, Applied Mechanics Reviews, vol.55, issue.6, 2006.
DOI : 10.1115/1.1508154

B. Schrader, S. Reboux, and I. Sbalzarini, Discretization correction of general integral PSE Operators for particle methods, Journal of Computational Physics, vol.229, issue.11, pp.4159-4182, 2010.
DOI : 10.1016/j.jcp.2010.02.004

J. Strickland, S. Kempka, and W. Wolfe, Viscous diffusion of vorticity using the diffusion velocity concept, ESAIM: Proceedings, vol.1, pp.135-151, 1996.
DOI : 10.1051/proc:1996033

G. Winckelmans, R. Cocle, L. Dufresne, R. Capart, and . Doi, Vortex methods and their application to trailing wake vortex simulations, Comptes Rendus Physique, vol.6, issue.4-5, pp.467-486, 2005.
DOI : 10.1016/j.crhy.2005.05.001