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Neural Network Fusion of Color, Depth and
Location for Object Instance Recognition on a
Mobile Robot
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Abstract.  The development of mobile robots for domestic assistance re-
quires solving problems integrating ideas from di erent elds of re search
like computer vision, robotic manipulation, localization a nd mapping.
Semantic mapping, that is, the enrichment a map with high-lev el infor-
mation like room and object identities, is an example of such a complex
robotic task. Solving this task requires taking into account ha rd software
and hardware constraints brought by the context of autonomous mo bile
robots, where short processing times and low energy consumption ae
mandatory. We present a light-weight scene segmentation and object in-
stance recognition algorithm using an RGB-D camera and demonstrate
it in a semantic mapping experiment. Our method uses a feed-forward
neural network to fuse texture, color and depth information. Runni ng at
3 Hz on a single laptop computer, our algorithm achieves a recogrition
rate of 97% in a controlled environment, and 87% in the adversarial con-
ditions of a real robotic task. Our results demonstrate that stat e of the
art recognition rates on a database does not guarantee performance n
a real world experiment. We also show the bene t in these conditi ons of
fusing several recognition decisions and data from di erent sources. The
database we compiled for the purpose of this study is publicly available.

Keywords: Semantic mapping, indoor scene understanding, instance
recognition, mobile robotics, RGB-D camera

1 Introduction

For robots to accomplish useful tasks, they must have the capacity to nderstand
their environment. Endowing robots with the ability to recognize previously seen
objects is one step to take them out of the labs into the real world. Our esearch
focuses on assistive robotics, where an autonomous robot shares the hometef i
owner and helps him with his daily chores. In this context, it is important for
the robot to recognize each piece of furniture and commonplace objects itheir
home. This is called object instance recognition, as opposed to object cagory
recognition which aims at identifying an unknown object's class. Thecontext of
autonomous mobile robots brings limits on processing power and energy. e
lighter the algorithms, the more reactive the robot can be, and the longer i
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can operate without having to recharge. The algorithms described in tis paper
perform object instance recognition and were speci cally designed tde light-
weight.

Our recognition algorithm relies on data provided by an RGB-D camera
(cameras providing color and depth information). These cameras have lmeme
omnipresent in robotics labs because they are a ordable and give valuablafor-
mation about a robot's surroundings. They are however noisy, giving impecise
distance measures, and some models can su er from data synchronizatigssues,
see gure 4. In our experiments, when the camera is moved quickly asappens
when it is mounted on a mobile robot, a shifting occurs between the dpth and
color image. Images also tend to be plagued with motion blur. Common RGB-D
cameras also perform very badly on re ective, transparent and dark surdces.
In real-life robotics experiments, data is further a ected by partial views, occlu-
sions, viewpoint variance and illumination changes. However, real robot exper-
iments allow for further processing to be done on top of single image regnition.
For instance, performances can be improved by cumulating recognitiorscores
when an object is seen several times.

The contribution of this paper is threefold. We describe an integratel RGB-D
scene segmentation and object instance recognition algorithm for mobile radis.
We provide the database we compiled to train the algorithm consisting ofabout
31200 RGB-D images of 52 common objects (600 per object). We propose a
benchmark robotic experiment to evaluate the recognition of objects wekn they
are seen in a di erent context as when they were learned. Our recogtion method
copes with all aforementioned problems and is light-weight enough to beun on
an autonomous robot while it performs other tasks. In our experiment, a molde
robot performs a semantic mapping task in which it must map its environ
ment and annotate the map with information about the objects it encountered.
This experiment involves many challenges which are not encounteredhen us-
ing o ine database for performance evaluation. As by the focus of our reseati,
we concentrate on rather large objects lying on the ground because they can
serve for navigation and indoor scene understanding. A semantic map obtaed
with our algorithms is shown in gure 1. This paper extends the work of [11]
adding improved recognition capabilities, reliable scene segment&in and thor-
ough analysis of performance. For the purposes of this article, our benchanking
e orts will focus on recognition. A particular interest of our investi gations has
been the evaluation of the fusion of color and depth information for improving
recognition accuracy. The fusion is done with a feed-forward neural ne&tork.

This paper is structured as follows. The state of the art in the domainsof
point cloud segmentation and object recognition is presented in sectio2. The
database compiled for the purposes of our experiments and information about
the physical implementation of our methods are detailed in section 3. &ction 4
describes our segmentation and recognition algorithms. Our results arehswn
in section 5 and they are commented in section 6.
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Fig. 1. The semantic map resulting from the online experiment.

2 Related Work

Traditionally, the steps of segmentation and recognition are deemed to bessen-
tial, and this is indeed the approach we use in this article. Howeversegmentation-
free recognition approaches have been demonstrated to be feasible anohtpu-

tationally e cient [31, 14], though not directly in the eld of robotics whe re

recognition problems typically exhibit a very high number of object instances.
Here, we will brie y review some related work for both segmentation and ecog-
nition while being aware that a eld as vast as this one can only be touched
lightly within the scope of this article.

2.1 Segmentation

Point cloud segmentation is a eld of ongoing research, ignited by the reent
advances in 3D sensing technology. The methods related here are rouglihtro-
duced in the order of the strength of the hypotheses they make on objecthapes,
from model-based methods to model-free ones.

Model-based techniques nd prototypical shapes in an image and t geomet
ric models to estimate their exact pose. Such an approach is presemtén [24].
Working even with partial views, they nd the shape of objects by tt ing geo-
metric models like cylinders and planes. Missing data can be lld once the right
shape model is found and tted. After using a surface reconstructiontechnique,
the nal model of an object is a hybrid shape and surface description.

Depending on weaker shape hypotheses, [30] segments highly cluttdrecenes
by analysing point normals. First, raw depth images are spatially and tenporally
Itered and the point normals are computed. The scene is over-segméed into
smoothly curved surfaces by thresholding the normals orientation derence of
neighboring points. The segments are joined based on geometric consid&ons.
The method is model-free, but biased to work when the scenes cassof simple
box- or cylinder-shaped objects. An approach using multi-modal data $ pre-
sented in [7], combining image and range data to form a hierarchy of segmest
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and sub-segments. These segments are rated according to various "sttuce-
ness" measures in order to retain the best object candidates. Using aimilar
rating concept, [15] detect multiple objects in Kinect Fusion maps ofcluttered
scenes. First, the scenes are over-segmented using a graph-basdgbrithm by
[10]. Weights in the graph are computed from the dot-product of the normals
of two points and the fact the they are part of a concave or convex surface.
The segments are then rated for "objectness" based on di erent measugesuch
as compactness and symmetry. These measures can further be used forjeatt
identi cation. Dubois et al. [8] propose an energy-based semantic segmgation
method and compare it to a geometric method. Their method uses a Markv
Random Field and relies on weak hypotheses of smoothness over appearaacel
labels. It is more generic than the geometric approach but its precisionecall g-
ures are not as good as those of the carefully tuned geometric method whesed
speci cally in indoor scenarios.

Finman and Whelan [12] compute the di erence between two Kintinuous
maps of a given scene where in one of the maps, an object was either added
or removed. Taking into account the angle of view when the scenes weighot,
they can obtain the 3-D mesh of the object. Then, they train a segmentatn
algorithm to obtain the parameters to extract this object from the partic ular
scene where it was seen. Once learned, the object-speci ¢ paramnee$ can serve
for object detection. This method requires to store a detailed repesentation of
previously seen scenes to accomplish the di erentiation.

2.2 3D Object Recognition

The recognition of objects from three-dimensional data is well studid in the
literature, see [6, 18] for survey. Many methods expect a segmented zt can-
didate which should be matched against templates in a database of previolys
registered objects. At the most fundamental level, proposed methosl can be
grouped into holistic and local approaches. Of the former, a prominent gample
is iterative closest point estimation (ICP) [34], which can match object candi-
dates to templates if a rough alignment between the perceived objecand at
least one template exists. The Generalized Hough Transform [9] can be a efsl
tool, especially for simple objects like cylinders or spheres, see.g., [22]. Both
these techniques restrict recognition to speci ¢ object typesknown in advance.

If the object class is unknown, more general methods for the holistidescrip-
tion of objects need to be used: an example is [32] where histograms of normal
orientations between randomly chosen point pairs in the object candida¢ are
computed, resulting in a holistic descriptor of object shape. Anothe notable
holistic approach [20] attempts to nd constant object signatures in views of
object candidates that were taken from di erent directions. Histograms of pairs
of points and normals describe very well the shape of objects and are used
the present work as one of the features fed to our learning algorithm.

Mueller et al. [19] use rules on segments size, position and alignment toerge
segments into parts and parts into objects. They demonstrate good rexgnition
results in a cluttered and disorganized scene, but with only 3 objet classes.
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Bo et al. [3] use unsupervised hierarchical matching pursuit to larn features
suitable for object recognition. The method seems very powerful andjives excel-
lent results for generalization over classes and instance recognitioifthe instance
recognition evaluation is realized with objects seen from a di erent amgle of view,
but with no occlusions or change in the lighting conditions.

2.3 RGB-D Databases

Databases of RGB-D images of objects already exist. The RGB-D Object Datast
[16] and 2D3D dataset [5] are good examples. The RGB-D dataset is very similar
to our own. It contains images of a large number of objects shot from di eren
viewing angles and under controlled conditions. It additionally contains videos
of scenes where a certain number of these objects can be found, undérerent
lighting conditions and in challenging situations. The conditions in which the
videos were taken however do not allow for our segmentation algorithm to be
used. Also, it contains mainly small objects like bowls, bottles or cesal boxes
whereas we focus on furniture like chairs and trash cans. Most of the ét-
ing methods which were tested on these database only provide perfmance for
recognition of objects shot in controlled conditions and dismiss the vido data.

2.4 Summary

For the purpose of this study, elaborate segmentation techniques are ndbene-
cial. The most important points here being to work directly on the im age pro-
vided by the RGB-D camera, and to preserve processing power. Thieliminates
methods working on Kinect Fusion or Kintinuous maps [12] and ones implyig
temporal Itering [30]. Many other techniques are simply too slow, need to be
run on high-end power hungry computers or GPUs to run at a decent speef8, 2,
16], or do not provide speed measures to compare with our method. Modélased
segmentation techniques are too constraining for our setup. The mettds mea-
suring how much segments look like objects [15] does not aim at the detgon of
the kind objects that we use. Such techniques essentially prefesmall, compact
objects, over-segmenting human size complex objects like o ce chas. It seems
challenging to nd measures that would work well for all everyday objeds. Most
techniques relying on smoothness and slowly changing curvature asmptions
often are only demonstrated on very typical boxes and cylinders [17, 30], knch
does not t the context of our experiments. No one method focuses bothon
segmenting and recognizing objects in di erent contexts with algorithms simple
enough to smoothly run on a mobile robot.

Our segmentation algorithm is very close to that of [1]. Whereas they operat
in a table-top setting and rely on RANSAC to locate a plane supporting the
objects in a scene, our RGB-D camera is at a known position with regardd
the oor plane which can thus be identi ed geometrically. Once the main plane
is removed, objects are found by using Euclidean clustering on theemaining
points. As noted by the authors, some objects tend to be over-segmerdeby this
procedure. To address thus issue, we project the points on the or plane before
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proceeding with the clustering. [1] also follow the segmentation wh an object
recognition phase, but they focus on the improvement provided by he knowledge
of the co-occurrence statistics of objects as learned from public datases.

3 Methodology

3.1 Database

We compiled a database of RGB-D images (and data from other robot sensors)
of 52 objects, shot from 6 viewing angles. The data was collected by a robot as
it autonomously moved back and forth in front of the objects. For each angle of
view, 100 snapshots were taken from a distance varying between 1 and 4 tees.
The objects lay on the oor, in open space. Because the robot moves durg
data acquisition, shifts sometimes occur between the color and theapth image
and some shots are partial views of an object. As these conditions re ect th
situation in which the algorithms will be tested, imperfect data were kept in the
database. Only shots were the object does not appear were manually rened.
The RGB-D images were processed by our segmentation algorithm, desbed
in section 4.1, to produce appropriate data for the object recognition algoihm.
This data is referred to as o ine data. It was acquired with the room ligh ts on
and the windows blinds closed, during summer time. An example imagef 19
objects of the database are shown in gure 2.
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Fig. 2. Examples of cropped images of 19 objects from the o ine database. Segmen-
tation errors and sensor imperfections can be seen on the left handside computer and
the red o ce chair.

3.2 Robotic Experiment

A second, much smaller, database was also collected for testing purpasene
chose 22 objects from the o ine database and laid them on the oor, apart
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from each other. The same robot that was used for building the database was,
this time, manually controlled to wander around among the objects at the ame
time as it executed diverse tasks. These tasks are simultaneous kElization and
mapping, scene segmentation of the RGB-D image, object recognition of the
segments, and display of the resulting semantic map (a map containinghe
objects found and their label). This experiment was conducted in the same room
where the o ine database was collected, but in a di erent part of the ro om, see
gure 3. The lights were on, the window blinds open, and it was winter. This
database contains a total of 135 segmented objects, with at least one occurres
of an object from 18 object instances from the o ine database (due to some
segmentation errors, some of the 22 selected objects are never seenigure 4
shows some examples of the di culties encountered in this experment.

Fig. 3. The room in which the online experiment is conducted, with some of the objects
from the o ine database.

3.3 Implementation Details

We use a pioneer 3DX robot, with a Kinect RGB-D camera mounted at 1 mete
from the ground and tilted slightly downward. The robot is equipped with an
Hokuyo laser range nder. All software is run on a single Toshiba Tecra lapbp
computer (Intel Core i5, 3GB RAM) with Ubuntu 12.04. We use ROS Hydro
Medusa [21] for integration, the Point Cloud Library 1.7 [25] for handling RGB-
D images, OpenCV 2.4 [4] for computing color and SIFT features and PyBrain
0.3 [28] for the feed-forward neural network.
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Fig. 4. Examples of di cult online object recognitions. The stool ont he left hand side
is blurry, and the binary mask generated from the depth segmentatio n is not aligned
with its RGB image. The trash can in the center is occluded by an o ce chair. The

left hand side gray air conditioner (from the online experiment) h as a di erent color
than that on the right hand side (from the database). All three obje cts are correctly
recognized by our algorithm.

4  Algorithms

The algorithms described here improve from what is related in [11], poviding
more stable segmentation and reliable object recognition.

4.1 Scene Segmentation

For scene segmentation, we only use the depth information from the RGB>
camera. The image is converted to a PCL point cloud, points lying farthe than 3
meters from the RGB-D camera are Itered out and point normals are computd.
The segmentation procedure is split in 4 steps: oor plane removalyall removal,
clustering and ltering. As an o ine calibration procedure, the posit ion of the
RGB-D camera with respect to the oor is estimated. For this purpose, we
previously ran random sample consensus (RANSAC) [13] with a plane model
while placing the robot in such a way that the oor covers at least half of the
RGB-D image.

Since the camera is not perfectly stable when the robot moves, theoor plane
position estimate must be re ned for every acquired point cloud. Poirts lying
either 20 cm above or below the estimated oor plane and having a normal pr-
pendicular to this plane (dot-product of the point's and the oor plan e's normal
higher than 0.98) are identi ed. From these points, a mean square estimag of
the current oor plane's coe cients is computed. All points lying higher than 5
cm over this plane are passed to the next processing steps.

In the wall removal step, points lying on the walls are removed. To nd these
points, a RANSAC is used again with the added constraint that the plane mocel
must be perpendicular to the current oor plane. All point lying le ss the 5 cm
away from a plane found by the RANSAC, are removed from the point cloud
and the process is repeated until no planes are found. The size of eaébund
plane is computed and if it is large enough, it is considered as a wall, otheise
it is reintegrated to the point cloud. The size threshold used in ourexperiments
is 60 000 points.
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The next step is to cluster the remaining points into groups that will be con-
sidered as objects. The clustering is done based on euclidean distam grouping
any point closer than 10 cm from each other. The clustering is a costly ope-
tion, because it has to identify each point's neighbors. The point clod is passed
through a voxel grid Iter with 1 cm resolution beforehand to speed up the pro-
cess. Additionally, the point cloud is projected to the ground oor. As explained
in section 4.1, this is done to ensure that complex-shaped objects doon get
under-segmented. The clustering is performed and groups containgimore than
100 points are kept.

The last step is a Itering operation that removes groups of points that touch
a border of the RGB-D image. To maintain the highest possible accuracy, &h
remaining cluster is "de-voxelized" (reconstructed from the orgginal point cloud).
The segmentation algorithm's outputs are the point cloud, rectangle-cropimage
and a pixel accurate binary mask of each object. As an example, gure 5 shows
the segmentation of a part of the scene shown in gure 3.

Fig. 5. Segmentation of a scene. The oor is red and the segmented objets are green.
The black object on the right hand side is dismissed because it touches the border of
the image.

4.2 Object Recognition

Features The object recognition algorithm relies of features computed both on
the object's point clouds and images. We use 3 di erent features: vaabulary of
SIFT features, transformed RGB histograms [27] and point feature histograns
[26].

A vocabulary of 100 SIFT features is computed by L2-clustering of the SIF
computed from the whole oine database. SIFT features computed from an
object's image are matched to the vocabulary and a 100-bin histogram of word
occurrence is built.

The transformed RGB histograms are normalized histograms computed on
the entire masked image of an object. There are 16 bins for each RGB channel
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and each channel is separately normalized to zero mean and unit varianc&his
yields a 48-bin histogram.

The point feature histogram is computed by using 10 000 randomly selected
pair of point from an object's point cloud. A point feature is computed for
each pair with the distance measure normalized to the size of the objédthe
largest distance separating two points from the object's point cloud).The angular
features and the distance are discretized to 5 levels and a 625-bin higram is
compiled.

The histograms can be used independently or concatenated to test theniu-
ence of each on performance.

Learning and Decision Making The features computed on the training
dataset serve as training data for a 3-layer feed-forward neural networkThe
size of the input layer depends on the features used, the hidderayer has 50
neurons and the output layer has 52, the number of objects in the database.
The hidden layer has a sigmoid activation function and the output layer has a
softmax activation. Neural network training is done using Rprop [23] training
algorithm with early stopping, all layers are fully connected and with a bias unit.
The neural network's output is a score giving the con dence for the urknown
object to be either one of the 52 training instances. For o ine and simple online
tests, objects are given the label of the output neuron with highest sore.

Map-Aware Recognition The semantic mapping experiment brings many
challenges, but has the advantage of allowing the robot to locate objects in
space. In the map-aware online tests, an object's location and score isosed
for accumulation. If another object is found within 30 cm of an already stored
object, the recognition decision is based on the sum of their scores vgtited by
their size (the number of points in their point cloud).

4.3 Performance

The segmentation and object recognition algorithm runs at a rate of 3 Hz using
the hardware and software setup described in section 3.3.

5 Results

Results are presented for di erent training and testing schemes Four experi-
ments were conducted: simple oine, one-angle-out o ine, simple online and
map-aware online recognition rates. All results are shown in table 1, cormgring
recognition rates obtained by using di erent combinations of features.All rates
are computed by ignoring misclassi cations induced by errors in the sgmenta-
tion step.

The simple o ine measure refers to the recognition rates obtained fromtrain-
ing the neural network on 90% of the images from the database and testing on



Fusion of Color, Depth and Location for Object Instance Recognit ion 11

the remaining, using data from all 6 angles of view. In the one-angle-out o ine
experiment, the network was trained with angles of view 0, 60 , 120, 180 and
240 and tested on the 300 angle of view.

The online recognition rate relates to the performance of the recognition
algorithm trained on the whole o ine data and tested on the online data. As
the online data was taken in a di erent situation than for the o ine data, s ee
gure 4, online recognition rates are much lower than o ine recognition rates.
For these tests, no data from the online database was used for training #
learning algorithm. Of course, online performance measures dictated amy of
our high-level design choices, especially the choice of the color feasis. In the
simple online test, each object encountered by the robot is idented individually.
In the map-aware online test, the object's scores are cumulated befera decision
is taken, as explained in section 4.2. Figure 6 shows the confusion of thraap-
aware online test when using all three features.

Table 1. Recognition rates for the simple o ine, one-angle-out o ine, simple online
and map-aware online experiments using di erent combinations of features.

Features Simple One-angle- Simple Map-aware
SIFT Color Depth |oine out oine online online
! 92% 72% 21% 11%
! 79% 54% 33% 64%
Pl 92% 75% 39% 63%
! 94% 85% 70% 81%
! ! 96% 84% 62% 79%
ol 96% 89% 69% 87%
Foro 97% 89% 70% 87%

6 Discussion

6.1 Scene segmentation

The scene segmentation algorithm relies on the stability of the physial con gu-
ration of the robot. In an indoor laboratory or apartment setting, this assumption
will hold most of the time, but it will fail in certain situations. Stai rcases, for
example, cannot be handled with our method. Otherwise, parts of the EB-D
images belonging to the oor plane are accurately identi ed and removed This is
true even if the robot accelerates brusquely, bumps into obstacleand oscillates,
as happens during operation.

The wall detection step of the segmentation is more problematic. If we oly
use RANSAC to detect these planes, the results are not reliable becae aligned
objects can form planes that will be labelled as walls and removed. For tis



12 Caron, L.-C., Filliat, D., Gepperth, A.

Fig. 6. Confusion matrix for the map-aware online robotic experiment usin g all three
features. Please note that some objects present in the room do not gpear in the
confusion matrix because they were badly segmented.

reason, we use the RANSAC only to remove very big planes (with more than
60000 points), which really only appear when the robot faces a close-by wall.
We had to rely on a more drastic measure to handle the smaller parts of wadt
removing all points belonging to an object that touches a border of the RE5-D
image (step 4 of the segmentation). This makes sure that walls and object®o
big to entirely tin a single image are not considered for object recogntion. It has
the drawback of also removing real objects that lie close to a wall. ThR&(RANSAC
detection of wall, in a perfect setting, allowed us to detect theseobjects. We
plan to address this issue be using information from the map to detectvalls as
a replacement for the RANSAC.

Our segmentation method does not produce many wrong candidates for ob-
ject recognition, but rather tends to under-segment objects. Objets lying too
close together will systematically be merged. This is the main problm of our
method and we hope to use object recognition to solve it, as explained ithe
next section 6.3.

6.2 Object Recognition

The results from our object recognition demonstrate that we compare to tle
state of the art, with the added bene t of not being resource hungry. The one-
angle-out o ine experiment was conducted speci cally to ease the comprison
with other technigues such as [3], where recognitions are done on shotaken
from a previously unseen angle. Of course, as the data and experimerase not
exactly the same, it is di cult to draw conclusions from the number s.
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Our experiments also demonstrate that such o ine measures are not a ri
able indicator of the performance of a system during a real robotic expément.
During our experiments, we went through the process of testing derent color
features, inspired by the work of [27]. Even though the o ine and online data we
used in this paper do not di er much, the change was su cient to make several
of our attempts fail. In the end, the least discriminative color feature, also the
one yielding the lowest performance on the oine experiments, gavethe best
results during the online tests. Still, the map-aware results how that these less
discriminative features help in a real-life setting.

This is the last point we wanted to bring forward, that the fusion of texture,
color, shape and position information is bene cial for recognition, espeeilly
in adversarial conditions. Table 1 shows that in our setting, it is the position
fusion, done in the map-aware experiments, that is the most bene al form of
data fusion. Fusion of other modalities does not seem to ensure betteesults.
We believe this is due to our database, in which almost every objectan be
distinguished based on shape only. Few objects, like the two sofas ardeintical
but only di er in color. And in their case, we observed that the di ere nt colors
a ected the Kinect's depth sensor in a way that can be captured by the shape
descriptor and allowed correct recognition.

6.3 Future Work

In this paper, the segmentation step is purely geometric, and cannot gerate
two objects if they touch each other. In the future, we are interesed in exploring
the use of recognition results to improve the precision of the scengsegmentation.
We will develop a hybrid bottom-up (geometric segmentation) and top-dovn
(segmentation of recognized objects) to generate candidate objects and ne
these segments further. As our segmentation algorithm has a tendency torovide
under segmented objects and not many false candidates, we can hope to inope
results in this way. Techniques based on the analysis of locally coesurring visual
words [29] or the Hough transform [33] seem promising.
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