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Abstract—We set up an agent-based simulation to test Carlo
M. Cipolla’s theory of human stupidity. In particular, we in-
vestigate under which hypotheses his theory is compatible with
a well-corroborated theory like natural evolution, which we
build into the model. We discover that there exist parameter
settings which determine the emergence of stylized facts in line
with Cipolla’s theory. The assumptions corresponding to those
parameter settings are intuitive and justified by common sense.

I. INTRODUCTION

In a tongue-in-cheek essay [1] written in English, tainted
with Swiftian humor, printed in 1976 in a hundred of copies
and distributed to friends as a Christmas gift, the late Italian
historical economist Carlo M. Cipolla put forward a theory of
human stupidity, articulated in five fundamental laws, which
is regarded by many as a real work of genius.

One should not be misled by the humorous tone of
Cipolla’s essay into thinking his theory cannot be taken seri-
ously. In fact, in most cultures, humor and jokes are a way to
tell truths that hurt without breaking social norms or sounding
irrespectful.

If taken seriously, Cipolla’s laws should enable one to
make falsifiable claims. Therefore, it should be possible to
test his theory experimentally. In particular, if one accepts
Darwin’s theory of evolution, then for Cipolla’s theory of
human stupidity to be accepted it must be compatible with it.
In this paper, we investigate under which circumstances and
based on which assumptions the two theories do not contradict
each other. We use agent-based simulation as an experimental
tool to this aim.

In the last decade, agent-based modeling has become a
widely accepted tool for studying the dynamics of complex
systems in the social sciences [2], including economical phe-
nomena like financial markets [3]. Agent-based modeling is
the computational study, carried out by means of simula-
tion, of economies that are modeled as evolving systems of
autonomous interacting agents [4], [5]. The main advantage
of agent-based over analytical models is that they allow the
removal of restrictive assumptions and can, thus, lead to a
more realistic description of the system under investigation.

The paper is organized as follows: a summary of the main
claims of Cipolla’s theory of human stupidity is given in Sec-
tion II; the theory is then critically questioned in Section III and
some conjectures are put forward to solve the arising issues.
Section IV describes an experimental setup using agent-based
simulation designed to test these conjectures; the outcome of
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Fig. 1. Cipolla’s diagram with its eight sectors. The uppercase letter identifies
the quadrant and, therefore, the main character of an agent falling in the
corrisponding sector. The lowercase subscript refers to the undertones of the
agent, deriving from its closeness to the neighboring quadrant.

the experiments are reported in Section V and conclusions are
drawn in Section VI.

II. CIPOLLA’S THEORY OF HUMAN STUPIDITY

Cipolla identifies in stupid people one of the main obstacles
to welfare in human societies and offers a coherent account of
why stupidity is so powerful and hard to act against. To this
end, he builds an abstract model of a human agent’s social
behavior, which may be summarized by two coordinates:

x the average gain (or loss) that an agent obtains as a
result of his or her actions;

y the average gain (or loss) that an agent produces to
other agents or groups of agents.

Two things have to be stressed: first of all, this notion of
gain or loss is subjective and includes psychological and
emotional factors—it must be thus understood as a utility as
used in economics or game theory [6]; secondly, x and y
are statistical expectations, for the actions of a given agent
may yield different outcomes in different circumstances and
an agent’s behavior is, therefore, to be described by means of
a probablity distribution over the Cartesian plane.

As a result, human agents can be plotted as points on
a diagram like the one shown in Figure 1 based on their
〈x, y〉 behavior. Figure 1 divides the two-dimensional plane
into four quadrants or eight sectors, corresponding to different
categories of agents.

Cipolla’s definition of a stupid person (his Third Law) is
“a person who causes losses to another person or to a group
of persons while himself deriving no gain and even possibly
incurring a loss”, thus, technically, an agent with x ≤ 0 and



y < 0. Stupid persons thus fall in quadrant S of Figure 1. The
persons falling in quadrant I (x > 0, y ≥ 0) may be defined
as intelligent, those falling in quadrant H (x ≤ 0, y ≥ 0)
as helpless, and those falling in quadrant B (x > 0, y < 0)
as bandits. Each quadrant may be further divided into two
sectors: for instance, quadrant B may be divided into sector
Bi, containing bandits with undertones of intelligence (for they
cause fewer losses to others than the gains they derive) and
Bs, containing bandits with undertones of stupidity (for their
actions yield to them gains inferior to the losses inflicted to
other people), and so on.

Now, Cipolla observes that any numerical estimate of the
fraction σ of stupid people always and inevitably turns out to
be an underestimate (First Law) and that the probability that a
given person be stupid is independent of any other characteris-
tic of that person (Second Law). From these observations, we
can infer that stupid people must be an overwhelming majority
of any sample we may draw from the general population.

Cipolla’s Fourth and Fifth Laws basically say that stupid
persons are the most dangerous type of persons, because it is
impossible for non-stupid people to organize defenses against
them, due to their irrationality and unpredictability.

III. CRITIQUE

There is something counterintuitive in Cipolla’s theory:
individuals who do not derive any gain and even possibly
incur a loss from their actions, like stupid and helpless people,
should have a competitive disadvantage vis-à-vis more oppor-
tunistic individuals. One would thus expect that, in the long
run, they would lose ground and eventually get extinct. This,
at least, is what would be suggested by the Darwinian law of
natural selection or “survival of the fittest”, which is generally
accepted as a well-corroborated explanation of the evolution
of the species, but also the basis of recent economic models,
like the adaptive market hypothesis [7]. On the other hand, for
the same reason, rational individuals like intelligent people and
bandits should be expected to be more successful than stupid
and helpless people, thus being able in the long run to take
over the entire population.

The fact that evolution must be taken into account is
indirectly confirmed by Cipolla himself, who writes that the
potential for a stupid person to cause damages depends, first
of all, on the genetic factor. He even goes as far as to postulate
a gene for stupidity, which is inherited by stupid individuals
from their parents.

Why, then, despite their apparent evolutionary handicap,
can stupid people make up an overwhelming fraction σ of
the human race? They must have some sort of competitive
advantage which makes them particularly fit for reproduction,
but how can it be?

There are several conjectures we could make to attempt to
answer this question:

1) stupid people, causing damages to all other members
of the society, neutralize, as it were, the forces of
natural selection;

2) stupid people are more resilient to damages inflicted
by others;

3) the observed σ fraction is an effect of the initial
distribution of agents in the population: although it
may not always be the case that σ is overwhelmingly
high, once for some reason the stupid become a
large majority, the situation cannot be reversed and
evolution remains trapped in that state;

4) etc.

In the next section, we describe an experiemental setup which
should allow us to test these conjectures and suggest a solution
to the enigma.

IV. EXPERIMENTAL SETUP

Members of the society are modeled as agents, whose
behavior, stochastic in nature, is governed by a probability
distribution which is innate in each agent and genetically
determined.

The agents are evolutionary, in the sense that they are
individuals of an evolutionary algorithm, whose details are
illustrated below. Therefore, every agent has a genome, a set
of parameters which determine its behavior. These genetic
parameters do not change during the agent’s entire lifetime
but are subject to random mutation when passed on from a
parent to its offspring.

An agent’s genome consists of the parameters of a two-
dimensional normal joint probability distribution,

(µx, µy, σx, σy, θ), (1)

where 〈µx, µy〉 is the mean, σx is the standard deviation along
the x-axis, σy is the standard deviation along the y-axis, and
θ is the rotation angle, which is used to randomly determine
the outcome of its “actions”.

Agents are subject to an evolutionary algorithm like the
one described in [8].

Agents interact as follows:

1) an agent, whom we will call “active” because it will
be the one that takes an action, is randomly selected
from the population;

2) another agent, whom we will call “passive” because
it will undergo the effects of the action taken by the
active agent, is randomly selected from the remaining
agents;

3) a pair 〈x, y〉 is randomly extracted from the active
agent’s normal distribution;

4) the active agent’s wealth is updated according to x;
5) the passive agent’s wealth is updated according to y.

The above cycle, called a period, which is the clock that
measures time in a simulation, is repeated over and over. We
will denote by t the current period in a simulation.

Notice that, in general, this is not a zero-sum game. If most
agents act intelligently, the population will enjoy an overall
wealth increase; if, on the other hand, most agents act stupidly,
the overall welfare of the population will decrease and nothing
prevents it from eventually becoming extinct.

Optionally, one might enforce a zero-sum game by redis-
tributing net wealth surplus or loss proportionally to all the



agents in a population to model the fact that in the real-world
resources are finite (or, at least, quite unelastic) and the gain
of some always determines a loss for the rest of the society.

Another possible variation of the model has to do with the
way wealth is updated: let W a

t and W p
t be the wealth of the

active and of the passive agent, respectively, at time t; then,

• a linear wealth trasfer is when W a
t+1 = W a

t + x and
W p
t+1 =W p

t + y;

• a logarithmic wealth transfer may be defined, whereby

W a
t+1 =

{
W a
t + x, if x ≤ 0;

W a
t + log(x+ 1), otherwise; (2)

and similarly for W p
t+1;

• a hyperbolic wealth transfer may be defined, whereby

W a
t+1 =

{
W a
t + x, if x ≤ 0;

W a
t + x

x+1 , otherwise; (3)

and similarly for W p
t+1.

Notice that both the logarithmic and the hyperbolic transfer
functions introduce an asymmetry between losses, which re-
main linear in all cases, and gains, whose transfer gets harder
as they increase. The key intuition these two definitions try
to capture is that it is exceedingly easy to destroy wealth, but
creating it is hard, and gets harder the more wealth one wants
to create.

To model the fact that rational agents know better, we may
then introduce the notion of defense, by stating that rational
agents (i.e., agents such that µx > 0) are able to build defenses
against bandits, but not, according to Cipolla’s Fourth and Fifth
laws, against stupid agents, with whom any countermeasure
would turn out to be vain. This is how we propose to model
such defense: in an interaction, if the passive agent is rational
and the active agent is behaving like a bandit (i.e., x > 0 and
y < 0), both x and y are discounted by multiplying them by
a “defense factor” 1− δ, where

δ =
µpx

µpx + 1
(4)

represents a hyperbolic discount factor which grows with the
rationality of the passive agent; an infinitely rational agent
will be able to completely neutralize a bandit’s actions; an
agent who is just slightly rational will discount but a small
percentage of the damage caused by a bandit.

Finally, to model the hypothesis that stupid agents are
more resilient than others to damages inflicted by their peers,
we introduce the possibility that the x and y effects of an
interaction be “relativized” with respect to the µx of the
receiving agent (be it active or passive). Accordingly,

• the active agent’s wealth would be updated according
to x− µax;

• the passive agent’s wealth would be updated according
to y − µpx.

A. Evolutionary Algorithm

Evolutionary algorithms (EAs) [9], [10] are a broad class of
stochastic optimization algorithms, inspired by biology and in
particular by those biological processes that allow populations
of organisms to adapt to their surrounding environment: ge-
netic inheritance and survival of the fittest. Each individual
of the population represents a point in the space of the
potential solutions for the considered problem. The evolution is
obtained by iteratively applying a (usually quite small) set of
stochastic operators, known as mutation, recombination, and
selection. Mutation randomly perturbs a candidate solution;
recombination decomposes two distinct solutions and then ran-
domly mixes their parts to form novel solutions; and selection
replicates the most successful solutions found in a population
at a rate proportional to their relative quality. The initial
population may be either a random sample of the solution
space or may be seeded with solutions found by simple local
search procedures, if these are available. The resulting process
tends to find, given enough time, globally optimal solutions to
the problem much in the same way as in nature populations
of organisms tend to adapt to their surrounding environment.

An evolutionary algorithm is used by the simulator to make
the agents evolve according to their interactions with their
peers.

1) Representation: The parameters listed in Equation 1,
which make up the genome of an agent, are encoded as an
array of five floating-point numbers.

The bivariate normal probability density function may be
written

f(x, y) =
1

2π
√
|C−1|

e(x−µx,y−µy)C(x−µx,y−µy)
T

, (5)

where the matrix

C =

[
a b
b c

]
is positive-definite. Equation 5 may thus be rewritten as

f(x, y) =

√
ac− b2
2π

· e−ar
2
x−2brxry−cr2y , (6)

where rx = x− µx and ry = y − µy .

Instead of encoding parameters a, b, and c directly in the
genome, we encode the angle θ and the standard deviations σx
and σy along the two axes (x and y), from which parameters
a, b, and c may be computed based on the following equations:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

, (7)

b =
sin 2θ

4σ2
y

− sin 2θ

4σ2
x

, (8)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

. (9)

This choice has the advantage that all values for θ, σx, and
σy , even negative ones, yield a positive-definite matrix C. By
the way, this representation, based on rotation angles, is well-
known and used in evolution strategies [11].
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Fig. 2. The three initial distributions of the population used in the simulations:
(a) the unfiltered standard normal bivariate distribution centered at the origin
and with variance 1 along both axes; (s) the same distribution filtered to
comprise stupid agents only; (d) the same distribution filtered to comprise
deleterious agents only. The x- and y-axis are drawn in red.

2) Initialization: The genomes of the agents in the initial
population are generated at random, according to the following
rules:

• the 〈µx, µy〉 position of the agent on Cipolla’s dia-
gram is randomly generated from a standard normal
bivariate distribution centered at the origin and with
variance 1 along both axes;

• σx and σy are independently extracted from a uniform
distribution on [1, 2);

• θ is extracted from a uniform distribution on [0, 2π).

All individuals are assigned an initial wealth of 100.

To test the hypothesis that Cipolla’s laws are sensitive to the
initial distribution of the population, such distribution may be
modified by filtering out generated agents that do not respect a
given constraint. In particular, we are interested in performing
simulations with an initial population comprising only

• stupid agents (µx < 0 and µy < 0);

• agents that we might call deleterious, bacause they
cause on average lower gains or greater damages to
others than the gains or losses they derive from their
actions (µy < −µx).

Although other initial distributions could be proposed, these
are the two most “promising” initial distributions, besides the
unfiltered one, to investigate in the light of Cipolla’s observa-
tions. The unfiltered and the two filtered initial distribution are
shown in Figure 2.

3) Fitness, Selection, and Reproduction: The fitness of an
agent is given by its wealth.

If, at any time, an agent’s wealth becomes negative, the
agent dies. This is an implicit form of selection, which
captures the fact that if an agent keeps on being harmed when
interacting with its peers, eventually it will get extinct.

An agent whose wealth exceeds the predefined threshold of
twice the initial wealth reproduces by asexual division. A new
agent is created, which inherits (with mutation) the genome
of its parent. The wealth is equally divided among the parent
and offspring. This, too, may be regarded as an implicit form
of selection, for the more an agent’s behavior is capable of

producing wealth, the more that agent will reproduce and pass
on its genes.

As new agents may be generated by reproduction at any
time as other agents may became extinct, in general the
population size will fluctuate and in some cases may greatly
increase or shrink until only one agents is left, depending on
dynamics determined by the average behavior of agents in the
population.

V. EXPERIMENTS AND RESULTS

We perform experiments by trying all possible combina-
tions of the following parameters:

• i ∈ {all, stupid,deleterious} (initial distribution):
filter the initial distribution of the agents so that,
respectively, all types of agents are generated, only
stupid agents are generated, only deleterious agents
(i.e., agents such that µy < −µx): see Figure 2;

• f ∈ {linear, logarithmic,hyperbolic} (transfer func-
tion): the function used to modify wealth of agents
participating in an interaction is, respectively, linear,
logarithmic, or hyperbolic;

• d ∈ {false, true} (defense): rational agents (i.e.,
agents such that µx > 0) know how to defend
themselves from bandits;

• r ∈ {false, true} (relative): the effects of the inter-
actions between agents are felt by either participant
relative to their µx;

• z ∈ {false, true} (zero-sum): a zero-sum game is
enforced, so that the total wealth of the population
remains constant.

This gives a total number of 72 combinations, which will be
encoded as a string of parameters as follows:

• Boolean parameters are omitted if their value is false,
included otherwise;

• the remaining parameters will be followed by an
abbreviation of their value;

• the parameters will be separated by hyphens.

For example, ia-flin-d-r-z will denote simulations with
defense, unfiltered initial distribution, linear transfer function,
relative effects, and zero-sum game enforcement.

All simulations are run with an initial population size
of 1,000 agents and for one million time steps (i.e., agent
interactions) or until the population size shrinks to one, in
which case there is no point in continuing and we consider
that the population has become extinct. In order to save
computational resources, we set the maximum population size
at 10,000. If that limit is reached, reproduction can happen only
if another agent dies thus leaving one empty slot. However,
this limitation does not change the results for the size of
10,000 is attained late in the simulation, if ever, when the
final distribution type has already clearly emerged.

Figure 3 gives a comprehensive picture of the final popula-
tion distribution for each parameter setting, which we can use



0 5 10

−
6

−
4

−
2

0
2

4
6

x

y

0 5 10 15 20 25

−
4

−
2

0
2

4
6

x

y

−12 −10 −8 −6 −4 −2 0

−
5

0
5

x

y

−20 −15 −10 −5

−
5

0
5

x

y

−2 0 2 4 6 8 10 12

−
4

−
2

0
2

4
6

x

y

0 5 10 15

−
2

0
2

4
6

x

y

−12 −10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4
6

x

y

−20 −15 −10 −5

−
1
0

−
8

−
6

−
4

−
2

0
2

4

x

y

ia-flin ia-flin-z ia-flin-r ia-flin-r-z ia-flin-d ia-flin-d-z ia-flin-d-r ia-flin-d-r-z

0 2 4 6 8

−
6

−
4

−
2

0
2

4
6

x

y

0 2 4 6 8 10

−
2

0
2

4

x

y

−10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4

x

y

−8 −6 −4 −2

−
4

−
2

0
2

4

x

y

0 2 4 6 8

−
4

−
2

0
2

4

x

y

0 2 4 6 8 10

−
4

−
2

0
2

4
6

x

y

−10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4

x

y

−7 −6 −5 −4 −3 −2 −1

−
4

−
3

−
2

−
1

0
1

2
3

x

y

ia-flog ia-flog-z ia-flog-r ia-flog-r-z ia-flog-d ia-flog-d-z ia-flog-d-r ia-flog-d-r-z

−1 0 1 2 3 4 5 6

−
2

0
2

4

x

y

0 1 2 3 4 5

−
3

−
2

−
1

0
1

2
3

4

x

y

−6 −5 −4 −3 −2 −1 0

−
4

−
2

0
2

4

x

y

−6 −5 −4 −3 −2 −1

−
4

−
2

0
2

4

x

y

0 2 4 6

−
4

−
2

0
2

4

x

y

0 1 2 3 4 5 6

−
3

−
2

−
1

0
1

2
3

4

x

y

−6 −4 −2 0

−
4

−
2

0
2

4
6

x

y

−5 −4 −3 −2 −1

−
4

−
2

0
2

4

x

y

ia-fhyp ia-fhyp-z ia-fhyp-r ia-fhyp-r-z ia-fhyp-d ia-fhyp-d-z ia-fhyp-d-r ia-fhyp-d-r-z

−0.0030 −0.0025 −0.0020 −0.0015

−
0
.6

−
0
.5

−
0
.4

−
0
.3

x

y

0 5 10 15 20

−
4

−
2

0
2

4
6

8
1
0

x

y

−12 −10 −8 −6 −4 −2 0 2

−
6

−
4

−
2

0
2

4
6

x

y

−25 −20 −15 −10 −5

−
6

−
4

−
2

0
2

4
6

x

y

−0.0030 −0.0025 −0.0020 −0.0015

−
0
.6

−
0
.5

−
0
.4

−
0
.3

x

y

0 5 10 15

−
2

0
2

4
6

x

y

−12 −10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4
6

x

y

−20 −15 −10 −5 0

−
5

0
5

1
0

x

y

is-flin is-flin-z is-flin-r is-flin-r-z is-flin-d is-flin-d-z is-flin-d-r is-flin-d-r-z

−0.040 −0.035 −0.030 −0.025 −0.020

−
1
.6

−
1
.4

−
1
.2

−
1
.0

−
0
.8

x

y

1 2 3 4 5 6

−
6

−
4

−
2

0
2

4

x

y

−8 −6 −4 −2 0

−
4

−
2

0
2

4

x

y

−10 −8 −6 −4 −2

−
6

−
4

−
2

0
2

4
6

x

y

−0.040 −0.035 −0.030 −0.025 −0.020

−
1
.6

−
1
.4

−
1
.2

−
1
.0

−
0
.8

x

y

0 2 4 6 8 10

−
4

−
2

0
2

4
6

x

y

−10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

x

y

−8 −6 −4 −2

−
4

−
2

0
2

4

x

y

is-flog is-flog-z is-flog-r is-flog-r-z is-flog-d is-flog-d-z is-flog-d-r is-flog-d-r-z

−0.009 −0.008 −0.007 −0.006 −0.005 −0.004

−
1
.2

−
1
.1

−
1
.0

−
0
.9

−
0
.8

−
0
.7

−
0
.6

x

y

1 2 3 4 5 6

−
4

−
2

0
2

x

y

−8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4

x

y

−6 −5 −4 −3 −2 −1

−
4

−
3

−
2

−
1

0
1

2
3

x

y

−0.009 −0.008 −0.007 −0.006 −0.005 −0.004

−
1
.2

−
1
.1

−
1
.0

−
0
.9

−
0
.8

−
0
.7

−
0
.6

x

y

1 2 3 4 5 6

−
4

−
2

0
2

4

x

y

−6 −4 −2 0

−
4

−
2

0
2

4

x

y

−5 −4 −3 −2 −1

−
4

−
3

−
2

−
1

0
1

2
3

x

y

is-fhyp is-fhyp-z is-fhyp-r is-fhyp-r-z is-fhyp-d is-fhyp-d-z is-fhyp-d-r is-fhyp-d-r-z

5 10 15 20

−
1
0

−
5

0

x

y

5 10 15

−
5

0
5

x

y

−15 −10 −5 0

−
5

0
5

x

y

−20 −15 −10 −5

−
1
0

−
5

0

x

y

0 2 4 6 8 10 12 14

−
4

−
2

0
2

4
6

8

x

y

0 5 10 15

−
4

−
2

0
2

4
6

x

y

−12 −10 −8 −6 −4 −2 0

−
8

−
6

−
4

−
2

0
2

4
6

x

y

−20 −15 −10 −5 0

−
4

−
2

0
2

4
6

x

y

id-flin id-flin-z id-flin-r id-flin-r-z id-flin-d id-flin-d-z id-flin-d-r id-flin-d-r-z

0.8 1.0 1.2 1.4 1.6

−
2
.2

−
2
.0

−
1
.8

−
1
.6

−
1
.4

−
1
.2

−
1
.0

x

y

2 4 6 8

−
6

−
4

−
2

0
2

4

x

y

−8 −6 −4 −2 0

−
4

−
2

0
2

4

x

y

−6 −5 −4 −3 −2 −1

−
4

−
2

0
2

4

x

y

0.8 1.0 1.2 1.4 1.6

−
2
.2

−
2
.0

−
1
.8

−
1
.6

−
1
.4

−
1
.2

−
1
.0

x

y

2 4 6 8

−
4

−
2

0
2

4
6

x

y

−8 −6 −4 −2 0

−
8

−
6

−
4

−
2

0
2

4
6

x

y

−8 −6 −4 −2

−
6

−
4

−
2

0
2

4

x

y

id-flog id-flog-z id-flog-r id-flog-r-z id-flog-d id-flog-d-z id-flog-d-r id-flog-d-r-z

0.4 0.5 0.6 0.7 0.8 0.9

−
2
.5

−
2
.0

−
1
.5

x

y

0 2 4 6 8

−
4

−
2

0
2

4

x

y

−6 −4 −2 0

−
4

−
2

0
2

4

x

y

−5 −4 −3 −2 −1

−
4

−
2

0
2

4

x

y

0.8 1.0 1.2 1.4 1.6 1.8

−
2
.2

−
2
.0

−
1
.8

−
1
.6

−
1
.4

−
1
.2

−
1
.0

x

y

1 2 3 4 5 6 7

−
4

−
2

0
2

4

x

y

−5 −4 −3 −2 −1 0

−
4

−
2

0
2

4

x

y

−5 −4 −3 −2 −1 0

−
4

−
2

0
2

x

y

id-fhyp id-fhyp-z id-fhyp-r id-fhyp-r-z id-fhyp-d id-fhyp-d-z id-fhyp-d-r id-fhyp-d-r-z

Fig. 3. The distribution of the population after 106 simulation steps or after the population size has shrinked to one (these cases are clearly visible, with a
single agent in the center of the plot). The x = 0 and y = 0 lines are shown in red, to help the reader locate the individuals with respect to the four quadrant
of Cipolla’s diagram.

to get a first idea about which settings are most compatible
with Cipolla’s laws.

There are some general observations we can make based
on these distributions:

• it is clear that relativization of the effects of inter-

actions (parameter r) is critical to the survival and
proliferation of stupid agents; when r is turned off,
the stupid and the helpless are mercilessly wiped out
from the population, to the point that, even when they
dominate the initial population, they manage to drive
themselves into extinction;



• if we restrict our attention to runs with pa-
rameter r turned on, the most promising dis-
tributions may be observed when a zero-sum
game is enforced (parameter z turned on): a
clear preponderance of stupid agents shows up
in simulations ia-flin-d-r-z, is-flog-r-z,
is-flog-d-r-z, and id-flin-r-z;

• the only setting of simulation parameters which ob-
tains a preponderance of stupid agents starting from
a “neutral” initial distribution is ia-flin-d-r-z,
with parameter d turned on: this suggests that the
ability of rational agents to defend themselves from
bandits may play a role in favoring a drift toward the
evolutionary success of stupidity;

• an initial distribution biased toward stupid agents
appears to have an impact on a prevalence of stupidity
in the final population: a majority of the simulations
that end up having a larger proportion of stupid agents
than any other type has an initial population of stupid
only (i = stupid).

Overall, eight parameter settings (six out of which
assume an initial population of all stupid agents)
achieved a final population distribution featuring a
majority of stupid agents, though in some cases not an
overwhelming one, as one would expect based on Cipolla’s
Laws. These are: ia-flin-d-r-z, is-flog-r-z,
is-flog-d-r-z, is-fhyp-r, is-fhyp-r-z,
is-fhyp-d-r, is-fhyp-d-r-z, and id-flin-r-z.
We are now going to examine these simulations in deeper
detail.

Figure 4 shows the evolution of the composition of the
population during typical simulations with each of the eight
selected parameter settings. This gives us an idea of the
evolutionary dynamics at work during these simulation and
how the observed final distribution was reached.

We may notice that in simulation starting from a stupid-
only initial distribution, the takeover of the population by the
stupid is accompanied by a relative increase of the helpless;
this is not the case with the two settings ia-flin-d-r-z
and id-flin-r-z, where the proliferation of the stupid is
virulent and leaves little hope to the other types; nevertheless,
even in these latter cases, it is the stupid with undertones of
helplessness that are responsible for the takeover and a few
of them seemingly continue to spill over into the Hs sector,
preventing it from becoming empty.

Figure 5 shows how the total wealth of the population
changes during simulations for the two parameter settings
where a zero-sum game is not enforced: in both cases, we
observe the same pattern, whereby an initial crisis, whose
cause is to be found in the great number of stupid agents with
undertones of banditism (Sb), is overcome as their number
decreases in favor of stupid agents with undertones of helpless-
ness (Sh), some of which evolve into helpless with undertones
of stupidity (Hs), as the population seemingly performs a 45◦

clockwise rotation away from the B quadrant. The total wealth
evolution for zero-sum game parameter settings is not shown
because, by definition, total wealth remains constant in those
simulations.
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Fig. 4. Evolution of the composition of the population during a simulation
with each of the eight selected parameter settings. The eight sub-populations
located in the eight quadrants of Figure 1 are stacked in the diagrams starting
from Ib and proceeding counterclockwise up to Bi and labeled on the left-
hand and right-hand side of the diagram, if they make up for at least 5% of
the population.
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Fig. 5. Evolution of the total wealth of the population during the two
simulations using parameter settings where a zero-sum game is not enforced.

Figure 6 shows the final wealth distribution for typical
simulations with each of the eight selected parameter settings.
An interesting remark is that simulations starting from an
initial population of stupid agents only end up with a flat
or right-skewed wealth distribution, which is highly unlikely
and contrary to what is usually observed in real human
populations, where the wealth distribution tends to follow a
power law. In this sense, we might say that parameter settings
ia-flin-d-r-z and id-flin-r-z look much more in
line with what one would expect.

Figure 7 shows how the population size evolves in sim-
ulations using the eight selected parameter settings. It is
interesting to observe that all simulations with i = stupid
exhibit a similar pattern, whereby the population size starts
to increase, culminates after ca. 200,000 periods (except in
is-fhyp-r and is-fhyp-d-r, where the population size
is initially steady), and suddenly plummets to a minimum
around the 400,000th period; such crisis is then overcome, and
the population size reaches what looks like an equilibrium in
three out of the six settings, whereas it starts to increase again
in the other cases. Surprisingly, the two remaining settings,
namely ia-flin-d-r-z and id-flin-r-z, show almost
identical dynamics despite their differences: the population
size increases with two initial bumps followed by temporary
stagnations, after which the increase becomes steady.

VI. CONCLUSION

Some of the parameter settings we have tried led
to emergent behaviors that are quite in line with Carlo
Cipolla’s theory. One parameter setting in particular, namely
ia-flin-d-r-z, looks like a very promising first approxi-
mation of Cipolla’s laws. This is all the more remarkable as the
initial population is unfiltered. One hypothesis which appears
to be critical to the corroboration of the theory is that the
interactions among the agents be a zero-sum game: this is by
no means an obvious assumption and, therefore, it calls for an
explanation. The one we can offer is that the subjective utility
of the agents, i.e., their perception of their own welfare, is
somehow relative to the welfare of their peers. In a sense, it
would be as if an agent compared its welfare to that of their
peers and considered itself happy to the extent that it were
in a better situation and unhappy to the extent that it were
in a worse situation. If this were the case, then obviously any
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Fig. 6. Final wealth distribution at the end of simulations with the eight
selected parameter settings.



0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

t

l$
s
iz

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

9
5
0

1
0
0
0

1
0
5
0

t

l$
s
iz

e

ia-flin-d-r-z is-flog-r-z

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

9
0
0

9
5
0

1
0
0
0

1
0
5
0

t

l$
s
iz

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

6
0
0

8
0
0

1
0
0
0

1
2
0
0

t

l$
s
iz

e

is-flog-d-r-z is-fhyp-r

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

t

l$
s
iz

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

6
0
0

8
0
0

1
0
0
0

1
2
0
0

t

l$
s
iz

e

is-fhyp-r-z is-fhyp-d-r

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

9
0
0

9
5
0

1
0
0
0

1
0
5
0

t

l$
s
iz

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

1
2
0
0

1
2
5
0

1
3
0
0

t

l$
s
iz

e

is-fhyp-d-r-z id-flin-r-z

Fig. 7. Evolution of the population size in simulations using the eight selected
parameter settings.

increase of an agent’s wealth would determine a corresponding
reduction of the wealth of the rest of the population.

Our results should be regarded as a first step toward
understanding which additional hypothesis must be made in or-
der to reconcile Cipolla’s theory with other well-corroborated
theories, like the theory of evolution. Possible future work
might include enriching the evolutionary algorithm with sexual
reproduction (i.e., recombination) and testing other conjectures
that may help reproducing a state of affairs compatible with
Cipolla’s laws, such as a different propensity of agents to
reproduce depending on their µx and µy .

Possible applications of our approach might be to model
certain phenomena relevant to the behavior of human sys-
tems, like traffic jams, crowd movements, market bubbles and
crashes, and the like. One might argue that stupid behaviors
(in the sense of Cipolla) can actually be observed and probably
play a significant role in those phenomena.
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