
HAL Id: hal-01084719
https://hal.science/hal-01084719

Submitted on 19 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral asymptotics of the Dirichlet Laplacian in a
conical layer

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond

To cite this version:
Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet
Laplacian in a conical layer. Communications on Pure and Applied Analysis, 2015, 14 (3), pp.1239-
1258. �10.3934/cpaa.2015.14.1239�. �hal-01084719�

https://hal.science/hal-01084719
https://hal.archives-ouvertes.fr


SPECTRAL ASYMPTOTICS OF THE DIRICHLET LAPLACIAN

IN A CONICAL LAYER

MONIQUE DAUGE, THOMAS OURMIÈRES-BONAFOS, AND NICOLAS RAYMOND

ABSTRACT. The spectrum of the Dirichlet Laplacian on conical layers is analysed through two

aspects: the infiniteness of the discrete eigenvalues and their expansions in the small aperture limit.

On the one hand, we prove that, for any aperture, the eigenvalues accumulate below the thresh-

old of the essential spectrum: For a small distance from the essential spectrum, the number of

eigenvalues farther from the threshold than this distance behaves like the logarithm of the distance.

On the other hand, in the small aperture regime, we provide a two-term asymptotics of the first

eigenvalues thanks to a priori localization estimates for the associated eigenfunctions. We prove

that these eigenfunctions are localized in the conical cap at a scale of order the cubic root of the

aperture angle and that they get into the other part of the layer at a scale involving the logarithm of

the aperture angle.

1. INTRODUCTION

1.1. Motivations. In mesoscopic physics semiconductors can be modelled by Schrödinger oper-

ators on tubes (also called waveguides) or layers carrying the Dirichlet condition on their bound-

aries. The existence of bound states for the Dirichlet Laplacian in such structures is an important

issue since the discrete spectrum can be seen as a defect in the wave propagation.

First, the question of the discrete spectrum was studied for waveguides i.e. infinite tubes (in

dimension two or three) which are asymptotically straight. For these tubes, one can prove that the

essential spectrum of the Dirichlet Laplacian has the form [a,+∞) (with a ∈ R+). For smooth

waveguides, the effect of bending is studied by Exner and Šeba in [15] and Goldstone and Jaffe in

[19]. In [13], Duclos and Exner prove that bending induces bound states. The same question was

addressed in dimension two when there is a corner (which can be seen as an infinite curvature).

In [17], Exner, Šeba and Šťovı́ček prove that for the L-shaped waveguide there is a unique bound

state below the threshold of the essential spectrum. Two of the authors, with Lafranche, prove in

[10] that for a two dimensional waveguide with corner of arbitrary angle, the bound states are in

finite number below the threshold of the essential spectrum. In fact, in [31], Nazarov and Shanin

prove that for a large enough angle there is a unique bound state.

Second, the question was addressed for layers i.e. infinite regions in R3 limited by two identical

surfaces. For smooth enough layers, Duclos, Exner and Krejčiřı́k in [14] and then Carron, Exner

and Krejčiřı́k in [7] prove that bending could induce bound states. Now, as for two dimensional
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waveguides, one can ask what happens when there is an infinite curvature. In [16], Exner and

Tater deal with this question in the particular case of a conical layer, i.e., a layer limited by two

infinite coaxial conical surfaces with same openings. Again, the essential spectrum of the Dirichlet

Laplacian has the form [a,+∞) (with a ∈ R+) and one of the main results of their paper is the

infiniteness of the discrete spectrum below the threshold a.

The first question we tackle in this paper is to quantify this infinity: As the two dimensional

waveguide with corner in [10] is the meridian domain of the conical layer in [16], we wanted to

understand how one can pass from a finite number of bound states to an infinite number adding

one dimension. In the same spirit it is worth mentioning the paper [4] of Behrndt, Exner and Lotor-

eichik where the spectrum of the Dirichlet Laplacian with a δ-interaction on a cone is investigated.

Roughly, one can claim that this operator is another modelling of the physical phenomenon we

are interested in. In this problem, the essential spectrum has the form [−a,+∞) (with a ∈ R+)

and there is an infinite number of bound states. For n ≥ 1, they also provide an upper bound for

the n-th eigenvalue of the problem.

The second question dealt with in the present paper is the study of the eigenvalues and associated

eigenfunctions of conical layers in the small aperture regime. This question is reminiscent of

the article [11] where the small angle regime for waveguides with corner is studied. In the latter

paper asymptotic expansions at any order for the eigenvalues and eigenfunctions are provided and

we would like to determine if similar expansions can be obtained for the conical layer. In fact,

in the spirit of the Born-Oppenheimer approximation, one can at least formally reduce the two

dimensional waveguide and the conical layer to electric Schrödinger operators in one dimension.

The minima of the effective electric potentials determine the behavior of the eigenfunctions. This

is a well known fact, for a smooth minimum, that it leads to the study of the so called harmonic

approximation (see [9, 12, 34]). However, in [11] and in the present paper, the minima of the

effective potentials are not smooth. For the conical layer it involves a logarithmic singularity. That

is why we will only be able to provide a finite term in the expansions of the eigenvalues. To do so,

we will prove a priori localization estimates for the eigenfunctions, the so called Agmon estimates

(see Agmon [2, 3] and, in the semiclassical context, Helffer [21] and Helffer and Sjöstrand [22,

23]). They will imply that the eigenfunctions of the conical layers are localized in the conical cap

and, unlike the eigenfunctions of the two dimensional waveguides with corner, get into the rest of

the layer at a scale involving the logarithm of the aperture.

1.2. The Dirichlet Laplacian on conical layers. Let us denote by (x1, x2, x3) the Cartesian co-

ordinates of the space R3 and by 0 = (0, 0, 0) the origin. The positive Laplace operator is given

by −∆ = −∂21 − ∂22 − ∂23 . We denote by (r, φ, z) ∈ R+ × [0, 2π)× R the cylindrical coordinates

with axis x3, i.e., such that:

(1.1) x1 = r cosφ , x2 = r sinφ, and z = x3 ∈ R.

A conical layer being an axisymmetric domain, it is easier to define it through its meridian domain.

We denote our conical layer by Lay(θ) from its half-opening angle θ ∈ (0, π
2
). The meridian

domain of Lay(θ) is denoted by Gui(θ) and defined as, see also Figure 1,

(1.2) Gui(θ) =
{
(r, z) ∈ R+ × R : − π

sin θ
< z, max(0, z tan θ) < r < z tan θ +

π

cos θ

}
.
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The domains are normalized so that the distance between the two connected components of the

boundary of Lay(θ) is π for any value of θ.

The aim of this paper is to investigate some spectral properties of the Dirichlet Laplacian −∆Lay(θ)

whose domain is denoted by Dom(−∆Lay(θ)). Note that, according to the value of θ, this domain is

a subspace ofH2(Lay(θ)) (if θ > θ0) or not (if θ ≤ θ0), where θ0 is such that P1/2(cos(π−θ0)) = 0,

see [5, § II.4.c] – here Pν is the Legendre function with degree ν, and θ0 ≃ 0.2738π.

z

r

θ

Gui(θ)

− π
sin θ

•
0

•

FIGURE 1. The meridian guide Gui(θ).

Through the change of variables (1.1) the Cartesian domain Lay(θ) becomes Gui(θ)× S1 and the

Dirichlet Laplacian becomes the unbounded selfadjoint operator on L2(Gui(θ) × S1, rdrdφdz),
denoted by HGui(θ)×S1 :

HGui(θ)×S1 = −1

r
(r∂r)

2 − 1

r2
∂2φ − ∂2z .

By Fourier series, according to the terminology of [33, §XIII.16], we have the constant fiber sum:

L2(Gui(θ)× S
1, rdrdφdz) = L2((Gui(θ), rdrdz)⊗L2(S1) =

⊕

m∈Z
L2(Gui(θ), rdrdz),

where L2(S1) refers to functions on the unit circle with orthonormal basis {e2iπmφ : m ∈ Z}. The

operator HGui(θ)×S1 decomposes as:

(1.3) HGui(θ)×S1 =
⊕

m∈Z
H[m]

Gui(θ), with H[m]
Gui(θ) = −1

r
∂r(r∂r)− ∂2z +

m2

r2
,

where the operators H[m]
Gui(θ) are the fibers of HGui(θ)×S1 . The associated quadratic forms are

Q[m]
Gui(θ)(ψ) =

∫

Gui(θ)

|∂rψ(r, z)|2 + |∂zψ(r, z)|2 +
m2

r2
|ψ(r, z)|2 rdrdz .

The form domains, denoted by Dom(Q[m]
Gui(θ)) depend on m, namely, cf. [5, § II.3.a],

Dom(Q[m]
Gui(θ)) =

{
{ψ : ψ, ∂rψ, ∂zψ ∈ L2(Gui(θ), rdrdz), ψ

∣∣
∂1Gui(θ)

= 0}, m = 0,

{ψ : ψ, ∂rψ, ∂zψ, r
−1ψ ∈ L2(Gui(θ), rdrdz), ψ

∣∣
∂1Gui(θ)

= 0}, m 6= 0,

with ∂1Gui(θ) the part of ∂Gui(θ) that does not meet the axis r = 0. The domain of the operator

H[m]
Gui(θ) is deduced from the form domain in the standard way.
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1.3. Main results. Let us denote by Sdisc(L) and Sess(L) the discrete and essential spectrum of

the selfadjoint operator L, respectively. For our study we start from the following results on the

essential and discrete spectrum of H[m]
Gui(θ) that we deduce from [16, § 3].

Theorem 1.1 (Exner and Tater [16]). Let θ ∈ (0, π
2
). There holds,

Sess(H[m]
Gui(θ)) = [1,∞), ∀m ∈ Z

and

#Sdisc(H[0]
Gui(θ)) = ∞ and Sdisc(H[m]

Gui(θ)) = ∅ if m 6= 0.

Note that the minimum at 1 of the essential spectrum is a consequence of the normalization of

the meridian guides Gui(θ) and that the absence of discrete spectrum when m 6= 0 is due to the

cancellation of functions in the domain of the operator on the axis r = 0.

Relying on this theorem, we see that the investigation of the discrete spectrum of −∆Lay(θ) re-

duces to its axisymmetric part H[0]
Gui(θ). To simplify the notation, we drop the exponent 0, thus

denoting this operator by HGui(θ). We denote its eigenvalues by (µn(θ))n≥1, ordering them in

non-decreasing order and repeating them according to their multiplicity.

We first state a monotonicity result about the dependence on θ of µn(θ).

Proposition 1.2. For all n ∈ N∗, the functions θ 7→ µn(θ) are non-decreasing on (0, π
2
) into R+.

Before stating our result on the accumulation of these eigenvalues towards the minimum of the

essential spectrum, we need to introduce:

Definition 1.3. Let ν ∈ R and L be a self-adjoint operator semi-bounded from below and associ-

ated with a quadratic form Q. We define the counting function Nν(L) by:

Nν(L) = #{µ ∈ Sdisc(L) : µ < ν}.
When working with the quadratic form Q we use the notation Nν(Q) instead of Nν(L).

In this paper we prove:

Theorem 1.4. Let us choose θ ∈ (0, π
2
). We have:

N1−E(HGui(θ)) ∼
E→0
E>0

cot θ

4π
| lnE|.

Theorem 1.4 exhibits a logarithmic accumulation of the number of eigenvalues near the threshold

of the essential spectrum.

In order to state our result on the spectral asymptotics of the first eigenvalues as θ → 0 we need

to introduce some notations on zeros of Bessel and Airy functions [1].

Notation 1.5. We denote by J0 and Y0 the 0-th Bessel functions of first and second kind, respec-

tively. For all n ≥ 1, the n-th zero of J0 is denoted by j0,n. For all n ≥ 1, we also denote by zA(n)
the n-th zero of the reversed Airy function of first kind. The sequence (zA(n))n≥1 is increasing.



SPECTRAL ASYMPTOTICS IN A CONICAL LAYER 5

The following theorem describes the behavior of the first eigenvalues of HGui(θ) in the limit θ → 0.

This result confirms that µn(θ) goes to
j2
0,1

π2 as θ goes to 0 which is conjectured in [16, Figure 2].

Theorem 1.6. For all n ∈ N
∗, we have the asymptotic expansion:

µn(θ) =
θ→0

j20,1
π2

+
(2j0,1)

2/3

π2
zA(n)θ

2/3 +O(θ| ln θ|3/2), n = 1, . . . , N0.

In Section 2 we prove Proposition 1.2 by reformulating the problem in another domain. Section 3

deals with Theorem 1.4. We prove that counting the eigenvalues on the meridian waveguide Gui(θ)
reduces to consider operators on a half-strip, leading to count the eigenvalues of one-dimensional

operators. Section 4 concerns the small aperture regime θ → 0. First, we show that the problem

admits a semiclassical formulation. Then, we use Agmon localization estimates to obtain Theorem

1.6. Finally in Appendix A we illustrate the main results of this paper by numerical computations

by finite element method.

2. MONOTONICITY OF THE EIGENVALUES

We denote by QGui(θ) the quadratic form associated with HGui(θ) and by Dom(QGui(θ)) its domain.

For the proof of Proposition 1.2 and further use, we consider the change of variables (rotation):

(2.1) s = z cos θ + r sin θ, u = −z sin θ + r cos θ,

that transforms the meridian guide Gui(θ) into the strip with corner Ω(θ) (see Figure 2), defined

by:

Ω(θ) =
{
(s, u) ∈ R

2 : s ≥ −π cot θ, max(0,−s tan θ) < u < π
}
.

For ψ ∈ Dom(QGui(θ)), we set ψ̃(s, u) = ψ(r, z) and we have the identity QGui(θ)(ψ) = QΩ(θ)(ψ̃)
with the new quadratic form

(2.2) QΩ(θ)(ψ̃) =

∫

Ω(θ)

(|∂sψ̃|2 + |∂uψ̃|2) (s sin θ + u cos θ)duds.

The proof of the monotonicity of the eigenvalues µn(θ) now follows the same track that the anal-

ogous proof in [10, § 3] for the case of broken waveguides. To avoid the dependence on θ of the

domain QΩ(θ) we perform the change of variables (s, u) 7→ (ŝ, û) = (s tan θ, u) that transforms

s

u

Ω(θ)

−π cot θ
•

0

•

(−π cot θ, π)
•

FIGURE 2. The domain Ω(θ).
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the domain Ω(θ) into Ω := Ω(π
4
). Setting ψ̂(ŝ, û) = ψ̃(s, u) we get for the Rayleigh quotients:

QGui(θ)(ψ)

‖ψ‖2 =

∫
Ω
(tan2 θ|∂ŝψ̂|2 + |∂ûψ̂|2)(ŝ+ û) cos θ cot θdŝdû

∫
Ω
|ψ̂|2(ŝ+ û) cos θ cot θdŝdû

=

∫
Ω
(tan2 θ|∂ŝψ̂|2 + |∂ûψ̂|2)(ŝ+ û)dŝdû

∫
Ω
|ψ̂|2(ŝ+ û)dŝdû

,

that appear to be nondecreasing functions of θ. The result follows from the min-max formulas for

the eigenvalues.

3. COUNTING THE EIGENVALUES

In this section we prove Theorem 1.4. The idea is to reduce to a one-dimensional operator.

We will need a result adapted from Kirsch and Simon [25], later extended by Hassel and Marshall

in [20]. Let c > 0, we are interested in the Friedrichs extension of the following quadratic form,

q(ϕ) =

∫ +∞

1

|∂xϕ|2 −
c

x2
|ϕ|2 dx, ϕ ∈ C

∞
0 (1,+∞).

and we denote by h the corresponding operator.

Theorem 3.1 (Kirsch and Simon [25]). Let V0 ∈ C ∞
0 (1,+∞). If c > 1

4
, there holds:

N−E(h+ V0) ∼
E→0
E>0

1

2π

√
c− 1

4
| lnE|.

In § 3.1 we find a lower bound for N1−E(QGui(θ)). An upper bound is obtained in § 3.2 and these

bounds, together with Theorem 3.1, yield Theorem 1.4 in § 3.3.

For the next two subsections, instead of working with the quadratic form QGui(θ), it will be more

convenient to use the quadratic form QΩ(θ) introduced in (2.2).

3.1. A lower bound on the number of bound states. Let us denote byΣ the half-strip (1,+∞)×
(0, π). We consider the quadratic form QΣ(θ), Friedrichs extension of the form defined for all

functions ψ ∈ C
∞
0 (Σ) by:

(3.1) QΣ(θ)(ψ) =

∫

Σ

(|∂sψ|2 + |∂uψ|2) (s sin θ + u cos θ) dsdu,

where the (s, u) variables are related to the physical domain through the change of variables (2.1).

We also define the one-dimensional quadratic form q̂(θ), Friedrichs extension of the form defined,

for all ϕ̂ ∈ C ∞
0 (1,+∞), by:

q̂(θ)(ϕ̂) =

∫ +∞

1

|∂σϕ̂|2 −
1

4σ2 sin2 θ
|ϕ̂|2 dσ.

Proposition 3.2. Let us fix θ ∈ (0, π
2
). Let E > 0, and set Ê = (1 + π cot θ)2E. We have:

N−Ê(q̂(θ)) ≤ N1−E(QΩ(θ)).
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Proof. Any ψ ∈ Dom(QΣ(θ)) can be extended by zero, defining ψ0 ∈ Dom(QΩ(θ)) such that

QΣ(θ)(ψ) = QΩ(θ)(ψ0). The min-max principle then yields

(3.2) N1−E(QΣ(θ)) ≤ N1−E(QΩ(θ)).

For ψ ∈ Dom(QΣ(θ)), let ψ̂(s, u) =
√
s sin θ + u cos θ ψ(s, u). We have:

(3.3) QΣ(θ)(ψ) =

∫

Σ

|∂sψ̂|2 + |∂uψ̂|2 −
1

4(s sin θ + u cos θ)2
|ψ̂|2 dsdu

and we bound (s sin θ + u cos θ)2 from above by (s sin θ + π cos θ)2, obtaining

(3.4) QΣ(θ)(ψ) ≤
∫

Σ

|∂sψ̂|2 + |∂uψ̂|2 −
1

4(s sin θ + π cos θ)2
|ψ̂|2 dsdu.

Now, we denote by q(θ) the quadratic form, Friedrichs extension of the form defined for ϕ ∈
C

∞
0 (1,+∞), by:

q(θ)(ϕ) =

∫ +∞

1

|∂sϕ|2 −
1

4(s sin θ + π cos θ)2
|ϕ|2 ds.

So the right hand side of (3.4) has two blocs with separated variables: The first one is q(θ) in s vari-

able and the second one is the Dirichlet Laplacian quadratic form on H1
0 (0, π) whose eigenvalues

are k2, for k ≥ 1 integer. We deduce

(3.5) N−E(q(θ)) ≤ N1−E(QΣ(θ)).

Let us perform the change of variables σ = s+π cot θ
1+π cot θ

. For all function ϕ in the domain Dom(q(θ)),
we denote ϕ̂(σ) = ϕ(s). We get:

q(θ)(ϕ)∫ +∞
1

|ϕ|2 ds
= (1 + π cot θ)−2 q̂(θ)(ϕ̂)∫ +∞

1
|ϕ̂|2 ds

.

Using (3.2), (3.5) and the min-max principle, this achieves the proof of Proposition 3.2. �

3.2. An upper bound on the number of bound states. To obtain an upper bound, we follow the

strategy of [30] and [10, § 5]. Let (χ0, χ1) be a C ∞ partition of unity such that:

χ0(s)
2 + χ1(s)

2 = 1,

with χ0(s) = 1 for s < 1 and χ0(s) = 0 for s > 2. We set W (s) = |χ′
0(s)|2 + |χ′

1(s)|2. Now, we

consider the quadratic form q̌(θ), Friedrichs extension of the form defined for all ϕ̌ ∈ C ∞
0 (1,+∞):

q̌(θ)(ϕ̌) =

∫ +∞

1

|∂sϕ̌|2 −
( 1

4s2 sin2 θ
+W (s)

)
|ϕ̌|2 ds.

Proposition 3.3. Let us choose θ ∈ (0, π
2
). There exists a constant C(θ) (depending only on θ),

such that for all E > 0, we have:

N1−E(QΩ(θ)) ≤ C(θ) +N−E(q̌(θ)).
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Proof. For any function ψ ∈ Dom(QΩ(θ)), we deduce from the definition of W (s) and from the

“IMS” formula (see [9]):

(3.6) QΩ(θ)(ψ) = QΩ(θ)(χ0ψ) +QΩ(θ)(χ1ψ)

−
∫

Ω(θ)

W (s)(|χ0ψ̃|2 + |χ1ψ̃|2) (s sin θ + u cos θ) duds.

We introduce the subdomains Σ0 = {(s, u) ∈ Ω(θ) : s < 2} and Σ1 = Σ of Ω(θ). Then we

consider the quadratic forms QΣ0
and QΣ1

defined for φ ∈ Dom(QΣj
) by:

QΣj
(φ) =

∫

Σj

(|∂sφ|2 + |∂uφ|2 −W (s) |φ|2) (s sin θ + u cos θ) duds, j = 0, 1,

where the form domains are defined by

Dom(QΣ0
) =

{
φ ∈ Dom(QΩ(θ)) : φ = 0 on [2,∞)× (0, π)

}
,

Dom(QΣ1
) =

{
φ ∈ Dom(QΩ(θ)) : φ = 0 on (−∞, 1]× (0, π)

}
.

Of course, those quantities also depend on θ. As we are looking for a result for a chosen θ, we

have dropped the mention of θ in these notations. Thanks to (3.6), we get:

QΩ(θ)(ψ) = QΣ0
(χ0ψ) +QΣ1

(χ1ψ).

Using [10, Lemma 5.2] we find

(3.7) N1−E(QΩ(θ)) ≤ N1−E(QΣ0
) +N1−E(QΣ1

).

We now provide upper bounds for both terms of the right hand side of inequality (3.7).

1) We have, obviously: N1−E(QΣ0
) ≤ N1(QΣ0

) for all E > 0. Then we note that
∫

Σ0

(|∂sψ|2 + |∂uψ|2) (s sin θ + u cos θ) dsdu− ‖W‖∞‖ψ‖2Σ0
≤ QΣ0

(ψ) .

The quadratic form on the left hand side is associated with the axisymmetric Dirichlet Laplacian

in a bounded domain. This operator has a compact resolvent and its eigenvalue sequence tends to

infinity. We deduce

(3.8) N1−E(QΣ0
) ≤ N1(QΣ0

) = C(θ) <∞

2) For ψ ∈ Dom(QΣ1
), we set ψ̂(s, u) =

√
s sin θ + u cos θ ψ(s, u) and we find (see (3.3)):

∫

Σ1

|∂sψ̂|2 + |∂uψ̂|2 −
1

4s2 sin2 θ
|ψ̂|2 −W (s)|ψ̂|2dsdu ≤ QΣ1

(ψ).

Separating the variables, we obtain:

(3.9) N1−E(QΣ1(θ)) ≤ N−E(q̌(θ)).

Now, we can end the proof of Proposition 3.3: With estimates (3.8) and (3.9), we obtain an upper

bound for the left hand side of inequality (3.7). This yields Proposition 3.3. �
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3.3. Proof of Theorem 1.4. Thanks to Propositions 3.2 and 3.3 we have the following inequality:

(3.10) N−(1+π cot θ)2E(q̂(θ)) ≤ N1−E(QΩ(θ)) ≤ C(θ) +N−E(q̌(θ)).

Now we use Theorem 3.1 on each side of (3.10). For the left hand side, we obtain:

N−(1+π cot θ)2E(q̂(θ)) ∼
E→0

cot θ

4π
| ln

(
(1 + π cot θ)2E

)
| ∼
E→0

cot θ

4π
| lnE|.

On the right hand side, because W ∈ C ∞
0 (1,+∞) we get:

N−E(q̌(θ)) ∼
E→0

cot θ

4π
| ln(E)|.

Together with (3.10), it gives Theorem 1.4. �

4. CONICAL LAYERS IN THE SMALL APERTURE LIMIT

This section is devoted to the proof of Theorem 1.6. We work with the meridian guide Gui(θ) and

the operator HGui(θ) introduced in Subsection 1.2. Gui(θ) depends on θ and it is more convenient

to transfer its dependence into the coefficients of the operator. Therefore, we perform the change

of variable:

x = z
√
2 sin θ, y = r

√
2 cos θ.

The meridian guide Gui(θ) becomes Gui = Gui(π
4
) and HGui(θ) is unitary equivalent to

(4.1) DGui(θ) = −2 sin2 θ∂2x − 2 cos2 θ
1

y
∂y(y∂y).

Let h = tan θ, dividing by 2 cos2 θ we obtain the partially semiclassical operator in the x-variable:

LGui(h) = −h2∂2x −
1

y
∂y(y∂y).

This operator acts on L2(Gui, ydxdy) and its eigenvalues, denoted by (λn(h))n≥1 satisfy:

λn(tan θ) = (2 cos2 θ)−1µn(θ).

By definition, the regime θ → 0 corresponds to the semiclassical regime h → 0. We will prove

Theorem 1.6 using the scaled operator LGui(h).

Besides, we introduce some notations and results that are useful in this section. We define Tri, the

triangular end of Gui, by:

Tri = {(x, y) ∈ Gui : x < 0}.
We consider the operator LTri(h) defined by:

LTri(h) = −h2∂2x −
1

y
∂y(y∂y),

with domain Dom(LTri(h)) = {ψ ∈ Dom(LGui(h)) : ψ(0, ·) = 0, supp ψ ⊂ Tri}. In fact, LTri(h)
is associated with the 0-th fiber of the Dirichlet Laplacian in a cone. In [32, Proposition 9], one of

the authors studies the eigenpairs of cones of small aperture:
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Theorem 4.1. The eigenvalues of LTri(h), denoted by λ∆n (h), admit the expansions:

λ∆n (h) ∼
h→0

∑

k≥0

βk,nh
k/3, with β0,n =

j20,1
2π2

, β1,n = 0, β2,n =
(2j20,1)

2/3

2π2
zA(n).

Here ∼
h→0

means that for all K ∈ N, there exist CK > 0 and h0 > 0 such that for all h ∈ (0, h0)

we have: |λ∆n (h)−
∑K

k=0 βk,nh
k/3| ≤ CKh

(K+1)/3.

This section is divided into three parts. In Section 4.1 we study a one dimensional operator with

electric potential v, the so-called Born-Oppenheimer approximation of LGui(h). Since this reduced

operator is a lower bound of LGui(h) and thanks to the confining properties of v, we deduce, in

Section 4.2, that the eigenfunctions of LGui(h) are essentially localized in Tri. In Section 4.3,

we infer that the two-terms semiclassical expansions of the eigenvalues of LGui(h) and LTri(h)
coincide.

4.1. Effective one dimensional operator. As the operator LGui(h) is partially semiclassical, we

may use the strategy of the famous Born-Oppenheimer approximation (see [6, 8, 24, 26, 28, 29]).

Let us denote by v(x) the first eigenvalue of the operator, acting onL2
((
max(0, x), x+ π

√
2
)
, ydy

)

and defined by hx = − 1
y
∂y(y∂y) with Dirichlet conditions in y = x+ π

√
2 and in y = x if x > 0.

Since we are concerned with the expansion of the low lying eigenvalues, this approximation con-

sists in replacing − 1
y
∂y(y∂y) in the expression of LGui(h) by v(x) on each slide of Gui at fixed x.

Thus we consider the following one dimensional Schrödinger operator, acting onL2(−π
√
2,+∞),

(4.2) − h2∂2x + v(x).

Let us now describe the function v. For each x > −π
√
2, we consider the quadratic form qtransx

associated with the transverse operator − 1
y
∂y(y∂y)

qtransx (ϕ) =

∫ x+π
√
2

max(0,x)

|∂yϕ|2 ydy.

with Dirichlet boundary conditions in y = x+π
√
2 and in y = x if x > 0. Let Dom(qtransx ) denote

its form domain. Then

v(x) = min
ϕ∈Dom(qtransx )

qtransx (ϕ)
∫ x+π

√
2

max(0,x)
|ϕ|2ydy

.

For x ∈ (−π
√
2, 0), we have the explicit expression (first eigenvalue of the Dirichlet problem on

the disk of radius x+ π
√
2, cf. [32, § 3.3]):

(4.3) v(x) =
j20,1

(x+ π
√
2)2

.

Proposition 4.2. The effective potential v has the following properties:

(i) v is continuous and decreasing on (−π
√
2, 0], continuous and non-decreasing on (0,∞).

(ii) The infimum of v on (−π
√
2,∞) is positive.
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FIGURE 3. The effective potential v

(iii) For all x > 0, we have:
1

2
− 1

4x2
≤ v(x) ≤ 1

2
.

(iv) The effective potential v is continuous at 0:

v(0) =
j20,1
2π2

and v(x)− j20,1
2π2

∼
x→0+

1

lnx

j0,1
2π

Y0(j0,1)

J ′
0(j0,1)

=
1

| ln x|
j0,1
2π

|Y0(j0,1)|
|J ′

0(j0,1)|
,

where J0 and Y0 are the Bessel functions of first and second kind, respectively.

So v is continuous on (−π
√
2,∞) and attains its (unique) minimum at x = 0, see Figure 3.

Proof. (i) The statement for x ≤ 0 is an obvious consequence of the expression (4.3) of v. To

tackle the case x > 0, we perform the change of variables ŷ = y− x that transforms the quadratic

form qtransx into ∫ π
√
2

0

|∂ŷϕ(ŷ + x)|2 (ŷ + x) dŷ.

To get rid of the metrics, we use the change of function defined by

ϕ̂(ŷ) =
√
ŷ + x ϕ(ŷ + x).

It transforms the quadratic form qtransx into q̂transx defined by:

q̂transx (ϕ̂) =

∫ π
√
2

0

|∂ŷϕ̂|2 −
1

4(ŷ + x)2
|ϕ̂|2 dŷ ,

so that we have the identities

qtransx (ϕ) = q̂transx (ϕ̂) and

∫ x+π
√
2

x

|ϕ|2 y dy =

∫ π
√
2

0

|ϕ̂|2 dy .
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For any positive x, the domain of the form q̂transx is H1
0 (0, π

√
2). At this point it becomes obvious

that for any ϕ̂ ∈ H1
0 (0, π

√
2) the Rayleigh quotients q̂transx (ϕ̂)‖ϕ̂‖−2 are non-decreasing functions

of x, hence the corresponding monotonicity of v on (0,∞).

(ii) For a ∈ [0, π
√
2), let us introduce the operator h̃a = −y−1∂yy∂y, acting onL2

((
a, π

√
2
)
, ydy

)

with Dirichlet conditions at a and π
√
2, and denote by ṽ(a) its lowest eigenvalue, which is a non

decreasing function of a. We note that ṽ(0) is larger than the first eigenvalue j20,1/2π
2 of the

Dirichlet Laplacian on the disc of radius π
√
2. By dilation, we get that

v(x) =
2π2

(x+ π
√
2)2

ṽ
( x π

√
2

x+ π
√
2

)
≥ 2π2

(x+ π
√
2)2

j20,1
2π2

.

Combining this with (i), we obtain (ii).

(iii) For x > 0, we bound q̂transx (ϕ̂) from below

q̂transx (ϕ̂) ≥
∫ π

√
2

0

|∂ŷϕ̂|2 −
1

4x2
|ϕ̂|2 dŷ

Hence, since the first eigenvalue of the right hand side is 1
2
− 1

4x2 , we find that v(x) ≥ 1
2
− 1

4x2 .

(iv) Let x > 0. The equation on eigenpairs (λ, ϕ) of hx can be written as

y2∂2yϕ+ y∂yϕ+ λy2ϕ = 0,(4.4)

ϕ(x) = 0 and ϕ(x+ π
√
2) = 0 .(4.5)

The first equation is a Bessel type equation whose general solution can be written as

AJ0(λ
1/2y) +BY0(λ

1/2y), A, B ∈ R.

Finding a non-zero solution to (4.4)-(4.5) is equivalent to find a non-zero couple (A,B) such that

the above function satisfies both Dirichlet boundary conditions at x and x +
√
2. An equivalent

condition is that the following determinant is zero:
∣∣∣∣

J0(λ
1/2x) Y0(λ

1/2x)

J0(λ
1/2(x+ π

√
2)) Y0(λ

1/2(x+ π
√
2))

∣∣∣∣ = 0 ,

So, the effective potential v satisfies the implicit equation:

(4.6) J0
(
v(x)1/2x

)
Y0
(
v(x)1/2(x+ π

√
2)
)
= J0

(
v(x)1/2(x+ π

√
2)
)
Y0
(
v(x)1/2x

)
.

We know that the effective potential v is bounded from above on (0,∞) by (iii) and is bounded

from below by j20,1/2π
2 by (ii). Hence, we deduce:

(4.7) v(x)1/2x −→
x→0+

0 and v(x)1/2(x+ π
√
2) −→

x→0+
α ≥ j0,1 .

Since the left hand side of (4.6) is bounded and Y0(x) −→
x→0+

−∞ we get:

(4.8) J0
(
v(x)1/2(x+ π

√
2)
)
−→
x→0+

0.
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Taking the limit in the left hand side of (4.8), the only possible accumulation points of {v(x)} as

x → 0+ are
j2
0,p

2π2 (p ∈ N∗). Because for all p ≥ 2,
j2
0,p

2π2 >
1
2
, thanks to (ii) we get the continuity of

the effective potential in x = 0. The J0 zeros are simple, thus J ′
0(j0,1) 6= 0. We obtain:

(4.9)

J0
(
v(x)1/2(x+ π

√
2)
)

∼
x→0+

(
v(x)1/2(x+ π

√
2)− j0,1

)
J ′(j0,1),

∼
x→0+

(√
2π2v(x)− j0,1

)
J ′(j0,1),

Y0
(
v(x)1/2x

)
∼

x→0+

2

π
ln
(1
2
v(x)1/2x

)
∼

x→0+

2

π
ln x .

Moreover, we have:

(4.10) J0
(
v(x)1/2x

)
−→
x→0+

1 and Y0
(
v(x)1/2(x+ π

√
2)
)
−→
x→0+

Y0(j0,1).

Equations (4.6), (4.9) and (4.10) yield:

2

π
ln x ∼

x→0+

Y0(j0,1)(√
2π2v(x)− j0,1

)
J ′
0(j0,1)

.

This provides the proof of the asymptotic equivalence of v− j20,1
2π2 with 1

lnx

j0,1
2π

Y0(j0,1)

J ′

0
(j0,1)

. The positivity

of the quotient 1
lnx

Y0(j0,1)

J ′

0
(j0,1)

is then a consequence of (i) (v non-decreasing on (0,∞)). �

Here, we are not going to investigate the spectrum of the one dimensional operator defined in (4.2),

nevertheless one can see that the logarithmic behavior of v near x = 0+ prevents us from using

the classical harmonic approximation.

4.2. Agmon localization estimates. Before stating and proving Agmon localization estimates,

we remark that for N0 ∈ N∗, there exists Γ0 > 0 and h0 > 0 such that for all n ∈ {1, . . . , N0} and

all h ∈ (0, h0]:

(4.11)

∣∣∣λn(h)−
j20,1
2π2

∣∣∣ ≤ Γ0h
2/3.

To obtain inequality (4.11), we first observe that λn(h)− j20,1
2π2 ≥ 0. This comes from the following

fact: If we denote by Q(h) the quadratic form associated with the operator LGui(h), for all ψ in

the form domain Dom(Q(h)) we have:

(4.12) Q(h)(ψ) =

∫

Gui

h2|∂xψ|2+ |∂yψ|2ydxdy ≥
∫

Gui

h2|∂xψ|2+ v(x)|ψ|2ydxdy ≥ j20,1
2π2

‖ψ‖2.

The min-max principle yields λn(h)− j2
0,1

2π2 ≥ 0. Since Tri ⊂ Gui, by Dirichlet bracketing we get:

(4.13) λn(h) ≤ λ∆n (h).

Now, by Theorem 4.1, we know that |λ∆n (h)−
j2
0,1

2π2 | ≤ Γ0h
2/3, which gives inequality (4.11).

As a consequence of Proposition 4.2 (iv), there exists x1 > 0 such that

(4.14) ∀x ∈ [0, x1], v(x) ≥ j20,1
2π2

+
c0

| lnx| with c0 =
j0,1
4π

|Y0(j0,1)|
|J ′

0(j0,1)|
.
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We set

G1 = Gui ∩ {(x, y) : x ∈ (0, x1)} and G2 = Gui ∩ {(x, y) : x ∈ (x1,∞)}.

Our estimates of Agmon type are as follows.

Proposition 4.3. Let Γ0 > 0, there exist h0, C0 > 0 and η1, η2, η3 > 0 such that for all h ∈ (0, h0)

and all eigenpair (λ, ψ) of LGui(h) satisfying |λ− j2
0,1

2π2 | ≤ Γ0h
2/3, we have:

(4.15)

∫

Gui

e2Φ/h
(
|ψ|2 + |h∂xψ|2

)
y dxdy ≤ C0‖ψ‖2,

with the Lipschitz weight function Φ defined on Gui by

(4.16) Φ(x, y) =





Φ0(x) = η0|x|3/2 if π
√
2 < x < 0, i.e. (x, y) ∈ Tri

Φ1(x) = η1

∫ x

0

1√
| ln t|

dt, if 0 < x < x1 i.e. (x, y) ∈ G1

Φ2(x) = η2
(
x− x1

)
+ Φ1(x1) if x1 < x i.e. (x, y) ∈ G2.

Thanks to these estimates we understand the localization scales of the eigenfunctions of LGui(h).
In the triangular end Tri, they are localized at a scale h2/3 near x = 0 whereas they get into

the layer at a scale h
√

| lnh|. This is different from the two dimensional waveguides with corner

where the eigenfunctions visit the guiding part at a scale h. In [11], the effective potential obtained

has a jump at x = 0, then is constant. Here it is different: The logarithmic behavior of v at x = 0+

allows the eigenfunctions to leak a little more outside the triangular end.

Proof. For Φ a Lipschitz function only depending on the variable x ∈ (−π
√
2,+∞), we have the

formula of ”IMS” type:
∫

Gui

(
h2|∂x(eΦ/hψ)|2 + |eΦ/h∂yψ|2 − (λ+ Φ′(x)2)|eΦ/hψ|2

)
y dxdy = 0.

Now, thanks to the first inequality in (4.12) we deduce:
∫

Gui

(
h2|∂x(eΦ/hψ)|2 + (v(x)− λ− Φ′(x)2)|eΦ/hψ|2

)
y dxdy ≤ 0.

By convexity of v in (−π
√
2, 0) and inequality (4.14) we get:

∫

Gui

h2|∂x(eΦ/hψ)|2 y dxdy + ITri + IG1
+ IG2

≤ 0,

with

ITri =

∫

Tri

( j20,1
2π2

+
j20,1

(π
√
2)3

|x| − λ− Φ′(x)2
)
|eΦ/hψ|2 y dxdy,

IG1
=

∫

G1

( j20,1
2π2

+
c0

| lnx| − λ− Φ′(x)2
)
|eΦ/hψ|2 y dxdy,

IG2
=

∫

G2

(
v(x1)− λ− Φ′(x)2

)
|eΦ/hψ|2 y dxdy.
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Then, using λ− j2
0,1

2π2 ≤ Γ0h
2/3 , this becomes:

(4.17)

∫

Gui

h2|∂x(eΦ/hψ)|2 y dxdy + ÎTri + ÎG1
+ ÎG2

≤ 0,

with

ÎTri =

∫

Tri

( j20,1

(π
√
2)3

|x| − Γ0h
2/3 − Φ′(x)2

)
|eΦ/hψ|2 y dxdy,

ÎG1
=

∫

G1

( c0
| lnx| − Γ0h

2/3 − Φ′(x)2
)
|eΦ/hψ|2 y dxdy,

ÎG2
=

∫

G2

(
v(x1)−

j20,1
2π2

− Γ0h
2/3 − Φ′(x)2

)
|eΦ/hψ|2 y dxdy,

We are led to take:

Φ(x, y) = Φ0(x)1(−π
√
2,0)(x) + Φ1(x)1(0,x1)(x) + Φ2(x)1(x1,+∞)(x),

where Φ0, Φ1, and Φ2 are defined by (4.16) for some positive constants η0, η1, and η2. For η0, η1,
and η2 small enough, there exist positive η̂0, η̂1, and η̂2 such that:

ÎTri =

∫

Tri

(η̂0|x| − Γ0h
2/3)|eΦ/hψ|2 y dxdy,

ÎG1
=

∫

G1

(η̂1| lnx|−1 − Γ0h
2/3)|eΦ/hψ|2 y dxdy,

ÎG2
=

∫

G2

(
η̂2 − Γ0h

2/3
)
|eΦ/hψ|2 y dxdy.

Note that, if h is small, we may find a positive constant γ2 such that ÎG2
≥ γ2

∫
G2

|eΦ/hψ|2 y dxdy.

Let ε > 0 be a chosen positive number. We define the h-dependent subdomains:

Trifar = {(x, y) ∈Tri, η̂0|x|−Γ0h
2/3 ≥ εh2/3}, Gfar

1 = {(x, y) ∈ G1,
η̂1

| lnx| −Γ0h
2/3 ≥ εh2/3},

Trinear= {(x, y) ∈Tri, η̂0|x|−Γ0h
2/3 ≤ εh2/3}, Gnear

1 = {(x, y) ∈ G1,
η̂1

| ln x|−Γ0h
2/3 ≤ εh2/3},

Then, we split the integrals in (4.17) and we obtain:

(4.18) Γ0h
2/3

(∫

Trinear
|eΦ1/hψ|2 y dxdy +

∫

Gnear
1

|eΦ1/hψ|2 y dxdy
)
≥

∫

Gui

h2|∂x(eΦ/hψ)|2ydxdy

+ εh2/3
∫

Trifar
|eΦ1/hψ|2 y dxdy + εh2/3

∫

Gfar
1

|eΦ1/hψ|2 y dxdy + ÎG2
.

Set γ1 := (ε+ Γ0)/η̂1. In Trinear there holds −h2/3γ1 < x < 0. Thus we find

Φ0(x)

h
≤ η1γ

3/2
1 .

Set γ2 := (ε+ Γ0)/η̂2. In Gnear
1 , we have | lnx|−1/2 ≤ h1/3

√
γ2 and 0 < x < e−h−2/3γ−1

2 . Thus

Φ2(x)

h
≤ η2 xh

1/3√γ2
1

h
≤ η2 e

−h−2/3γ−1

2 h−2/3√γ2.
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We deduce that Φ/h is bounded independently on h on Trinear ∪ Gnear
1 . Now, the Agmon-type

estimate (4.15) is a consequence of inequality (4.18). �

4.3. Proof of Theorem 1.6. Let N0 ∈ N∗. We consider the N0 first eigenvalues of LGui(h).
In each eigenspace associated with λn(h) we choose a normalized eigenfunction ψn,h so that

〈ψn,h, ψp,h〉 = 0 if n 6= p. Moreover, if B(h) (resp. Q(h)) denotes the bilinear (resp. quadratic)

form associated with LGui(h), for n 6= p we also have B(h)(ψn,h, ψp,h) = 0 and Q(h)(ψn,h) =
λn(h)‖ψn,h‖2.
Let a ≥ 2, we introduce a smooth cut-off function χ defined for x > 0 and satisfying:

χ(x) = 1, if x ≤ a and χ(x) = 0, if x ≥ 2a.

We define the cut-off function χh at the scale h| ln h|3/2 by χh(x) = χ(xh−1| lnh|−3/2) (for all

x > 0). The “IMS” formula yields

Q(h)(χhψn,h) = λn(h)‖χhψn,h‖2 +R(h) ,

where the commutator term R(h) is given by

R(h) =
1

| ln h|3
∫

Gui

|χ′(xh−1| lnh|−3/2)|2 |ψn,h|2 y dxdy

With the weight function Φ defined by (4.16) we obtain, thanks to the estimate (4.15):

R(h) ≤ | lnh|−3 ‖χ′‖L∞(−π
√
2,+∞)

∫

Gui∩{(x,y):a≤xh−1| lnh|−3/2≤2a}
e2Φ/he−2Φ/h|ψn,h|2 y dxdy

≤ C| lnh|−3 e−2Φ(ah| lnh|3/2)/h‖ψn,h‖2.
Thanks to the lower bound on the weight function, we get, for h small enough,

2Φ(ah| ln h|3/2) ≥ 2η1

∫ ah| lnh|3/2

ah/2

1√
| ln (ah/2) |

dt ≥ η1ah| lnh|3/2| ln (ah/2) |−1/2,

and, using that a ≥ 2, we find

2Φ(ah| lnh|3/2)/h ≥ η1a| lnh| = −η1a ln h.
Now we choose a = max{2, 2/η1} and find e−2Φ(ah| lnh|3/2)/h ≤ e2 lnh = h2. Thus we deduce:

(4.19) R(h) ≤ Ch2.

Similarly the functions χhψn,h are almost orthogonal for the bilinear form B(h) in the sense that

there holds, for n 6= p: ∣∣B(h)(χhψn,h, χhψp,h)
∣∣ ≤ Ch2.

We introduce

SN0
(h) = vect(χhψ1,h, . . . , χhψN0,h).

and we get

(4.20) ∀ψh ∈ SN0
(h), Q(h)(ψh) ≤ (λN0

(h) + Ch2)‖ψh‖2.
Now, we define the triangle Tri(h) by its vertices

(−π
√
2, 0), (h| ln(h)|3/2, 0), and (h| ln(h)|3/2, h| ln(h)|3/2 + π

√
2),
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and consider the operator LTri(h)(h) := −h2∂2x − 1
y
∂y(y∂y) on Tri(h) with Dirichlet condition on

the two sides of Tri(h) that are not contained in the axis r = 0. Since Tri(h) can be obtained by a

dilation of ratio 1 + h| ln(h)|3/2
π
√
2

from Tri, we find that the eigenvalues of LTri(h)(h) are equal to

(
1 +

h| ln(h)|3/2
π
√
2

)−2

λ∆n (h).

We can extend the elements of SN0
(h) by zero so that Q(h)(ψh) = QTri(h)(h)(ψh) for ψh ∈

SN0
(h). Using (4.20) and the min-max principle, we get, for all n ∈ {1, . . .N0},

(
1 +

h| ln(h)|3/2
π
√
2

)−2

λ∆n (h) ≤ λn(h) + Ch2.

Together with (4.13) and Theorem 4.1 this implies Theorem 1.6. �

APPENDIX A. NUMERICAL RESULTS
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FIGURE 4. First 6 eigenvalues µn(θ) (n = 1, . . . , 6) vs θ (in degrees). The black

dot is the value j20,1/π
2. Mesh with 1616 triangles and #DOF = 30325.

We illustrate properties satisfied by the eigenvalues and eigenfunctions through numerical simula-

tions. The computations are performed with the operator DGui(θ) defined in (4.1). The integration

domain has to be finite: We truncate the domain Gui sufficiently far away from the origin. We

use the finite element library Mélina++ [27] with interpolation degree 6 and a quadrature rule of

degree 13. The elements are triangles and the different meshes and the number of DOF (degrees

of freedom) are mentioned in legends.
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Figure 4 shows the six first eigenvalues as functions of θ. The monotonicity of eigenvalues, their

accumulation below the threshold of the essential spectrum, and their convergence to j20,1/π
2 as

θ → 0 can be observed.

-6 -5 -4 -3 -2 -1
0

2

4

6

8

10

12

-6 -5 -4 -3 -2 -1
0

2

4

6

8

θ = 5◦ θ = 8◦

FIGURE 5. The blue line is the numerical computation of N1−E(HGui(θ)) as func-

tion of ln10E in abscissa. The red line is the asymptotics of Theorem 1.4. Mesh

with 6416 triangles and #DOF = 120325.

We computed the first 12 eigenvalues for θ = 5◦ and first 8 for θ = 8◦ We are interested in

Ej(θ) = 1−µj(θ) because, by definition, for all E ∈ [Ej+1(θ), Ej(θ)) we have N1−E(HGui(θ)) =
N1−E(DGui(θ)) = j. The jumps occur atE = Ej(θ). In Figure 5, we plot the quantityN1−E(HGui(θ))
as function of ln10E, compared with the asymptotics of Theorem 1.4.

µ1(θ) = 0.709909 µ2(θ) = 0.837417

µ3(θ) = 0.917956 µ4(θ) = 0.954728

µ5(θ) = 0.974223 µ6(θ) = 0.985379

FIGURE 6. Computations for θ = 2.5◦. The associated eigenfunctions are repre-

sented in the physical domain Gui(θ) where the vertical axes is multiplied by 5.

Mesh with 6416 triangles and #DOF = 120325.

Finally, in Figure 6 we depict the first eigenfunctions for small θ. This is the same numerical

computations as in [16, Figure 3] and it enlightens the Agmon localization estimates of Proposition
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4.3: The eigenfunctions penetrate into the meridian guide Gui(θ) and, unlike the two dimensional

broken waveguides, are not only localized in the triangular end of the meridian guide.
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