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Abstract

This paper studies the modeling and analysis of a system with two cooperative manip-

ulators working together on a common task. The task is defined as the transportation of

an object in space. The cooperative system is the dual-arm of the humanoid robot Nao,

where the serial architecture of each arm has five degrees of freedom. The kinematics

representing the closed chain system is studied. The mobility of the closed-loop system

is analyzed and the nature of the possible motions explored. The stiffness of some mo-

tors can be reduced until they behave as passive joints. Certain joints are then chosen

as actuated (independent) and the others as passive (dependent). The serial and par-

allel singular configurations of the system are considered. From the kinematic analysis,

admissible and inadmissible minimum actuation schemes are analyzed. Furthermore the

dynamic performance of the schemes is compared to find the optimum minimum actuation

scheme.

1 Introduction

The use of dual independent arms for manipulation tasks has several advantages over classical

serial robots. For instance, a cooperative system can reduce the need for custom fixtures,
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permit the use of a simpler tool and handle flexible objects. Furthermore heavy objects can

be manipulated by sharing the load among many robots. On the other hand, the use of dual

independent arms requires more advanced modeling and control techniques.

When grasping a common object, cooperative manipulators form a closed chain system.

One approach to model such a system is to formulate kinematic relations that create a task

space. The main methods are known as Symmetric formulation [1] and Task orientated for-

mulation [2, 3]. For a grasped object, a cooperative task space is created that consists of

twelve velocity variables. The velocity variables describe both the object motion in space and

the relative motion between the end-effectors. The latter can be seen as a method to control

the internal forces on the object. The system can also be viewed as a redundantly actuated

parallel manipulator. In this case, kinematic constraint equations are derived that establish a

relationship between the chosen actuated and passive joint variables [4, 5, 6, 7, 8]. In order to

satisfy the close chain constraints, the passive joints must adopt values that ensure loop closure

throughout the trajectory.

A lower mobility robotic manipulator is a system that has less than 6 degrees of freedom.

Unlike full mobility systems, lower mobility systems suffer from three types of singularities,

limb (serial) singularities, actuation and constraint (parallel) singularities [9]. For a cooperative

manipulator system the presence of parallel singularities is explored in [5]. A study regarding

the valid selection of actuators is carried in [7]. In both cases an analysis of the Jacobian matrix

of the robot is required. Alternatively, the geometric tool known as screw theory can be used

to locate and understand singularities in closed chain mechanisms [10].

In this paper the cooperative system, defined by the two arms of Aldebaran NAO T14 hu-

manoid robot and a grasped object, is examined. The system has been modeled as a closed

chain mechanism (Section 2). Many industrial applications using multiple robots can be mod-

eled as one closed chain system, mainly tasks requiring internal force control of a target object.

For instance, the ARMS project1 aims to contribute to the increasing mechanization of the meat

industry. In this scenario a multi-arm system is designed to process meat. One arm is used to

cut the muscle while the second pulls and tears in order to perform the separation. The closed

chain is completed by a deformable object, i.e. an object of multi DOF representing the meat.

The robot configuration, object DOF and task specification drive the choice of independent

actuators. The passive or dependent actuators are then adapted to fulfill constraint equations.

The advantage of using minimum actuators is twofold. Firstly they lead to a simpler control

scheme, since there are less variables to control. Secondly by using passive joints, antagonistic

1http://arms.irccyn.ec-nantes.fr/
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forces on the object due to poor trajectory tracking can be avoided.

In this paper we make use of screw theory to analyze the system’s mobility, singularities

and motion type. The benefit of this approach is that special configurations such as the loss

of stiffness, loss of DOF etc., can be determined without the complex derivation of the Jaco-

bian matrices (or their inverses) (Sections 3 and 6). From this analysis all possible minimum

actuation schemes are examined and enumerated for the two cooperative manipulators. The

inadmissible actuation schemes, the reasons behind and the effects of this inadmissibility, are

illustrated and explained in geometrical terms. Furthermore the analysis of the constraint

screws give a greater insight into the reasons for these singular configurations and allows us

to discover the link between the actuation scheme and the system performance. Finally the

dynamic performance is considered. In Section 8 the performance of each actuation scheme is

assessed with respect to power loss and maximum torque for a large number of trajectories.

These methods permit the selection of an optimum actuation scheme.

2 System Description

The dual-arm system analyzed in this paper is shown in Fig. 1, while the kinematic architecture

of the arms are given in Fig. 2. Each arm of the robot has five independent revolute joints.

The right arm consists of joints 1-5 and the left arm consists of joints 6-10.

Figure 1: Nao T14, (Courtesy of Aldebaran Robotics)

The robotic system is described by the Modified Denavit-Hartenberg (MDH) notation as

proposed by Khalil and Kleinfiger [11], given in Table 1 and modeled using [12]. The transfor-

mation matrix a(j)Tj, from frame a(j), the antecedent of j, to frame j is the 4× 4 matrix given
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Figure 2: Closed-Loop Formulation

by:

a(j)Tj = rotz(γj) · transz(bj) · rotx(αj) · transx(dj) (1)

· rotzj(θj) · transz(rj)

where roti(θ) indicates a rotation of θ about the direction of the ith axis and transi(l) a

translation of l meters along the ith axis. It should be noted that γj = bj = 0 when x(a(j)) is

perpendicular to zj. qi denotes the joint variable i and is equal to θi.

Once the object is grasped, a closed-loop is formed, as shown in Fig. 2. The system has,

in this case, only nine bodies. Joint 10 is chosen as the cut joint therefore, to define the

equivalent tree structure, link 5 of the closed chain now contains the object, link 5 and link

10. Frame 10 becomes fixed on link 5. We introduce frame 11, which is aligned to frame 10,

but its antecedent is frame 5. The parameters of frame 11 are defined once the robot has

grasped the object. The locations of frame 10 and frame 11 are equivalent when calculated via
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Table 1: MDH Parameters of the closed-loop chain

j a(j) γ b d α θ r
1 0 0 b1 0 −π/2 θ1 -0.098
2 1 0 0 0 π/2 θ2 0
3 2 0 0 -0.015 π/2 θ3 0.105
4 3 0 0 0 −π/2 θ4 0
5 4 0 0 0 π/2 θ5 0.05595
6 0 0 b1 0 −π/2 θ6 0.098
7 6 0 0 0 π/2 θ7 0
8 7 0 0 0.015 π/2 θ8 0.105
9 8 0 0 0 −π/2 θ9 0
10 9 0 0 0 π/2 θ10 0.05595
11 5 γ11 b11 d11 α11 θ11 r11

either chain. This ensures a constant object grasp throughout the trajectory. The geometric

constraint equations are given by:

0T1
1T2

2T3
3T4

4T5
5T11 = 0T6

6T7
7T8

8T9
9T10 (2)

It should be noted that since the axes of joints 1 and 2 intersect at point A1, while the axes

of joints 3, 4 and 5 intersect at point B1, the arm of the robot can be represented as a U-joint

and a spherical joint serially connected. Therefore in the closed-loop configuration the robot is

viewed as a 2-US parallel architecture.

The kinematic constraints are given by:[
0ω11

0v11

]
=

[
0ω10

0v10

]
=

[
0ωobj
0vobj

]
(3)



P. Long, W. Khalil and S. Caro, submitted to Robotica 6

[
0ωobj
0vobj

]
= 0J11


q̇1

q̇2

q̇3

q̇4

q̇5

 = 0J11 q̇r (4)

[
0ωobj
0vobj

]
= 0J10


q̇6

q̇7

q̇8

q̇9

q̇10

 = 0J10 q̇l (5)

The superscript 0 indicates that the variable is represented in the fixed world frame F0. As

frames 10 and 11 are the same, from (5) and (4):

0J11 q̇r = 0J10 q̇l (6)

or rewritten as

Js

[
q̇r

q̇l

]
= 0 where Js =

[
0J11 −0J10

]
(7)

where q̇r and q̇l contain the joint velocities of the right arm and the left arm, respectively. 0vj

is the linear velocity and 0ωj the angular velocity of frame j with respect to frame 0, 0Jj is

the 6 × 5 kinematic Jacobian matrix of frame j with respect to frame 0. By rearranging the

rows and columns of (6), a relationship is obtained between the passive joint velocities and the

actuated joint velocities: [
Ga Gp 0

Gac Gpc Gc

] q̇a

q̇p

q̇c

 = 0 (8)

qa, qp and qc denote the vectors containing the actuated, passive and cut joints respectively.

Upon differentiation of (8) with respect to time the acceleration constraints equation is ex-
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pressed as:

[
Ga Gp 0

Gac Gpc Gc

] q̈a

q̈p

q̈c

+ J̇s q̇ = 0 (9)

From (8), we obtain:

q̇p = −G−1p Ga q̇a (10)

q̇c = −G−1c
(
Gac −Gpc G−1p Ga

)
q̇a (11)

Furthermore from (3), (4) and (5):

[
1

2
0J10

1

2
0J11

][
q̇r

q̇l

]
=

[
0ωobj
0vobj

]
(12)

By rearranging the rows and columns of (12), a relationship is obtained between the passive

joint velocities, the actuated joint velocities and the object twist can be found:

[
Ja Jp Jc

] q̇a

q̇p

q̇c

 =

[
0ωobj
0vobj

]
(13)

Finally an actuated Jacobian matrix, Jact is derived that defines a relationship between the

actuated joint velocities and the object velocity. Using (13) and (8):

Jact q̇a =

[
0ωobj
0vobj

]
(14)

Jact = Ja + Jp
(
−G−1p Ga

)
(15)

+ Jc
(
−G−1c

(
Gac −GpcG

−1
p Ga

))
The mobility of the system, given in section 3, is equal to 4. Hence the dimension of Ga is

5× 4 , Gp is 5× 5 ,Gc is a scalar that is, due to the modeling procedure, always equal to one,

where 4, 5 and 1 are the numbers of active, passive and cut joints, respectively. Gp degenerates

at configurations where the constraints become linearly dependent, as shown in Section 7.
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3 Mobility Analysis

The degree of freedom (DOF) of the system is equal to the number of independent coordinates

required to control it. The DOF can be obtained by several methods for example Chebychev-

Grübler-Kutzbach, or Gogu’s Method [13]. In order to elucidate the motion type, screw theory

is used [14]. In summary, each serial arm has 5-DOF however once the object is firmly grasped

by the two arms a closed chain is formed and the object DOF becomes four. In the following

sections, screw theory is recalled and applied to the closed-loop system. Firstly the twists

associated with each arm are defined. Then the wrenches applied on the object are obtained.

Finally, using this information the DOF of the object can be analyzed.

The screw theory analysis is carried out with respect to an intermediate frame F̂obj posi-

tioned on the object. More precisely, this frame is described as the frame whose origin coincides

with the origin of the object frame Fobj, but whose orientation is always equal to that of the

world frame F0. An illustration is given in Fig. 3.

Figure 3: Representation of origin frame

3.1 Screw Theory

Screw theory can be used to analyze the instantaneous motions of complex mechanisms [15,

16, 17]. A screw of pitch λ is defined as:

$λ =

[
s

s× r + λs

]
(16)

s a unit vector along the axis of the screw. r is a vector directed from any point on the axis

of the screw to the origin Fo. A zero-pitch screw and an infinite-pitch screw are expressed
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respectively as follows:

$0 =

[
s

s× r

]
(17)

$∞ =

[
03×1

s

]
(18)

For every screw system, consisting of n linearly independent screws, there exists a reciprocal

screw system of dimension 6 − n. Two screws $1 and $2 are reciprocal if their instantaneous

power is zero, namely, ([
03×3 I3

I3 03×3

]
$1

)T

$2 = 0 (19)

The following reciprocity conditions are defined in [17]:

1. $0 is reciprocal to $∞ if and only if their axes are orthogonal;

2. $∞ is always reciprocal to another $∞;

3. Two $0 are reciprocal if and only if their axes are coplanar (two coplanar axes are either

intersecting or parallel).

A zero-pitch twist ν0 corresponds to a pure rotation about its axis. An ∞-pitch twist ν∞

corresponds to a pure translation along its direction. A zero-pitch wrench ζ0 corresponds to

a pure force along its axis. An ∞-pitch wrench ζ∞ corresponds to a pure moment about its

direction.

3.2 Twist System of Nao Robot

The twist system associated with one arm of the Nao robot is spanned by five zero-pitch twists.

The twist system, Tr, of the right arm is spanned by ν01, ν02, ν03, ν04, ν05, :

ν0i =

[
si

a1 × si

]
(20a) ν0j =

[
sj

b1 × sj

]
(20b)

where i = 1, 2 and j = 3, 4, 5.

Likewise, the twist system of the left arm, Tl, is spanned by ν06, ν07, ν08, ν09, ν010,

ν0i =

[
si

a2 × si

]
(21a) ν0j =

[
sj

b2 × sj

]
(21b)
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where i = 6, 7 and j = 8, 9, 10.

s1, s2 are the unit vectors of the first and second revolute joint axes of the U-joint of the right

arm, while s6, s7 are the equivalent unit vectors of the left arm. s3, s4 and s5 are the unit

vectors of the revolute joints associated with the S-joint of the right arm, while s8, s9 and s10

are the equivalent unit vectors of the left arm. Let a1, a2, b1 and b2 represent the Cartesian

vectors from A1, A2, B1 and B2 to the origin F̂obj respectively, as shown in Fig. 2. The twist

system T of the Nao robot is the intersection of Tr and Tl.

3.3 Constraint Wrench System of Nao Robot

From Section 3.2, the twist systems Tr and Tl associated with the right and left arms of Nao

robot are 5-systems when the arms are not in a singular configuration. Therefore, outside

singular configurations, the constraint wrench system Wrc of the right arm and the constraint

wrench system Wlc of the left arm are (6 − 5)-systems, i.e., 1-systems. Wrc and Wlc are reciprocal

to Tr and Tl respectively and are expressed as follows:

Wrc = span (ζc0r) (22)

Wlc = span (ζc0l) (23)

From reciprocity condition (3):

ζc0r =

[
ur

b1 × ur

]
(24)

ζc0l =

[
ul

b2 × ul

]
(25)

ur is the unit vector intersecting points A1 and B1, while ul is the unit vector intersecting

points A2 and B2. The constraint wrench system Wc of the rigid object firmly grasped by the

hands of the robot is the linear combination of the wrench systems Wrc and Wlc, namely,

Wc = Wrc + Wlc = span (ζc0r, ζ
c
0l) (26)

As a result, the constraint wrench system Wc of Nao robot is a 2-system spanned by two pure

forces (zero pitch wrenches) as long as the robot does not reach a constraint singularity. These

forces intersect both the U-joint and the S-joint of the arms, i.e., the axis of the twists of each

arm.
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4 Actuation Schemes

In this section a selection criterion is given for suitable actuated joints using the actuator

wrenches described in Section 3.1. By focusing on the minimum number of actuators required

to fully control the 4-DOF of the object, it is possible to find

(
10!

4!(10− 4)!
=

)
210 possible

actuation schemes. qa denotes the vector of actuation joints. qa = [qi qj qk ql] means that

the ith, jth, kth and lth joints of the closed loop kinematic chain are actuated where i, j, k, l =

1 . . . 10, i 6= j 6= k 6= l.

Due to the symmetry of the two arms, the number of kinematically distinct schemes is

significantly less than 210. For example we treat the actuation scheme no. 1 qa = [q1 q2 q3 q4]

and its mirror image qa = [q6 q7 q8 q9] as equal. On the other hand scheme no.23 qa =

[q1 q2 q6 q7] has no symmetric equivalent. By excluding symmetrical actuation schemes,

110 actuation schemes remain as given in Table 2. Each scheme has its actuation scheme

number written on the left. Schemes that have no symmetric equivalent are marked with the

superscript ∗.

The schemes can be subdivided into either inadmissible actuation schemes or admissible

actuation schemes. The reason for the inadmissibility, a degeneracy in the global wrench

system, is demonstrated in this section. The inadmissible schemes, 39 in total, are written with

a strikethrough notation. The closed-loop scheme contains ten revolute joints, each passive

joint is denoted as 0 whereas each actuated joint is denoted as 1. For example scheme no. 4,

qa = [q1 q2 q3 q8] is represented as 11100—00100.

In summary, from the 210 schemes, by excluding all the schemes which are either inad-

missible or have symmetric equivalent, the total number of admissible kinematically distinct

actuation schemes is found to be 71. Furthermore, schemes 1, 7, 13, 34 and 77, though techni-

cally feasible, create systems where one arm contains only passive joints. Therefore if excluded

the number of valid cooperative schemes would reduce to 67.

4.1 Actuation System of Nao Robot arms

In order to analyze the actuation schemes, the wrenches exerted by each joint when chosen as

an actuated joint are examined. The wrench exerted by an actuator on the object is defined as

the wrench reciprocal to all the twists of the specified arm except the twist corresponding to

the selected actuator itself. The actuator wrench for joint j is denoted as ζaλj. The zero pitch

actuation wrenches associated with the right arm are deduced from the reciprocity conditions

as given in Section 3.1 with i = 1, 2 and j = 3, 4, 5:
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ζa0i =

[
ui

b1 × ui

]
(27a) ζa0j =

[
uj

a1 × uj

]
(27b)

u1 is the unit vector passing through point B1 (thus reciprocal to twists ν03, ν04 and ν05) and

parallel to s2 (thus reciprocal to twist ν02). u2 is the unit vector passing through point B1 and

parallel to s1 (thus reciprocal to joints ν01). u3 is the unit vector of the intersection line L3 of

planes P45 and P12. u4 is the unit vector of the intersection line L4 of planes P35 and P12. u5 is

the unit vector of the intersection line L5 of planes P34 and P12, where P12 is the plane spanned

by vectors s1 and s2 passing through point A1. P34 is the plane spanned by vectors s3 and s4

passing through point B1. P35 is the plane spanned by vectors s3 and s5 passing through point

B1. P45 is the plane spanned by vectors s4 and s5 passing through point B1.

Similarly, the zero pitch actuation wrenches associated with the left arm are defined as:

ζa0i =

[
ui

b2 × ui

]
(28a) ζa0j =

[
uj

a2 × uj

]
(28b)

where i = 6, 7 and j = 8, 9, 10.

u6 is the unit vector passing through point B2 (thus reciprocal to twists ν08, ν09 and ν010) and

parallel to s7 (thus reciprocal to joints ν07). u7 is the unit vector passing through point B2 and

parallel to s6(thus reciprocal to twist ν06). u8 is the unit vector of the intersection line L8 of

planes P910 and P67. u9 is the unit vector of the intersection line L9 of planes P810 and P67.

u10 is the unit vector of the intersection line L10 of planes P89 and P67, where P67 is the plane

spanned by vectors s6 and s7 passing through point A2. P89 is the plane spanned by vectors

s8 and s9 passing through point B2. P810 is the plane spanned by vectors s8 and s10 passing

through point B2. P910 is the plane spanned by vectors s9 and s10 passing through point B2.

For clarity, Fig. 4 shows the unit vectors associated with the wrench system of the right arm.

For any choice of actuators, the actuator wrench system is spanned by the chosen actuator

wrenches. Taking for example, scheme no.1 qa = [q1 q2 q3 q4] (11110—00000). The actuation

wrench system, Wa, is spanned by the following four zero pitch wrenches:

Wa = span (ζa01, ζ
a
02, ζ

a
03, ζ

a
04) (29)

The global wrench system W is the wrench system spanned by the constraint wrench system Wc
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Figure 4: Unit vectors of wrench system of right arm

and the actuation wrench system Wa, namely:

W = span (Wc, Wa) (30)

For this example scheme:

W = span (ζc0r, ζ
c
0l, ζ

a
01, ζ

a
02, ζ

a
03, ζ

a
04) (31)
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Table 2: All actuation schemes, ∗ indicates that there is no symetric equivalent

1 11110—00000 29 10110—00001 57 10011—00001 85 01101 — 00010
2 11100—00001 30 10110—00010 58 10011—00010 86 01101 — 00100
3 11100—00010 31 10110—00100 59 10011—00100 87 01101 — 01000
4 11100—00100 32 10110—01000 60 10011—01000 88 01010 — 00011
5 11100—01000 33 10110—10000 61 10011—10000 89 01010 — 00101
6 11100—10000 34 10111—00000 62 10000—00111 90 01010 — 00110
7 11101—00000 35 10100—00011 63 10000—01011 91 01010 — 01001
8 11010—00001 36 10100—00101 64 10000—01101 92 01010 — 01010∗

9 11010—00010 37 10100—00110 65 10000—01110 93 01011 — 00001
10 11010—00100 38 10100—01001 66 10001—00011 94 01011 — 00010
11 11010—01000 39 10100—01010 67 10001—00101 95 01011 — 00100
12 11010—10000 40 10100—01100 68 10001—00110 96 01011 — 01000
13 11011—00000 41 10100—10001 69 10001—01001 97 01000 — 00111
14 11000—00011 42 10100—10010 70 10001—01010 98 01001 — 00011
15 11000—00101 43 10100—10100∗ 71 10001—01100 99 01001 — 00101
16 11000—00110 44 10101—00001 72 10001—10001∗ 100 01001 — 00110
17 11000—01001 45 10101—00010 73 01110 — 00001 101 01001 — 01001∗

18 11000—01010 46 10101—00100 74 01110 — 00010 102 00110 — 00011
19 11000—01100 47 10101—01000 75 01110 — 00100 103 00110 — 00101
20 11000—10001 48 10101—10000 76 01110 — 01000 104 00110 — 00110∗

21 11000—10010 49 10010—00011 77 01111 — 00000 105 00111 — 00001
22 11000—10100 50 10010—00101 78 01100 — 00011 106 00111 — 00010
23 11000 — 11000∗ 51 10010—00110 79 01100 — 00101 107 00111 — 00100
24 11001—00001 52 10010—01001 80 01100 — 00110 108 00101 — 00011
25 11001—00010 53 10010—01010 81 01100 — 01001 109 00101 — 00101∗

26 11001—00100 54 10010—01100 82 01100 — 01010 110 00011 — 00011∗

27 11001—01000 55 10010—10001 83 01100 — 01100∗

28 11001—10000 56 10010—10010∗ 84 01101 — 00001



P. Long, W. Khalil and S. Caro, submitted to Robotica 15

4.2 Inadmissible Actuation Scheme

An inadmissible actuation scheme signifies a choice of actuated joints that render the object

uncontrollable. This occurs when for any configuration of the robot arms the global wrench

system Eqn. (30) degenerates, i.e. rank(W) < 6, rank(Wc) = 2, rank(Wa) ≤ 4. In order to search

for these schemes using screw theory, descriptions of the actuation and constraint wrenches

that hold in any configuration are examined using Eqn. (26), Eqn. (27) and Eqn. (28). For the

71 inadmissible schemes, the reason for the inadmissibility can be divided into two cases.

1. The unique case for actuation scheme number 23 denoted as 11000—11000, where the

closed chain can rotate freely about axis (B1B2).

2. The general case, occurring in 70 of the 210 actuation schemes, where the closed chain

can rotate freely about axis(A1A2).

Case 1: Scheme no. 23 11000—11000 i.e. qa = [q1 q2 q6 q7].

Since it is generally preferable to actuate joints close to the base, the case where the base

U-joints are actuated is examined. The global wrench system as illustrated in Fig. 5, is spanned

by six pure forces, namely, W = span(ζc0r ζ
c
0l ζ

a
01 ζ

a
02 ζ

a
06 ζ

a
07). In this case the six pure forces,

ζc0r ζ
c
0l ζ

a
01 ζ

a
02 ζ

a
06 ζ

a
07, all intersect line (B1B2). This implies that regardless of the configuration,

there exists a zero pitch twist, whose axis is the axis (B1B2), that is reciprocal to all forces in

the global wrench system.

Case 2: Neither joint 1 nor joint 6 is actuated, e.g. Scheme no. 83 01100-

01100 i.e. qa = [q2 q3 q7 q8]. The global wrench system as illustrated in Fig. 6, is given

by W = span(ζc0l ζ
c
0r ζ

a
02 ζ

a
03 ζ

a
07 ζ

a
08). In this case the six pure forces, ζc0l ζ

c
0r ζ

a
02 ζ

a
03 ζ

a
07 ζ

a
08, all

intersect line (A1A2). This implies that regardless of the configuration, there exists a zero pitch

twist, whose axis is the line (A1A2) and passing through point A1, that is reciprocal to all forces

of the global wrench system.

5 Local Motion Analysis Based on Screw Theory

In this section the local motion of mechanism is obtained by examining the relationship between

the constraint forces in different configurations.

When the constraint forces are parallel, i.e., ζc0r ‖ ζc0l2, there are two independent ∞-pitch

twists, ε∞1 and ε∞2, reciprocal (normal) to ζc0r and ζc0l. There are also two independent zero-

pitch twists, ε01 and ε02, reciprocal (coplanar) to ζc0r and ζc0l as shown in Fig. 7. Therefore,

2‖ implies the axes of the two screws are parallel, whereas ∦ implies they are not parallel
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Figure 5: Non-admissible actuation scheme, scheme no. 23

locally the motion can be decomposed into 2 translations normal to the constraint forces and

any two linearly independent rotations in the plane formed by the constraint forces. Then the

infinitesimal motion type is 2T2R3.

When ζc0r ∦ ζc0l but the axes intersect, there is one ∞-pitch twist ε∞1 reciprocal (normal) to

both ζc0r and ζc0l and there are three independent zero-pitch twists, ε01, ε02 and ε03, reciprocal

(coplanar) to both ζc0r and ζc0l as shown in Fig. 8. In this case, the object can perform three

infinitesimal rotations about the intersection point of the constraint forces and one infinitesimal

translation along the normal to both constraint forces. Therefore, the infinitesimal motion type

is 1T3R.

3T and R stand for Translation and Rotation, respectively.
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Figure 6: Non-admissible actuation scheme, case 2, scheme no. 83

A final more general case is where the constraint forces are neither parallel nor intersecting

as shown in Fig. 9. In this case the infinitesimal motion type is still 1T3R however the three

rotational axes do not intersect. It is noteworthy that the set of all lines intersecting two given

skew lines generates a linear line variety of dimension 4 called a hyperbolic congruence [9]. As

a consequence the object can perform three infinitesimal rotations about three axes that do

not intersect and one infinitesimal translation along the direction normal to the two constraint

forces.

6 Singularity Analysis

This section deals with the singularity analysis of the NAO T14 cooperating arms when it

firmly grasps an object. Arm singularities can be characterized by a loss of DOF of the arm,

while a gain of DOF or a lack of stiffness of the manipulator occurs in a parallel singular

configuration [9, 18].
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Figure 7: Reciprocal twists to parallel constraint forces (2T2R infinitesimal motion type)
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Figure 8: Reciprocal twists to intersecting constraint forces (1T3R infinitesimal motion mode)

Figure 9: Reciprocal twists to non-intersecting and non parallel constraint forces (1T3R in-
finitesimal motion mode)
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6.1 Arm Singularities

An arm singularity is similar to the singularity of a serial manipulator. It occurs for the dual-

arm system when the arm kinematic screw system (twist system) degenerates. Consequently,

the grasped object loses one or more DOF in such a configuration. From Eqn. (20) the kinematic

Jacobian matrix of the right arm can be written as:

Jr =

[
s1 s2 s3 s4 s5

a1 × s1 a1 × s2 b1 × s3 b1 × s4 b1 × s5

]
(32)

To simplify the analysis, the origin of frame F̂obj is transformed to the S-joint center. Eqn. (32)

becomes:

Jr =

[
s1 s2 s3 s4 s5

a1 × s1 a1 × s2 03 03 03

]
(33)

The right arm reaches a limb singularity when Jr is rank deficient. There are two possible

singular configurations leading to rank deficiency. Firstly when s3 is parallel to s5 obtained at

θ4 = 0 ± π. Secondly when the S-joint center lies on the line passing through point A1 and

parallel to s1, meaning s1 × a1 = 03. This configuration occurs at θ2 = atan

(
−r3
d3

)
.

The effect of arm singularities in closed-loop

The serial singularity in closed-loop means that the object loses 1-DOF regardless of the actu-

ation scheme. This is due to the fact that there are now three independent constraint wrenches

applied on the object ζc0r, ζ
c
0l and the wrench due to the singularity. However the actuation

scheme affects whether or not there is internal motion in the mechanism, i.e., if a link can move

locally without affecting the pose of the object. This type of local motion is known as an inner

singularity.

In summary, for the serial singularity condition θ4 = 0, when neither joint 3 nor joint 5 are

actuated, the global wrench system degenerates and Link 4 can move freely. Equally in the

second serial singularity case θ2 = atan
(
−r3
d3

)
, the linearly dependent joints are joints 1, 3, 4

and 5. Again, if none of these joints are actuated during the singular configuration, an inner

singularity will occur.

Example: Scheme no. 12 11010—10000 i.e. qa = [q1 q2 q4 q6]. When the arm is in

a serial configuration θ4 = 0, we propose to analyze the mechanism by breaking the chain at

Link 4, separating the two linearly dependent joints as shown in Fig. 10. By breaking the chain
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in this way, Link 4 becomes analogous to the object and the procedure outlined in Section 4.2

can be reapplied. If the loop is broken so the two linearly independent joints remain on the

same serial chain, this procedure breaks down. Hence, in this case the twist system associated

with the right and the left chains are:

Tr = span (ν01, ν02, ν03, ν04) (34)

Tl = span (ν06, ν07, ν08, ν09, ν010, ν05) (35)

The left arm is now composed of six joints while the right arm is composed of four joints.

Thus there are no constraint forces associated with the Tl, meanwhile there are now two con-

straint wrenches associated with the right arm: ζc0r1 the constraint wrench expressed in Eqn.(24),

and ζc0r2 is equivalent to ζa05 from Eqn.(27b) since it should be reciprocal to ν01, ν02, ν03, ν04,

hence

ζc0r1 =

[
ur

b1 × ur

]
(36a) ζc0r2 =

[
u5

a1 × u5

]
(36b)

The first, second and fourth joints are actuated, therefore the actuation wrench system is

spanned by the following pure forces:

ζa01 =

[
u1

b1 × u1

]
(37a) ζa04 =

[
u4s

b1 × u4s

]
(37b)

ζa02 =

[
u2

b2 × u2

]
(37c)

u4s is the unit vector of the line passing through point A1 and parallel to s3. Joint 6, of the

left arm is actuated, therefore the actuation wrench system is spanned by the following finite

pitch wrench, namely:

ζa06 =

[
u6s

r6s × u6s + λ6su6s

]
(38)

u6s is the unit vector of the screw reciprocal to ν07, ν08, ν09, ν010, ν05, while r6s is a vector

pointing from any point on this axis to the origin.

As a result, the global wrench system applied on Link 4 is spanned by ζc0r1, ζ
c
0r2, ζ

a
01, ζ

a
02 ζ

a
04,
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ζaλ6, namely:

W = span (ζc0r1, ζ
c
0r2, ζ

a
01, ζ

a
02, ζ

a
04, ζ

a
λ6) (39)

The singularity condition means that ν03 and ν05 are linearly dependent, therefore logically any

screw that is reciprocal ν03 is reciprocal to ν05 and vice versa. It follows that with this choice

of actuators, ν03 and ν05 are reciprocal to all the wrenches of the global wrench system.

Using Eqn. (19), Eqn. (36), Eqn. (37), and Eqn. (38):

b1 × ur ur

a1 × u5 u5

b1 × u1 u1

b2 × u2 u2

b1 × u4s u4s

r7 × u7s + λu7s u7s


[

s3

b1 × s3

]
= 0 (40)

Hence the null space is spanned by ν03 and ν05. Since the null space exists, the global wrench

system from Eqn. (39) must be rank deficient, and unable to fully constrain Link 4.

6.2 Parallel Singularities

Constraint Singularities

A constraint singularity occurs when the constraint wrench system (26) degenerates, i.e., when

ζc0r and ζc0l are linearly dependent. The closed-loop system reaches such a configuration when

the two S-joint centers lie on s1 and s6, namely:

θ2 = atan

(
−r3
d3

)
and θ7 = atan

(
r3
d3

)
(41)

It is noted that when the closed-loop system reaches a constraint singularity, both arms are in

arm singularity configuration as described in Section 6. From Section 6.1, it can be seen that

an arm singularity in a serial mechanism increases the degree of the constraint wrench system.

Let the constraint wrench due to the serial singularities of the right and left arm be denoted as

ζ0s1 and ζ0s2 respectively, which are obtained as:

ζc0sr =

[
u1

b1 × u1

]
(42)
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Figure 10: Serial chains for inner singualrity analysis
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ζc0sl =

[
u6

b2 × u6

]
(43)

Hence at the studied configuration, four wrenches forming a 3-system as described in Fig. 11

are applied on the object: the constraint wrenches ζc0r and ζc0l and the wrenches due to the serial

singularity of each arm ζc0sr and ζc0sl. Consequently, the object has 3-DOF in this configuration.

The infinitesimal motion type varies depending on the relationship between ζc0sr and ζc0sl. If

they are parallel, there is one ∞-pitch twists, ε∞ reciprocal (normal) to ζc0r, ζ
c
0l, ζ

c
0sr and ζc0sl

while there are two independent zero-pitch twists, ε01 and ε02, reciprocal (coplanar) to ζc0r, ζ
c
0l,

ζc0sr and ζc0sl. Therefore, locally the motion can be decomposed into 1 translation normal to

the constraint forces and any two linearly independent rotations in the plane formed by the

constraint forces. Then the infinitesimal motion type is 1T2R.

Contrarily if ζc0sr and ζc0sl are not parallel, there are three independent zero-pitch twists, ε01,

ε02 and ε03 reciprocal (coplanar) to ζc0r, ζ
c
0l, ζ

c
0sr and ζc0sl. In this configuration the infinitesimal

motion type is 0T3R.

Figure 11: Constraint singularity of the dual-arm system
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Actuation Singularities:

The choice of actuators means that the object can be controlled but may encounter actuation

singularities at certain configurations. An actuation singularity occurs when the global wrench

system (30) degenerates while the constraint wrench system (26) does not. Due to the large

number of viable actuation schemes, each presumably containing several actuation singularities,

a more general illustration is presented below.

Example Actuation Singularity 1: Considering the configuration θ1 = θ6 for any actu-

ation scheme where [q2 q7] ∈ qa

The two actuation wrenches associated with joints 2 and 7, ζa02 and ζa07, and the two con-

straint wrenches associated with the systems geometry ζc0l and ζc0r, normally constitute a 4-

system. When θ1 = θ6, the unit vectors ur, ul, u2, u7 all lie in P , where P is the plane

containing points A1, B1, A2, B2. The global wrench system degenerates due to the linear

dependence of the wrenches ζa02, ζ
a
07, ζ

c
0l and ζc0r. In this case there are three twists reciprocal to

all the wrenches. For any choice of the remaining two actuators, the global wrench system will

degenerate. One such example of this degeneracy is found in scheme 5, qa = [q1, q2, q3, q7]

11100—01000. The actuation singularity is shown in Fig. 12.

Example Actuation Singularity 2 Considering the configuration θ1 = θ6 and θ3 = π/2

for any actuation scheme where either joint 2 or 7, and joint 5 are actuated.

In this configuration the actuation wrench associated with joint 5 lies in the plane P , where

P is the plane containing points A1, B1, A2, B2. The global wrench system degenerates due

to the linear dependence of the wrenches ζa02 (or ζa07) , ζa05, ζ
c
0l and ζc0r. One such example of this

degeneracy is found in scheme 7, qa = [q1, q2, q3, q5] 11101—00000. The actuation singularity

is shown in Fig. 13.

7 Comparison of Screw theory and Jacobian Methods

In this section a comparison is made between existing numerical methods, derived in Section 2,

classically used to kinematically analyze the singularities of the system and the screw theory

methods demonstrated in the previous sections.

Table 3 analyzes the singular configurations obtained in Section 6, with respect to the

constraint equations. In [19] singular conditions are defined with respect to the Jacobian

matrices. A degeneration of Jact from (15) is an unmanipulable singularity. By obtaining the

null space of Gp, denoted as N(Gp), parallel singularities can be investigated. Jp ·N(Gp) 6= 0
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Figure 12: Actuation singularity for scheme no. 5

corresponds to an unstable singularity (a loss of stiffness in the platform). Jp · N(Gp) = 0

corresponds to a self motion or inner singularity. To find the inadmissible actuation schemes

the matrix Gp is examined. If this matrix is rank deficient for every value of qa, qp, and qc the

actuation scheme is inadmissible.

Table 3 validates the screw theory analysis on the system notably with respect to serial

singularities. For example it shows that by changing the actuation scheme, the lack of stiffness

in the system when Jp ·N(Gp) = 0 can be avoided.

8 Dynamic Performance of Actuation Schemes

In this section, firstly the dynamic model of closed loop robots is given. Then the dynamic

performance of admissible actuation schemes is compared when the closed chain system is

transporting an object in space.
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Figure 13: Actuation singularity for scheme no. 7

8.1 Dynamic Modeling of Closed Loop

The inverse dynamic model (IDM) calculates the active motor torques τ in terms of q, q̇ and

q̈ of the joints. Let qtr =
[
qTa qTp

]T
denote the joint variables of the tree structure. In order

to find the Closed Loop Inverse Dynamic Model (CLIDM), first the IDM for the tree structure

is found and then converted to CLIDM by using the following relation [20]:

τ =

(
∂qtr
∂qa

)T
Γtr = Γa +

(
∂qp
∂qa

)T
Γp (44)
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Table 3: Numerical Status at Singularity

Name Conditions No. Actuation Scheme rank(Jact) rank(Gp) Jp ·N(Gp)
Benchmark 4 11100—00100 4 5 {}
Inadmissible
Scheme 1 23 11000—11000 4 4 6= 0
Inadmissible
Scheme 2 83 01100—01100 4 4 6= 0
Serial
Singularity 1 θ4 = 0 12 11010—10000 4 4 = 0
Serial
Singularity 1 θ4 = 0 13 11011—00000 3 5 {}
Serial
Singularity 2 θ7 = atan(r3/d3) 11 11010—01000 4 4 = 0
Serial
Singularity 2 θ7 = atan(r3/d3) 12 11010—10000 3 5 {}
Actuation
Singularity 1 θ1 = θ6 5 11100—01000 4 4 6= 0
Actuation
Singularity 2 θ1 = θ6, θ3 = ±π

2
7 11101—00000 4 5 6= 0

Constraint θ2 = atan(r3/d3),
Singularity θ7 = atan(r3/d3) 5 11100—01000 3 4 = 0
Constraint θ2 = atan(−r3/d3),
Singularity θ7 = atan(r3/d3) 4 11100—00100 3 4 6= 0

where Γtr denotes the joint torques of the tree structure. It can be expressed as:

Γtr =

[
Γa

Γp

]
= Atr (qtr)

[
q̈a

q̈p

]
+ Htr (qtr, q̇tr) (45)

Γa and Γp represent the torque on the actuated and passive joints of the tree structure, respec-

tively. Atr and Htr are tree structure inertia matrix and the tree structure matrix of Coriolis,

Centrifugal and Gravity forces respectively. The inertial parameters of the closed chain system

are given in the appendix. Using (10) and (44), we obtain:

τ =
[

IN (−G−1p Ga)
T
] [ Γa

Γp

]
(46)

IN is the identity matrix of dimension N , where N is equal to the DOF of the system. Sub-

stituting the general expression for the tree dynamic model given by (45) into (44), the closed
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loop dynamic model is obtained as:

τ =
[

IN (−G−1p Ga)
T
]

Atr

[
q̈a

q̈p

]
+
[

IN (−G−1p Ga)
T
]

Htr (47)

The direct dynamic model (DDM) calculates the independent joint accelerations q̈a from

the motor torques τ . It can be obtained after substituting q̈p in terms of q̈a using (9) in (47)

and solving the obtained expression to obtain q̈a.

8.2 Dynamic Performance

The comparison criterion is taken as the integral of the sum of squares of the motorised torques,

which indicates the motor’s power loss [21]. The power loss of a motor is proportional to the

square of the current flowing through it. Since the torque of the motor is directly proportional

to the current, a power loss criterion given in (48), is defined from time= 0 to time= t, where

η has units N2m2s. The motor torques can be calculated using (47).

To facilitate the presentation, it is supposed that joint 10 is always modeled as the cut joint,

therefore actuation schemes containing joint 10 are excluded in this configuration.4 However

in order to maximize the number of schemes that are tested, the symmetric equivalent of the

these schemes are included. To illustrate this point, take scheme no. 2, 11100—00001 . By

cutting the chain at joint 10 this actuation scheme cannot be realized, instead the scheme

00001—11100 is used. The two schemes will have the same performance when tested over

many random trajectories. In total 64 actuation schemes are tested, (there are 7 kinematically

admissible schemes that remain untested).

η =

∫ t

0

τT τ dt (48)

Figure 14 shows the results for three hundred trajectories. The x-axis gives the scheme

number and the y-axis measures the number of trajectories. For each simulation an arbitrarily

shaped rigid object is grasped by the two arms, the object is transported along a spatial

trajectory by the cooperative system in a fixed time tfinal. The trajectory is defined between

two points in the joint space using a fifth degree polynomial. It is continuous in both velocity

and acceleration. The simulation is repeated using the same object and the same trajectory, for

each actuation scheme (64 times). Three hundred simulations are executed. Each simulation

4To actuate q10 a new tree structure robot must be defined.
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Figure 14: Power Loss for Random trajectories

uses a new object and a new spatial path. A mathematical description of the trajectory is given

in appendix.

The chart shows how often η lies between the defined bands. For example, taking actuation

scheme 1 11110—00000, from the three hundred trajectories, η < 0.5 in 32 cases, 0.5 < η < 2 in

140 cases, 2 < η < 10 in 69 cases, 10 < η < 100 in 30 cases and η > 100 in 29 cases. Obviously

the most attractive cases are those where η < 0.5.

The chart clearly shows a disparity of η between the schemes, notably no 60, 10011—

01000 and no 61, 10011—10000. In this case, the change of one actuator has a large effect on

the resulting dynamic performance, increasing the number of trajectories where the η > 100

from 16 to 235. Furthermore a large decrease is seen in the trajectories that have a very

good performance from 81 to 0. A similar phenomenon can be seen for schemes no 11, 11010-
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—01000 and no 12, 11010—10000. Generally it can be seen that best performing schemes

contain actuated joints 1 and 6, the base joints.

In Fig.15, the number of trajectories where the required actuated joint torque is greater than

the motor’s peak torque (as given in the appendix) are shown. For example, taking actuation

scheme 1 11110—00000, from the three hundred trajectories, 43 require a torque greater than

the peak torque.

In terms of best performing schemes, this chart correlates with the results seen in Fig.14. In

contrast, however this chart, shows the effect of the lower torque limit for joint 5. For instance,

from Fig.14, it is seen that scheme no. 71 has an acceptable dynamic performance. However

Fig.15 shows a high number of violations of nominal torque.

The torque required is proportional to the desired acceleration, therefore by increasing tfinal,

the time taken to complete the trajectory, the maximum torque can be reduced. Taking this

into account, Fig.15 also indicates the actuation scheme that are capable of transporting the

object in the least amount of time without violating the motor constraints.

9 Actuation Scheme Selection

The use of any inadmissible scheme can be immediately ruled out. As we have seen in Sec-

tion 4.2, there are 39 such schemes in which the object has an uncontrollable DOF. Recall

that to avoid this scenario, either joint 1 or joint 6 must be actuated. The joint configuration,

θ1 = θ6 generates an actuation singualrity when both q2 and q7 are actuated. This would re-

strict the range of the base joints leading to a large reduction in the workspace. By actuating

either q3 or q5 on the right arm and q8 or q10 on the left arm, the lack of stiffness linked to the

inner singularity can be avoided. This lack of stiffness will occur when either of the arms pass

through the arm singularity.

From studying the results of the power loss test, it is clear that the best performing schemes

actuate both joint 1 and joint 6. Moreover there is a clear and logical tendency for schemes

that contain actuators near the base to preform better, for example scheme number 6, 11010-

—10000 and scheme number 22, 11000—10100. Finally, Fig. 15, clearly shows that if the real

motor parameters are taken into account, schemes that actuate either joint 5 or joint 10 should

be avoided.

In order to propose an optimum actuation scheme, both the kinematic and dynamic con-

siderations must be used. As shown in Fig.14, actuation scheme 41, 10100—10001 has a good

dynamic performance. Despite the fact that joint ten is actuated, relative to the other schemes
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Trajectories violating motor limits

Figure 15: Trajectories that violate torque constraints

the percentage of peak torque violations is low. Furthermore the selected actuated joints, avoid

the loss of stiffness associated with the singular configurations. Finally the scheme distributes

the motors equally in the two arms.

10 Conclusion

This paper presents a study of the NAO robot’s two arms engaged in a cooperative task. The

DOF of an object, simultaneously grasped by both arms, was explored using screw theory. The

infinitesimal motion of the object, for different configurations has been investigated. It has

been shown that the nature of this motion may change throughout the workspace due to the

relationship between the constraint wrenches.
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The serial singularities of each arm are shown and an investigation into their possible effect

on the closed chain system was undertaken. The screw theory analysis demonstrates that

the effect of serial singularities in closed loop depends on the actuation scheme that is used.

This is validated using a numerical comparison. The constraint singularity due to the closed

loop structure is illustrated and the nature of the resulting motion described. The motion is

more complex than a loss of stiffness since the arms are simultaneously in a serial singularity

configuration. The results from a corresponding numerical analysis are difficult to interpret

due to the complexity of this case.

A detailed investigation into the choice of actuated joints was carried out. By considering

the wrenches exerted by the actuators on the object, all admissible actuation schemes were enu-

merated. In addition the schemes considered inadmissible and the causes of this inadmissibility,

were illustrated in detail.

The dynamic model of the closed chain system was given. The model was then used to assess

the performance with respect to a power loss criterion over many trajectories. This analysis

permits the selection of feasible actuation schemes with respect to their dynamic capabilities.

In future work, a control scheme capable of switching the actuation scheme throughout a

trajectory will be designed. The objective of this scheme will be to reduce energy loss in the

system. Furthermore the behavior of redundant actuation schemes in the closed chain system

will be investigated. In addition, the analysis will be extended to articulated and flexible

objects.
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Appendix

A Motor Parameters

Table 4: Motor’s specifications

Joint Motor No load speed(rpm) Stall Torque(mNm) Nominal torque(mNm) Reduction ratio
1 11 900 15.1 3.4 150.27
2 11 900 15.1 3.4 173.21
3 11 900 15.1 3.4 150.27
4 11 900 15.1 3.4 173.21
5 11 900 15.1 3.4 50.64

B Dynamic Parameters

The dynamic parameters of each arm are identical. The inertia tensor of link j is given with

respect to frame j as follows:

jIj =

 XXj XYj XZj

XYj Y Yj Y Zj

XZj Y Zj ZZj


The first moments of link j are calculated using the mass, denoted as Mj and the vector of

center-of-mass coordinates denoted as Sj, as follows:

MSj =
[
MX MY MZ

]
The numerical values parameters of the robot are given in Table 5. In the case of the closed

chain formulation, the inertial parameters of the extended link 5, is composed of link 5, the

object and link 10.
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Table 5: Inertial parameters of the closed chain system

Link 1(6) Link 2(7) Link 3(8) Link 4(9) Link 5
XX (g mm2) 71025.99 82285.13 5503.19 25194.83 122113.5
XY (g mm2) -2024.58 -39780.57 -22.43 -2162.93 10072.8
XZ (g mm2) -17.22 7526.01 -15.34 718.46 77907.38
YY (g mm2) 14057.99 290014.459 62254.05 88903.15 558947.02
YZ (g mm2) 8.41 -1529.45 5.59 -108.09 5861.52
ZZ (g mm2) 73166 268423.31 63251.24 86868.67 559976.06
MX (g mm) -1.78 18.85 -25.6 25.56 63.6
MY (g mm) 24.96 -5.77 0.01 -2.73 1.66
MZ (g mm) 0.18 0.65 -0.19 0.96 9.54

M (g) 69.96 123.09 59.71 77.24 333.06

C Trajectory Definition

The trajectory is defined in the joint space, such that from an initial position qia, a final position

qfa is reached in time tfinal. The position, velocity and acceleration is calculated as:

qa (t) = qia + r(t)
(
qfa − qia

)
q̇a (t) = ṙ(t)

(
qfa − qia

)
q̈a (t) = r̈(t)

(
qfa − qia

)
The trajectory is calculated from the initial and final conditions:

qa (t = 0) = qia, qa (tfinal) = qfa, q̇a (t = 0) = q̇a (tfinal) = 0, q̈a (t = 0) = q̈a (tfinal) = 0

r(t) is the 5th degree polynomial interpolation function calculated as:

r(t) = 10

(
t

tfinal

)3

− 15

(
t

tfinal

)4

+ 6

(
t

tfinal

)5


