A new run-up algorithm based on local high-order analytic expansions

Abstract : The practically important problem of the wave run-up is studied in this article in the framework of Nonlinear Shallow Water Equations (NSWE). The main novelty consists in the usage of high order local asymptotic analytical solutions in the vicinity of the shoreline. Namely, we use the analytical techniques introduced by S. Kovalevskaya and the analogy with the compressible gas dynamics (i.e. gas outflow problem into the vacuum). Our run-up algorithm covers all the possible cases of the wave slope on the shoreline and it incorporates the new analytical information in order to determine the shoreline motion to higher accuracy. The application of this algorithm is illustrated on several important practical examples. Finally, the simulation results are compared with the well-known analytical and experimental predictions.
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

Contributeur : Denys Dutykh <>
Soumis le : mardi 22 septembre 2015 - 13:23:17
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : mercredi 26 avril 2017 - 18:33:59


Fichiers produits par l'(les) auteur(s)




Gayaz Khakimzyanov, Nina Shokina, Denys Dutykh, Dimitrios Mitsotakis. A new run-up algorithm based on local high-order analytic expansions. Journal of Computational and Applied Mathematics, Elsevier, 2016, 298, pp.82-96. 〈http://www.sciencedirect.com/science/article/pii/S0377042715005993〉. 〈10.1016/j.cam.2015.12.004〉. 〈hal-01084811v3〉



Consultations de la notice


Téléchargements de fichiers