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Abstract

This paper presents a numerical study of an aperiodic cavitation pocket

developing in a Venturi flow. The mass transfer between phases is driven

by a void ratio transport equation model. A new free-parameter closure

relation is proposed and compared with other formulations. The re-entrant

jet development, void ratio profiles and pressure fluctuations are analyzed to

discern results accuracy. Comparisons with available experimental data are

done and good agreement is achieved.
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Nomenclature

c speed of sound

Cp, Cv thermal capacities

E total energy

e internal energy
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k turbulent kinetic energy

P static pressure

Pvap vapour pressure

Pr, Prt molecular and turbulent Prandtl numbers

Q total heat flux

ReL Reynolds number based on the length L

T temperature

u, v velocity components

V vector velocity

w conservative variables

Y mass fraction of gas

ṁ mass transfer

α void fraction

γ ratio of thermal capacities

ε dissipation rate

λ, λt molecular and turbulent thermal conductivity

µ, µt molecular and eddy viscosity

ρ density

ρI interfacial density

σ cavitation number

τ total stress tensor

ω specific dissipation

()l liquid value

()v vapour value

()v viscous
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()t turbulent

1. Introduction

Cavitation is the formation of vapour cavities within a given liquid due to

pressure drop. It may be observed in various engineering systems such as

hydraulic constructions, aeronautics, aerospace, power systems and turbo-

machinery. The cavitation development may be the origin of several nega-

tive effects, such as noise, vibrations, performance alterations, erosion and

structural damages. This makes cavitation an important issue in design and

operation, which should be controlled, or at least well understood.

Among the cavitation types that may develop, partial cavitation pockets

are often observed in hydraulic machines and is known to be responsible for

severe damage. Cavitating venturis are one of the simplest case to study

such cavities, both experimentally and numerically. This kind of cavitation

is characterized by a partial vapour cavity that detaches from the solid body

and extends downstream with the existence of a re-entrant jet. The dynamic

of these cavitation sheets, the interaction between cavitation and turbulence,

the behaviour of the turbulent boundary layer are not yet well known and

understood.

Although the numerical modelling of such cavitation has received a great

deal of attention, it is still a very difficult and challenging task to simulate

such complex unsteady two-phase flow with an acceptable accuracy. Cavitat-

ing flows are challenging to model, since they are turbulent with a complex
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interaction with two-phase structures, highly dynamic and involve non equi-

librium thermodynamic states. Several numerical models have been devel-

oped to investigate such cavitating flows, especially with one-fluid Reynolds-

Averaged Navier-Stokes (RANS) solvers. The homogeneous mixture model

treats the cavitating flows as a mixture of two fluids behaving as one. These

models are based on the assumption of local kinematic equilibrium between

phases (the local velocity is the same for both phases), local thermal and

mechanic equilibrium between the two components (local temperature and

pressure equality between phases). These models are composed by three

conservation laws for mixture quantities (mass, momentum and total en-

ergy). This model cannot reproduce strong thermodynamic non equilibrium

effects but, because of its simplicity, it is often used for numerical simulations

[1, 2, 3, 4, 5, 6, 7, 8].

By assuming that one pure phase is on a metastable state, a supplementary

mass equation or void fraction equation is added. Various formulations of

four-equation model have been expressed. A very popular formulation has

been developed to simulate turbulent cavitating flows [9, 10, 11, 12, 13, 14].

The main difficulty is related to the formulation of the source term and the

tunable parameters involved for the vaporization and condensation processes.

Moreover, these models are not thermodynamically well-posed [15]. Another

popular model devoted to ebullition problems uses a relaxation term (Ho-

mogeneous Relaxation Model). The source term involves a relaxation time

estimated from experimental data [16] or with an optimization problem on

the mixture entropy [17]. An original formulation was recently proposed for

the mass transfer between phases assuming its proportionality with the diver-
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gence of the mixture velocity. This model was validated on various inviscid

and turbulent applications [18, 19].

The present work is devoted to the numerical study of a partial cavitation

pocket appearing on a venturi geometry. For this test case, a transitional be-

haviour is observed between a stable pocket and a periodic cycles pocket.

A particular emphasis is placed on the comparison of various void ratio

transport equation models and their ability to capture the re-entrant jet

phenomenon. An in-house finite-volume code solving a four-equation RANS

compressible system was developed [19]. A new cavitation model is investi-

gated using a mixture of stiffened gas equation of state (EOS). The formula-

tion does not involve any tunable parameter. Validation and comparisons are

done with experimental measurements (time-averaged void ratio and veloc-

ity profiles, RMS wall pressure fluctuations). A comparison is proposed with

OpenFOAM simulations in which the Kunz’s void ratio transport equation

model is considered. The opensource software OpenFOAM was used and

validated in cavitating flows by various authors [20, 21, 22].

In this paper, we will first review the theoretical formulation, including phys-

ical models, equation of state and elements of the numerical methods. This

is followed by sets of results on a Venturi geometry and discussions.

2. The LEGI’s numerical tool

The code is based on the solving of the one-fluid compressible RANS system

with transport-equation turbulence models.
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2.1. Reynolds-Averaged Navier-Stokes compressible equations

The compressible one-fluid RANS equations are used, coupled with a one-

or two-equation turbulence model. For low Mach number applications, an

inviscid preconditioner is introduced. These equations can be expressed as:

P−1
c
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∂t
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w =





























ρ

ρV

ρE

α

ρk

ρΨ





























; Fc =





























ρV

ρV ⊗ V + pI

(ρE + p)V

αV

ρkV

ρΨV





























; Fv =





























0

τ v + τ t

(τ v + τ t).V − Qv
− Qt

0

(µ + µt/σk) grad k

(µ + µt/σΨ) grad Ψ





























where w denotes the conservative variables and the void ratio, Fc and Fv

the convective and viscous flux densities and S the source terms, which con-

cern the void ratio equation and the turbulent transport equations. The

expression of the preconditioning matrix Pc is given in [19]. k is the mixture

turbulent kinetic energy (TKE) and Ψ is a mixture turbulent variable. In

multiphase flow, the divergence of the fluctuating phase velocity is not zero

[23]. Therefore, supplementary terms appear in the mixture TKE equation

(pressure-dilation term, dilatational dissipation rate), which are not taken

into account in the present paper.

The exact expression of the eddy-viscosity µt and the source terms depends

on the turbulence model as well as constants σk and σΨ.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s
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law and the Boussinesq assumption. The total heat flux vector Q is obtained

from the Fourier law involving a turbulent thermal conductivity λt with the

constant Prandtl number hypothesis.

τ = τ v + τ t = (µ + µt)

[

( grad V + ( grad V )t) −
2

3
( div V )I

]

+
2

3
ρkI

Q = Qv + Qt = − (λ + λt) grad T with λt =
µtCp

Prt

(2)

In pure phases, the viscosity is assumed to be constant. The mixture viscosity

is defined as the arithmetic mean of the liquid and vapour viscosities:

µ(α) = αµV + (1 − α)µL (3)

The mixture thermal conductivity λ is also defined as the arithmetic mean

of the liquid and vapour values:

λ(α) = α
µV CpV

PrV

+ (1 − α)
µLCpL

PrL

(4)

The turbulent Prandtl number Prt is set to 1.

To close the system, an equation of state (EOS) is necessary to link the

pressure and the temperature to the internal energy and the density. For the

pure phases, we used the convex stiffened gas EOS:

P (ρ, e) = (γ − 1)ρ(e − q) − γP∞ (5)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (6)

T (ρ, h) =
h − q

Cp

(7)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capacities,

q the energy of the fluid at a given reference state and P∞ is a constant

reference pressure.
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2.2. A void ratio transport equation

A void ratio equation can be expressed as [24]:

∂α

∂t
+ div (αV ) = (K + α) div V +

ṁ

ρI

(8)

K =

(

ρlc
2
l − ρvc

2
v

ρlc
2

l

1−α
+ ρvc2v

α

)

; ρI =

(

c2v
α

+
c2
l

1−α

ρlc
2

l

1−α
+ ρvc2v

α

)

(9)

where ṁ is the mass transfer between phases and ρI the interfacial density .

By assuming that the mass transfer is proportional to the divergence of the

velocity, it is possible to build a family of models in which the mass transfer

ṁ is expressed as [18]

ṁ =
ρlρv

ρl − ρv

(

1 −
c2

c2
wallis

)

div V (10)

where cwallis is the propagation velocity of acoustic waves without mass trans-

fer [25]. This speed of sound is expressed as a weighted harmonic mean of

speeds of sound of each phase:

1

ρc2
wallis

=
α

ρvc2
v

+
1 − α

ρlc2
l

(11)

A first model was built using the speed of sound associated with a sinu-

soidal barotropic EOS [18, 19]. In the following, this model will be named

4-equation barotropic model. It involves one tunable parameter cbaro inter-

preted as the minimum value of the speed of sound in the mixture. For all

simulations the value was set to 0.5 m/s.

2.3. A new cavitation model

The new model is based on a mixture of stiffened gas EOS. By assuming

the pressure equilibrium between phases, an expression for the pressure can
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be deduced, function of the void ratio α and the vapour mass fraction Y =

αρv/ρ:

P (ρ, e, α, Y ) = (γ(α) − 1)ρ(e − q(Y )) − γ(α)P∞(α) (12)

1

γ(α) − 1
=

α

γv − 1
+

1 − α

γl − 1
(13)

q(Y ) = Y qv + (1 − Y )ql (14)

P∞(α) =
γ(α) − 1

γ(α)

[

α
γv

γv − 1
P v
∞

+ (1 − α)
γl

γl − 1
P l
∞

]

(15)

By assuming the thermal equilibrium between phases, the mixture tempera-

ture is expressed as:

T (ρ, h, Y ) =
hl − ql

Cpl

=
hv − qv

Cpv

=
h − q(Y )

Cp(Y )
(16)

Cp(Y ) = Y Cpv
+ (1 − Y )Cpl

(17)

The speed of sound in the mixture can be expressed as a function of the

enthalpy of each phase (see Appendix A):

ρc2 =
1

γ − 1

[

ρvρl

(ρl − ρv)
(hv − hl)

]

(18)

Enthalpies of pure phase hl and hv are computed with the mixture temper-

ature T .

The mass transfer term is activated when the local pressure P is smaller than

the vapour pressure Pvap. This model will be named 4-equation SG model.

It does not involve any tunable parameter.

2.4. The turbulence model

Various turbulence models are considered: the Smith k − ℓ model (KL) [26],

the one-equation Spalart-Allmaras model (SA) [27] and the Jones-Launder

9



k − ε model (KE) [28]. For a correct simulation of the re-entrant jet, the

Reboud eddy-viscosity limiter is added [29, 30, 31]. For comparisons with

the OpenFOAM solver, the Menter k − ω SST model [32] is used, assuming

the validity of the Bradshaw assumption in a two-phase turbulent boundary

layer.

2.5. Wall functions

For the modelling of flow close to the wall, a two-layer wall law approach is

used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ =
u

Uτ

; y+ =
yUτ

νw

; U2
τ =

τw

ρw

(19)

where κ = 0.41 is the von Karman constant and the subscript ’w’ is used for

a wall value.

We assume that wall functions are similar in a two-phase flow and in a

single-phase flow. For unsteady flows, the existence of a wall law is assumed

to be valid at each instant. These assumptions have been studied in [33] and

comparisons were proposed with a thin boundary layer approach.

2.6. Numerics

The numerical simulations are carried out using an implicit CFD code based

on a finite-volume discretization. For the mean flow, the convective flux

density vector on a cell face is computed with the Jameson-Schmidt-Turkel

scheme [34]. The artificial viscosity includes a second-order dissipation term
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D2 and a fourth-order dissipation term D4, which involve two tunable pa-

rameters k(2) and k(4).

The viscous terms are discretized by a second-order space-centered scheme.

For the turbulence transport equations, the upwind Roe scheme [35] is used

to obtain a more robust method. The second-order accuracy is obtained by

introducing a flux-limited dissipation [36].

Time integration is achieved using the dual time stepping approach and a

low-cost implicit method consisting in solving, at each time step, a system

of equations arising from the linearization of a fully implicit scheme. The

derivative with respect to the physical time is discretized by a second-order

formula.

The numerical treatment of boundary conditions is based on the use of the

preconditioned characteristic relationships. More details are given in [19].

3. The OpenFOAM code

The OpenFOAM code is an open source code distributed by ESI Group. It

is based on an orientated object framework [37]. It provides a large variety of

RANS turbulence models and cavitation models. For cavitation modelling,

two ways are available: either to use an equation of state for the mixture or

to use a transport equation for the volume fraction of liquid. The last one is

retained for the present simulation.

3.1. Cavitation model

The cavitation model reads:

∂αl

∂t
+ uj

∂αl

∂xj

= S (20)
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where αl is the volume fraction of liquid and S is the mass source term.

Following Kunz development [10], the source term is expressed as the sum of

a vaporisation term mv and a condensation term mc:

S = mv + mc (21)

with:

mc =
ρ

ρlρv

Cc

ρv

t∞
α2

Llim

max (P − Pvap ; 0)

max (P − Pvap ; 0.01 Pvap)
(22)

mv =
ρ

ρlρv

Cv

ρv

1
2
ρlU2

∞
t∞

min (P − Pvap ; P0) (23)

Cc, Cv, U∞ and t∞ are constant set by the user, whereas P0 and αLlim are

included to avoid non physical values. Usually U∞ is set to the freestream

value, and t∞ represents a relaxation time not well defined in the literature.

For the present computations, the following values are specified:

Cc = 10 ; Cv = 8000 ; U∞ = 10.8 m/s ; t∞ = 0.005 s (24)

The model uncertainty should be analyzed using non-intrusive stochastic

methods as presented in [38].

3.2. The turbulence model

The k−ω SST model proposed by Menter [32] is used to solve the turbulent

kinetic energy and the specific dissipation with the standard values of the

different parameters.

3.3. Numerics

The time derivatives are computed with the backward second order scheme.

Excepted for the volume fraction of liquid, the convective flux are discretised
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with the Total Variation Diminishing (TVD) scheme named ’limitedLinear’

specific to OpenFOAM with the parameter set to 1.

Whereas the momentum equation and the Poisson equation are treated im-

plicitly, the equation for the volume fraction of liquid is treated explicitly and

separately. To maintain the boundedness of the liquid volume fraction, the

Multidimensional Universal Limiter for Explicit Solution (MULES) is used

and a counter-gradient is introduced to reduce the diffusion of the interface

and enhanced the numerical stability. The convective flux of the transport

equation for the volume fraction of liquid is computed with the van Leer

scheme.

The set of equation is solved using a prediction-correction approach coupling

the SIMPLE and PISO algorithm.

4. Experimental and numerical parameters

4.1. Experimental conditions

The Venturi was tested in the cavitation tunnel of the CREMHyG (Centre

d’Essais de Machines Hydrauliques de Grenoble). It is characterized by a

divergence angle of 4◦, illustrated in Figure 1. The edge forming the throat

of the Venturi is used to fix the separation point of the cavitation cavity.

This geometry is equipped with five probing holes to allow various mea-

surements such as the local void ratio, instantaneous local speed and wall

pressure (Figure 1). The velocity is evaluated as the most probable value

and the void ratio is obtained from the signal of the double optical probe

using a post-processing algorithm. The relative uncertainty on the void ratio

measurement was estimated at roughly 15% [39].
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The selected operating point is characterized by the following physical pa-

rameters [39]:

Uinlet = 10.8 m/s, the inlet velocity

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 0.55, the cavitation parameter in the inlet section

Tref ≃ 293K, the reference temperature

Lref=252 mm, the reference length

ReLref
=

UinletLref

ν
= 2.7 106, the Reynolds number

With these parameters, a cavity length L ranging from 70 mm to 85 mm was

obtained. The experimental views for this geometry show a relatively stable

cavity behaviour (see Fig. 2). The attached cavity length corresponding to

the end of the re-entrant jet is around 30-35 mm. For this geometry, no

periodic cycles with large shedding were observed.

4.2. Mesh and numerical parameters

The grid is a H-type topology. It contains 251 nodes in the flow direction

and 62 nodes in the orthogonal direction. A special contraction of the mesh

is applied in the main flow direction just after the throat to better simulate

the two-phase flow area. The y+ values of the mesh, at the center of the first

cell, vary between 12 and 27 for a non cavitating computation.

Unsteady computations are performed with the dual time stepping method

and are started from the non cavitating numerical solution. The numerical

parameters are:

- the dimensionless time step, ∆t∗ =
∆tUinlet

Lref

= 4.88 10−3

- sub-iterations of the dual time stepping method, 100
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- the CFL number, 0.2

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 1 and k(4) = 0.045.

5. Computational results

Various computations were performed by varying the cavitation model and

the turbulence model, summarized in Table (1). The goal was to obtain a

sheet whose time-averaged attached and total length varied around 30-35

mm and 75-85 mm, respectively. The time of simulation is between 2 and

3 s.

5.1. Limitation of the eddy viscosity

A key point to compute the unsteadiness of the cavitation pocket is linked to

the over-production of eddy viscosity by standard turbulence models. Previ-

ous simulations based on a three-equation model illustrated the importance

of using an eddy-viscosity limiter to capture the re-entrant jet dynamics [30].

In this study, the Reboud limiter is added to the turbulence model. The

effect of this limiter using the Spalart-Allmaras is showed in Figure 3 where

are plotted the contours of the density gradient modulus (Schlieren-like vi-

sualizations). When the turbulent viscosity is reduced by the correction, the

length of attached cavity reaches the experimental value around 0.35 m and

vapour clouds appear.

We observed the same effect for other turbulence models and results are not

presented.
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5.2. Turbulence models comparison

Computations are done using the four-equation barotropic model associated

to three turbulence models in which the Reboud limiter is added. All nu-

merical values are obtained by a time-averaged statistical treatment over a

simulation time of 2 s.

Fig. 4 presents the void ratio and velocity profiles from stations 3 to 5. At

stations 1 and 2, inside the attached cavity, all simulations provide the same

results in close agreement with the experimental data and are not presented.

At station 3, the re-entrant jet is observed on the velocity measurement. All

simulations indicate a recirculating behaviour with a re-entrant jet extend-

ing through half the sheet thickness. For the void ratio profiles, the three

simulations give very close results.

At station 4 and 5 the whole of simulation capture the re-entrant jet charac-

terized by negative velocitites close to the wall. As regard to the void ratio

profiles, we observe an over-estimation at station 4 using the k − φ models

and a better estimation using the Spalart-Allmaras model. At station 5, the

k − ℓ turbulence model overestimates a little the length of the cavity.

The dimensionless wall pressure distribution P−Pvap

Pvap
is plotted in Figure 5

versus the distance x−xinlet. The first five data are located inside the cavity

(where the void ratio and velocity profiles are measured). All models provide

a pressure distribution similar to the experimental measurements upstream

of the re-compression.
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The Root Mean Square (RMS) wall pressure fluctuations are plotted in Fig-

ure 6 versus the distance x − xinlet. The pressure fluctuation is divided by

the time-averaged pressure Pav. Experimental data indicate an augmenta-

tion of pressure fluctuations at the end of the sheet cavity. All simulations

predict a peak of pressure fluctuations located close to the experimental ab-

scissa. The magnitude of the peak is overestimated by the computations,

but with the lack of experimental values in this area the comparison cannot

be precise. Nevertheless, downstream the cavity, the pressure fluctuations

are over-predicted using the Spalart-Allmaras and k − ε turbulence models.

This phenomenon has already been observed in a previous study and can be

corrected by modifying the source term in the void ratio equation [19].

The dynamic of cavitation pocket is also studied with the iso-lines of the Q-

criterion. Positive values of the Q-criterion, defined as the second invariant

of the velocity gradient tensor ∂ui

∂xj
[40],

Q =
1

2

[

(

∂ui

∂xi

)2

−
∂ui

∂xj

∂uj

∂xi

]

(25)

are used to identify vortices and local rotational areas. A dimensionless quan-

tity is built using the inlet velocity and the reference length. Iso-lines levels

vary between 0.005 and 0.1. The results are illustrated in Figure 7. For

all turbulence models, the shear layer creates vortical clouds of cavitation,

which are convected by the mean flow. No significant discrepancies on the

flow dynamic are noticeable between the three simulations.

To conclude, similar results have been obtained with the three turbulence
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models associated to an eddy viscosity limiter. The re-entrant jet is well

estimated but vapour ratio tends to be overestimated especially in the re-

circulating area (station 3 and 4). The influence of the turbulence model is

weak for this partial cavitation pocket.

In the next part, a mixture of stiffened gas EOS is proposed to replace the

barotropic EOS and to investigate the cavitation model influence.

5.3. Cavitation models comparison

For this study, the Spalart-Allmaras turbulence model is chosen and the two

formulations of 4-equation model are compared.

The dynamic of the cavitation sheets is proposed in Figure 8 where the con-

tours of the density gradient modulus are presented at two different times.

Both simulations propose similar dynamics and the generation of vapour

cloud shedding are clearly illustrated.

A more precise comparison is led by studying void ratio and velocity profiles,

which are presented in Figure 9 from stations 3 to 5. At region of attached

cavity sheet (stations 1 and 2), both simulations provide a well estimation of

the cavity thickness and results are not presented.

Differences appear at station 3 where the four-equation SG cavitation model

provides a better prediction of the void ratio profile characterized by a sig-

nificant decrease close to the wall. However, by comparison with the exper-

imental data and the four-equation barotropic velocity profiles, this model

underestimates the recirculating flow in this area. At stations 4 and 5 the

four-equation SG cavitation model also reproduces the re-entrant jet on the
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half bottom of the cavity but it over-predicts the vapour ratio in the remain-

ing part. The wall value of the void ratio is better simulated with the new

model.

As it can be observed in Figure 10 both models give a time-averaged wall

pressure distribution in good agreement with the experimental data. The

Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 11.

Both models predict a similar peak intensity at the same location. It appears

that the four-equation SG cavitation model provides a better estimation of

the pressure fluctuations decrease in the re-compression area.

This study reveals that the four-equation SG cavitation is well adapted to

simulate the behaviour of the cavitation pocket especially in the closure part

of the cavity. Moreover, this model presents the large advantage to not

involve tunable parameters. In the next part, this model will be used to

compare the LEGI’s and OpenFOAM softwares.

5.4. Comparison with OpenFOAM simulations

Comparisons between the LEGI solver and OpenFOAM are proposed on a

similar mesh using the k − ω SST turbulence model. The considered cavita-

tion models are the 4-equation SG model and the Kunz model, respectively.

The time of simulation is about 2 s.

Time-averaged void ratio and velocity profiles are presented in Figure 12 from

stations 1 to 5. Inside the attached cavity sheet, at stations 1 and 2, the both

solvers estimate a well cavity thickness and composition. At stations 3 and
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4, the LEGI solver provides a better prediction of the void ratio decrease

due to the presence of a mixture in this area. The OpenFOAM computation

over-predicts the vapour quantity inside the cavity (95% instead of 70% at

station 3 and 90% instead of 30% at station 3). Moreover, the thickness of

the cavity is under-estimated and a pure liquid phase is simulated close to

the wall. At station 5, both the cavity thickness and the re-entrant jet are

badly simulated by the OpenFOAM software. Although the re-entrant phe-

nomenon is well observed in experiments, the OpenFOAM simulation does

not reproduce the recirculation area.

The time-averaged wall pressure distributions are compared in Figure 13.

The two models present a different re-compression area respectively located

downstream the experimental measures with the LEGI solver and upstream

with the OpenFOAM solver. The rate of re-compression is also under-

estimated by the OpenFOAM solver.

A study of the Root Mean Square (RMS) wall pressure fluctuations is pro-

posed in Figure 14. The peak of fluctuations position is varying among the

case. The OpenFOAM solver provides a maximum of fluctuations located

upstream the closure area of the cavity sheet (x − xi ≈ 0.2 in experiments),

whereas it is predicted downstream by the LEGI solver.

To conclude, the topology of the cavitation pocket marks large discrepancies

between the two softwares, especially as regards the re-entrant jet develop-

ment. Maybe a better calibration of the production and evaporation con-
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stants appearing in the mass transfer formulation should improve the results

for this test case.

6. Conclusion

An aperiodic partial cavitation pocket has been studied in a 2D venturi con-

figuration by numerical one-fluid unsteady RANS simulations. Numerical

results have been compared with experimental data concerning the void ra-

tio, streamwise velocity, wall pressure and wall pressure fluctuations.

First, calculations have been carried out with an in-house code. The one-fluid

RANS equations have been successively coupled with the Smith k − ℓ, the

Spalart-Allmaras, the Jones-Launder k − ε and the Menter k − ω SST tur-

bulence models. Two cavitation models using an explicit formulation of the

mass transfer between phases have also been compared: the first one based

on a barotropic EOS and the second one based on a mixture of stiffened gas

EOS. Comparisons revealed that similar results were obtained using different

turbulence models when an eddy viscosity limiter is introduced. For this test

case, the turbulence model influence is weak. Then, a cavitation model com-

parison was performed using the Spalart-Allmaras turbulence model. The

new four-equation model has improved the re-entrant jet simulation down-

stream the attached cavity by diminishing the void ratio values close to the

wall. A better estimation of the pressure fluctuations is also provided by this

model. A very positive point is the free-parameter formulation of the source

term, which avoids poisonous calibration problems.

Secondly, simulations has been carried out with the OpenFOAM software us-
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ing another formulation of void ratio transport equation cavitation models.

Calculations were performed on a similar mesh using the Menter SST tur-

bulence model. Large discrepancies appeared between the two solvers and

the OpenFOAM simulations were not able to reproduce the re-entrant jet

phenomenon. Maybe it is due to a calibration problem of the mass transfer

model involving two tunable parameters. The new LEGI model is therefore

very attractive to simulate such partial cavitation pockets.

Additional works are in progress to pursue comparative analyses between

turbulence and cavitation models and to extend the formulation with ther-

modynamic effects.

Appendix

Appendix A: the speed of sound in a mixture of stiffened gas

Starting from the usual thermodynamic relation

de = Tds +
P

ρ2
dρ or d(ρe) = ρTds + hdρ (26)

And with the differential of ρe:

d(ρe) =

(

∂ρe

∂ρ

)

P

dρ +

(

∂ρe

∂P

)

ρ

dP (27)

We can obtain the differential of the pressure P :
(

∂ρe

∂P

)

ρ

dP = ρTds +

[

h −

(

∂ρe

∂ρ

)

P

]

dρ (28)

We deduce an expression of the speed of sound:

c2 =

(

∂P

∂ρ

)

s

=
h −

(

∂ρe

∂ρ

)

P
(

∂ρe

∂P

)

ρ

(29)
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With the stiffened gas EOS, we have:

(

∂ρe

∂P

)

ρ

= α

(

∂ρvev

∂P

)

ρ

+ (1 − α)

(

∂ρlel

∂P

)

ρ

=
1

γ − 1
(

∂ρe

∂ρ

)

P

=
∂

∂ρ

[

α

(

P

γv − 1
+ ρvqv +

γvP
v
∞

γv − 1

)

+ (1 − α)

(

P

γl − 1
+ ρlql +

γlP
l
∞

γl − 1

)]

=
ρlhl − ρvhv

ρv − ρv

Finally, the speed of sound is:

ρc2 = ρ

(

∂P

∂ρ

)

s

= (γ − 1)

[

ρvρl

(ρl − ρv)
(hv − hl)

]

(30)
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Table 1: Unsteady computations, 4◦ Venturi.

cav. model turb. model σinlet attached and total sheet length (m)

4-eqt baro SA 0.59 0.09 - 0.11

4-eqt baro SA + Reboud 0.60 0.035 - 0.076

4-eqt baro KL + Reboud 0.61 0.038 - 0.085

4-eqt baro KE + Reboud 0.61 0.029 - 0.078

4-eqt SG SA + Reboud 0.575 0.038 - 0.085

4-eqt SG KW SST 0.595 0.030 - 0.10

4-eqt Foam KW SST 0.585 0.070
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Figure 1: Schematic view of the 4◦ Venturi profile.
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Figure 2: Photograph of the cavitation pocket.
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Figure 3: Contours of the density gradient modulus, without limiter (top) and with limiter

(bottom).
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Figure 4: Time-averaged velocity (right) and void ratio (left) profiles from station 3 to 5,

4-equation barotropic model.
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barotropic model (right)
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Figure 9: Time-averaged velocity (right) and void ratio (left) profiles from station 3 to 5,

4-equation models comparison.
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Figure 12: Time-averaged velocity (right) and void ratio (left) profiles from station 1 to

5, LEGI solver versus openFOAM.
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Figure 13: Dimensionless time-averaged wall pressure evolution, LEGI solver versus open-

FOAM.
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Figure 14: RMS wall pressure fluctuations, LEGI solver versus openFOAM.
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