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To contribute to the understanding of flow phenomena in abdominal aortic aneurysms,
numerical computations of pulsatile flows through aneurysm models and a stability
analysis of these flows were carried out. The volume flow rate waveforms into
the aneurysms were based on measurements of these waveforms, under rest and
exercise conditions, of patients suffering abdominal aortic aneurysms. The Reynolds
number and Womersley number, the dimensionless quantities that characterize the
flow, were varied within the physiologically relevant range, and the two geometric
quantities that characterize the model aneurysm were varied to assess the influence
of the length and maximal diameter of an aneurysm on the details of the flow.
The computed flow phenomena and the induced wall shear stress distributions
agree well with what was found in PIV measurements by Salsac et al. (J. Fluid
Mech., vol. 560, 2006, pp. 19–51). The results suggest that long aneurysms are less
pathological than short ones, and that patients with an abdominal aortic aneurysm
are better to avoid physical exercise. The pulsatile flows were found to be unstable
to three-dimensional disturbances if the aneurysm was sufficiently localized or had
a sufficiently large maximal diameter, even for flow conditions during rest. The
abdominal aortic aneurysm can be viewed as acting like a ‘wavemaker’ that induces
disturbed flow conditions in healthy segments of the arterial system far downstream
of the aneurysm; this may be related to the fact that one-fifth of the larger abdominal
aortic aneurysms are found to extend into the common iliac arteries. Finally, we
report a remarkable sensitivity of the wall shear stress distribution and the growth
rate of three-dimensional disturbances to small details of the aneurysm geometry near
the proximal end. These findings suggest that a sensitivity analysis is appropriate
when a patient-specific computational study is carried out to obtain a quantitative
description of the wall shear stress distribution.
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1. Introduction
An abdominal aortic aneurysm (figure 1) is a localized dilatation of the infrarenal

aortic wall, between the renal arteries and the iliac bifurcation. A dilatation of
the aorta is considered to be an aneurysm when its maximal diameter is greater
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FIGURE 1. (Colour online) (a) Sketch of an abdominal aortic aneurysm that is confined to
the infrarenal aorta (Lasheras 2007). (b) Image of an abdominal aortic aneurysm observed
in vivo (courtesy: P. Feugier, Hôpital Édouard-Herriot).

than 1.5 times the local diameter of the healthy aorta (Johnston et al. 1991), which is
approximately 2 cm in the abdominal parts of the aorta. One-fifth of large abdominal
aneurysms are not limited to the infrarenal aorta, but also extend into one or both of
the common iliac arteries (Armon et al. 1998).

When the mechanical stress in the vessel wall exceeds a critical value the dilated
vessel ruptures, which leads to a bleeding that is often lethal. Presently, clinical
intervention is recommended if the maximum diameter reaches 5.0 cm in women
and 5.5 cm in men or if the maximal diameter increases by more than 0.5–1 cm in
one year (Grootenboer et al. 2009). Yet, as observed by Vorp (2007), many smaller
lesions rupture (13 % of those of less than 5 cm), while larger lesions may not rupture
over long periods (54 % of those of over 7 cm). This leaves physicians to face the
dilemma of either subjecting patients to a complex surgery with high morbidity and
complications or to an unknown risk of rupture, to paraphrase Lasheras (2007). As
pointed out by Humphrey & Taylor (2008) and Humphrey & Holzapfel (2012), there
is a pressing need to better understand the mechanobiology, pathophysiology and
treatment of abdominal aortic aneurysm; an understanding that should result from
combining advances in vascular biology, medical imaging, biofluid mechanics and
biosolid mechanics.

To provide a background and motivation for the present study, we briefly mention
some of the recent work on the haemodynamics of abdominal aortic aneurysms; for
a more elaborate discussion the reader is referred to the reviews by Lasheras (2007)
and Humphrey & Taylor (2008). A highly advanced approach, which has increasingly
become the standard, is the experimental and computational study of blood flow
in models of the cardiovascular system obtained from patient-specific anatomical
data acquired by medical imaging. An introduction to this approach can be found
in Taylor & Draney (2004) and Taylor & Figueroa (2009). Recent studies of the
haemodynamics of abdominal aortic aneurysms using this approach include Les et al.
(2010), Sheidaei et al. (2011), Stamatopoulos et al. (2011) and Suh et al. (2011).
Such studies can provide a quantitative description of the flow in an aneurysm and
the distribution of shear stress along the vessel wall, and may even incorporate the
presence of atherosclerotic plaque. There is no question that in the near future these
computational tools will be sufficiently developed that they will be important for
decisions on medical intervention. Yet, given the complexity of the geometries used
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in these studies, it will prove very difficult to develop an understanding of the fluid
mechanical phenomena that occur and of the relation between these phenomena and
the geometrical details. It seems that there will remain a need for detailed studies of
the flow in simplified ‘unrealistic’ models of aneurysms. This paper presents a study
of pulsatile (physiological) flow through an axisymmetric model aneurysm with a wall
that is described by a Gaussian function. In doing so, we follow, to a certain extent,
the ‘simplified approach’ of the work by Taylor & Yamaguchi (1994), Finol, Keyhani
& Amon (2002), Yip & Yu (2002), Salsac, Sparks & Lasheras (2004), Deplano et al.
(2007) and Sheard (2009). Regarding the assumption of an axisymmetric geometry, it
may be added that it has been observed that aneurysms tend to be symmetric during
the early stages of the disease, only becoming non-axisymmetric during the later
stages, as reported in Salsac (2005). This means that our results may have a direct
bearing on what can be observed during the early stages. To this we should add
that in our work we focus on the fluid flow dynamics and assume rigid boundaries,
ignoring any compliance of the arterial wall or of an endoluminal thrombus. The
idealized geometry used in this study should be understood as the boundaries of the
fluid domain (where the blood is in contact either with the arterial wall or with a
thrombus).

A question that has received some attention in recent years is the connection
between cardiovascular flow and conditions of physical activity, in particular the
differences between the conditions of rest and exercise. Here, the articles by Egelhoff
et al. (1999), Taylor, Hughes & Zarins (1999), Deplano et al. (2007), Les et al.
(2010) and Suh et al. (2011) should be mentioned. It has been hypothesized that
prolonged physical exercise may eventually slow the growth of aneurysms, but
supporting arguments are indecisive. What has been established is that during part of
the cardiac cycle the blood flow in the abdominal aorta becomes weakly turbulent
during exercise, but it remains laminar during rest conditions (Les et al. 2010). A
local dilatation of the abdominal aorta may be expected to promote instability of the
blood flow, and it is not unlikely that flashes of turbulence may occur during part of
the cardiac cycle even during rest conditions (Yip & Yu 2001). This is believed to be
beneficial, on the grounds that the presence of turbulence reduces the size of regions
of flow stasis and the existence of a correlation between the presence of such regions
and thrombus formation (Reininger et al. 1994; Vorp et al. 2001; Salsac et al. 2004).
Although we have no support for this, we believe that the repeated occurrence of a
vessel wall loading with random small-scale fluctuations in time and space, due to
the fact that during part of the cardiac cycle the flow becomes turbulent, may have a
detrimental effect on the structure of the vessel wall, and thereby enhance the growth
and rupture of aneurysms. To the best of our knowledge, a study of the stability of
flow through abdominal aneurysms, even using a simple model configuration, has
not yet been published. The present paper provides a first look into this complex
problem.

The paper is organized as follows. The geometry of the model aneurysm, the
parameters and structure of the pulsatile flow at the inlet of the aneurysm, as well
as the numerical methods used to analyze the flow in the aneurysm are described in
§ 2. It will appear that two geometrical dimensionless quantities, representative of the
length and the maximum diameter of the dilatation, and two dimensionless physical
flow quantities, the Reynolds number and the Womersley number, characterize the
problem. The results of numerical computations of the flow through the model
aneurysm are presented in § 3, where we also discuss how the characteristics of this
flow change as the geometrical and physical parameters vary in a physiologically
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FIGURE 2. The Gaussian vessel wall configuration used in the present study. In this figure
W/D= 0.5, H/D= 0.5.

realistic range. Most of the discussion is centred on a blood flow rate waveform
that is observed during rest, with a brief discussion of what has been found for a
flow rate waveform that is typical for an exercise condition. Section 4 describes the
first results of a global stability analysis of pulsatile flow through a model aneurysm,
and how these results change with the values of the geometrical and dynamical flow
parameters. In § 5 we report a remarkable sensitivity of the flow to details of the
aneurysm geometry. Finally, § 6 summarizes the main conclusions. Some physiological
implications are mentioned, even though these are highly speculative.

2. Methodology
2.1. Geometry

The axisymmetric model dilatation that is considered in the present study is shown in
figure 2. The vessel wall is described by a Gaussian function

r(z)=
[

D
2
+H exp

(
− z2

2W2

)]
, (2.1)

where z and r denote the axial and radial coordinates with the origin taken at the
centre of the dilatation. Thus, the geometrical quantities that characterize the model
aneurysm are the inlet diameter D, the height H and the width W. The length of an
aneurysm depends on how it is defined; in most definitions the length will involve
both parameters H and W. The so-called dilatation ratio DR, the ratio of the maximum
diameter to the inlet diameter, is here given by DR = 1 + 2H/D. In what follows,
lengths are non-dimensionalized by the inlet diameter D, so that the model aneurysm
is characterized by two geometrical dimensionless quantities H and W. To study the
effects of variations in the size of aneurysms or, to put it differently, the change in
the hydrodynamic loading of the vessel wall at different stages of the development of
an aneurysm, two values of W are chosen, 0.5 and 1, and H is varied in the range
0.36H/D6 1 (this corresponds to 1.66DR 6 3). Most of the geometrical parameters
considered in the present study correspond to limited size aneurysms (except for
the case where H = 1) which are clinically shown to be devoid of an endoluminal
thrombus (Harter et al. 1982).

2.2. Fluid flow
The velocity distribution of the unperturbed blood flow, taken to be a Newtonian fluid,
is considered as solenoidal and axisymmetric, with zero velocity in the azimuthal
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direction. The governing equations in cylindrical coordinates are then
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where Ur(r, z) and Uz(r, z) are the radial and axial velocity components, respectively,
and P(r, z) is the pressure distribution. The Reynolds number Re is based on the
vessel diameter and the mean flow velocity, Re = 4Q/πDν, with Q the volume
flow rate averaged over a cardiac pulse cycle and ν the kinematic viscosity of the
fluid. According to Ku (1997), the peak Reynolds number, based on the maximum
volume flow rate during a cycle, can vary from 600 at rest up to 6000 under exercise
conditions in the abdominal aorta.

The governing equations have been solved imposing the no-slip condition at the
vessel wall, assumed to be rigid, a standard no-stress condition at the outlet of the
vessel, and the usual symmetry conditions at the axis. The inlet velocity distribution
is the Womersley solution for the time-dependent flow in a cylindrical vessel of
constant circular cross-section (Pedley 1979). This velocity distribution is determined
completely by specifying the radian frequency ω and the Fourier components Qn of
the imposed flow rate waveform,

Q(t)=
∞∑

n=−∞
Qneinωt. (2.3)

Writing this inlet condition in dimensionless form introduces a second dimensionless
physical quantity that characterizes the fluid flow, namely the Womersley number
Wo=D(ω/4ν)1/2 (Pedley 1979). The two physiological flow rate waveforms that have
been used in the present study are discussed in the following section.

2.3. Physiological flow rate waveforms
Blood flow rate waveforms differ between rest and exercise conditions. Recently,
several studies have been carried out to elucidate how these differences may affect
the pathogenesis of abdominal aneurysms. The studies of Salsac et al. (2006) and
Sheard (2009) were based on a flow rate waveform obtained from a healthy male
subject at rest. The difficulty is that the flow rate waveform varies significantly with
the location in the aorta. Moreover, during the progression of the pathology the
flow rate waveform may change in response to the alterations of the blood vessel
geometry. In our study, we have used data presented in a recent article by Suh et al.
(2011), who recorded blood flow rate waveforms of 10 subjects (nine male, one
female) suffering from abdominal aortic aneurysms. The recordings were made at an
infrarenal location just upstream of the aneurysm, and during both rest and exercise
conditions.

The waveforms, the one corresponding to rest conditions denoted Q1 and the
one corresponding to exercise conditions denoted Q2, are shown in figure 3(a); in
figure 3(b) the non-dimensionalized value of the mean flow rate Q has been given the
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FIGURE 3. (a) Flow rate waveforms corresponding to rest (Q1) and exercise (Q2)
conditions, as recorded by Suh et al. (2011) at an infrarenal location just above an
abdominal aortic aneurysm. (b) The two flow rate waveforms when non-dimensionalized
by the cycle-averaged volume flow rate.

Waveform D (cm) Q (l min−1) Heart rate (min−1) µ (Pa s) Re Wo

Q1 (rest) 1.7 0.8 72 0.004 264 12
Q2 (exercise) 1.7 5.1 95 0.004 1700 13.8

TABLE 1. Values of flow parameters related to the flow rate waveforms recorded by
Suh et al. (2011).

value one. Details of the two waveforms are given in table 1. In Suh et al. (2011)
blood is considered to be a Newtonian fluid with a density of 1.06 g cm−3 and a
viscosity of 0.004 Pa s. To convert the recorded volume flow rates to non-dimensional
quantities, one also needs to know the diameters of the abdominal aorta at the
locations of the recording. These values are not given in Suh et al. (2011). The
values of the Reynolds number and Womersley number in table 1, for example
Re= 256 and Wo= 12 for waveform Q1, are based on a vessel diameter of 1.7 cm,
which seems to be a typical value of the inlet diameter of an abdominal aneurysm.
The same waveform Q1 in a blood vessel with diameter 2.0 cm would correspond to
Re= 250 and Wo= 15. The coefficients Qn of a Fourier series representation of the
waveforms, using 10 Fourier coefficients, are listed in table 2.

Given the fact that it is often easier to determine the blood flow rate waveform
at a particular location than the values of the blood viscosity and the local arterial
diameter, we have studied the characteristics of the pulsatile flow through the model
aneurysm with the flow rate waveform Q1 at the inlet, for three values of the
Womersley number (10, 12 and 15) and for Reynolds numbers between 200 and
500. The characteristics of the flow with waveform Q2 at inlet conditions that are
mentioned in § 3 are for Re= 1700 and Wo= 13.8, as mentioned in table 1. However,
it proved to be convenient for the study of the stability of the flow to set the Reynolds
number to 500, while keeping 13.8 as the value of the Womersley number.

2.4. Stability analysis
To study the stability of the axisymmetric time-periodic flow to three-dimensional
perturbations, the Navier–Stokes equations (2.2) are linearized around the axisymmetric
time-periodic base flow. Let base flows be time periodic with period T such that
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Q0 1.0 1.0
Q1 0.4461− i0.9481 0.0203− i0.4735
Q2 −0.7231− i0.5638 −0.1923− i0.0389
Q3 −0.3046+ i0.3181 −0.0392+ i0.0068
Q4 0.0042+ i0.1447 −0.0405+ i0.0103
Q5 0.0469+ i0.1112 −0.0054+ i0.0170
Q6 0.0780+ i0.0169 −0.0026+ i0.0008
Q7 0.0256− i0.0184 −0.0009+ i0.0023
Q8 0.0192− i0.0104 0.0013+ i0.0003
Q9 −0.0021− i0.0119 −0.0002− i0.0022

(a) (b)

TABLE 2. The coefficients Qn of the Fourier series representation of the waveforms
shown in figure 3. (a) Rest: Q1, (b) exercise: Q2.

U(r, z, t)=U(r, z, t+ T). Then, to this flow a three-dimensional perturbation velocity
field u′(r, z, θ, t) is added to form the composite velocity field:

u(r, z, θ, t)=U(r, z, t)+ u′(r, z, θ, t). (2.4)

Substitution of this expression into (2.2) and retaining terms that are linear in the
perturbation velocities then yields the equations

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ + 1

Re
1u′, (2.5a)

∇ · u′ = 0. (2.5b)

The perturbations are taken to have the formu′r(r, θ, z, t)
u′θ(r, θ, z, t)
u′z(r, θ, z, t)
p′(r, θ, z, t)

=
ûr(r, z, t)

ûθ(r, z, t)
ûz(r, z, t)
p̂(r, z, t)

 exp i(mθ)+ c.c., (2.6)

where m is the azimuthal mode number. For the computations, a plane of symmetry
for the perturbations is chosen by considering ûr(r, z, t), ûz(r, z, t) and p̂(r, z, t) to
be purely real and ûθ(r, z, t) to be purely imaginary. This permits one to rewrite the
above equations in terms of purely real variables, thereby reducing the computational
cost.

The numerical analysis of the stability of the time-periodic flows is carried out
by time-marching (2.5) for a suitable number of pulse cycles and monitoring the
perturbation fields until they converge. Once the perturbations have converged, the
evolution of the perturbation velocity fields at specific points in the computational
domain is recorded to determine the Floquet multiplier. According to Floquet theory
(Herbert 1988), the velocity and pressure perturbations grow or decay exponentially
from period to period, thus

û(r, z, t+ T)= exp(σT)û(r, z, t), (2.7)

where T is again the period of the pulsatile flow and σ is the (complex) growth rate.
The coefficient µ = exp(σT) is the so-called Floquet multiplier. The absolute value
|µ| of the Floquet multiplier is computed as

|µ| = Ek(t+ T)/Ek(t), (2.8)
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with Ek(t) defined as

Ek(t)=
{∫

Ω

[u′r(t)2 + u′θ(t)
2 + u′z(t)

2] dΩ
}1/2

. (2.9)

For |µ|> 1 the flow is unstable, and for |µ|< 1 the flow is stable; a value |µ| = 1
represents neutral stability. Further, modes can be classified according to the value
of the Floquet multiplier. A real bifurcation (µ= 1) has the same period as the base
flow, a subharmonic bifurcation (µ=−1) has a period of twice that of the base flow.
Such a period-doubling bifurcation can be detected by investigating the perturbation
field, which will alternate between opposite values from one period to the next.
Complex-conjugate Floquet multipliers correspond to perturbation fields in the form
of standing or travelling waves. A complex-conjugate bifurcation can be identified
from the evolution of the absolute value of the Floquet multiplier. An oscillation
around a mean value signifies that the Floquet multiplier is complex (Robichaux,
Balachandar & Vanka 1999; Sheard, Thompson & Hourigan 2005).

2.5. Numerical procedure
The flow problem given by the equations and boundary conditions mentioned in § 2.2
has been solved numerically by a finite-element method. The spatial discretization
is a mixed finite-element formulation using P2–P1 Taylor–Hood elements: six-node
quadratic triangular elements with quadratic interpolation for velocities (P2) and three-
node linear triangular elements for pressure (P1). The meshes, as well as the discrete
matrices resulting from the variational formulation of the problem, are generated with
the software FreeFem++ (http://www.freefem.org).

An inlet length of 10D units and an outlet length of 20D units have been used
in the simulations. At the start of the calculation, the velocity field is considered
to be given by the Womersley solution within the cylindrical domain corresponding
to a straight vessel of constant cross-section, and a zero velocity field within the
dilatation inflation. The flows are time-marched for a sufficient number of cycles for
the mean flow to pass through the computational domain. Time traces of the velocities
at various points within the domain are then checked at specific phases in the cycle,
to confirm that the flows have converged to a time-periodic state. For the parameter
conditions explored in the present study, the flow needed to be integrated in time for
10 cycles to attain periodicity. To these axisymmetric base flows, three-dimensional
disturbances were added of the form given by (2.6), and the linearized Navier–Stokes
equations (2.5) were time-marched for a sufficient number of pulse cycles to obtain
the Floquet multipliers. The mesh and the numerical procedure are the same as used
in the computation of the time-periodic basic flows.

Extensive validation tests have been performed, the details of which can be found
in Gopalakrishnan (2014). Here, we merely present the results of validation tests that
consisted of a computational study of pulsatile flow through model arterial stenoses,
to verify our results against those presented by Griffith (2007). Table 3 presents a
comparison between some of our results and those of Griffith (2007). The parameter
b is the stenosis degree, defined as

b= 1− (d/D)2 , (2.10)

with d the diameter of the vessel at the centre of the blockage; L0 denotes the length
of the vessel outlet in units of the vessel diameter and A is the amplitude of the
harmonic flow rate pulsation.

http://www.freefem.org
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L0 b A m |µ| |µ|g
30 0.50 1.25 1 1.0648 —
40 0.50 1.25 1 1.1741 1.1708
30 0.60 1.00 1 1.3495 —
50 0.60 1.00 1 1.3757 1.3761

TABLE 3. Comparison between the magnitude of the Floquet multiplier associated with
mode m= 1 of a perturbed pulsatile flow through a stenosis, as calculated by us, |µ|, and
by Griffith (2007), |µ|g.
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FIGURE 4. (Colour online) Evolution of the axial velocity profile in a straight vessel
during one cardiac cycle: (a) Q1 (rest); (b) Q2 (exercise).

3. The pulsatile flow
3.1. Flow through a vessel with constant cross-sectional area

Before discussing flow through aneurysms, we look at some details of the imposed
physiological waveforms.

As can be seen in figure 3(b), under resting conditions (Q1) the peak flow rate
during systole (t = 0.18T) goes up to five times the mean value. After peak systole
the flow rate is reduced and even becomes negative during peak diastole (t= 0.44T).
At the end of the diastole, the flow rate becomes positive again and relaxes to zero
during the resting period, before increasing once again at the beginning of the next
cardiac cycle. Under exercise conditions (Q2) the flow rate remains positive during the
entire cardiac cycle: already at the beginning of the cardiac cycle there is a significant
flow rate and the flow does not reverse during diastole. Interestingly, the instantaneous
velocity profiles during exercise are very similar to the instantaneous velocity profiles,
at the same phase within the cycle, during rest; the difference essentially consists
in the velocity distribution of a steady Poiseuille flow. This implies that the relative
magnitude of the oscillatory component during rest is larger than during exercise
conditions.

During the acceleration phase of the systole, the flow develops into a characteristic
top-hat velocity profile, as can be seen in figure 4. Thin boundary layers are observed
which scale as D/Wo. In line with what was said above, the velocity profiles observed
under exercise conditions are more parabolic. The axial velocity also remains positive
throughout the cardiac cycle except for a short duration during diastole, when negative
velocities are found close to the wall.

The wall shear stress is generally considered as the primary fluid mechanical
parameter with regard to the physiological response of the endothelial cells lining the
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FIGURE 5. Evolution of the wall shear stress during one cardiac cycle, as calculated from
the Womersley solution corresponding to the volume flow rate waveforms Q1 (during rest)
and Q2 (during exercise). (a) Physical values based on the data given in table 1, (b) non-
dimensionalized by multiplying by D/µŪ.

arterial wall (Ku 1997). The time variation of the wall shear stress can be determined
from the velocity profiles described above by evaluating

WSS(z, t)= −µ∂Uz

∂r

∣∣∣∣
r=wall

. (3.1)

Here, µ represents the dynamic viscosity of blood. The convention is to assign a
negative value to the function WSS in the case of reversed flow. Various quantities
have been introduced by different authors to investigate the response of endothelial
cells to wall shear stress variations. Examples are the cycle-averaged wall shear stress
and the cycle-averaged magnitude of that stress, quantities that are defined as in Salsac
et al. (2006),

WSS= 1
T

∫ T

0
WSS dt, |WSS| = 1

T

∫ T

0
|WSS| dt, (3.2a,b)

respectively. For later comparison, the temporal evolution of the wall shear stress
under rest and exercise conditions in a healthy vessel is shown in figure 5; it simply
follows the evolution of the flow rate. The peak wall shear stress under exercise
conditions is almost twice that during rest conditions. The minimum value of the
wall shear stress, however, does not change drastically under varying conditions. The
time-averaged wall shear stress is roughly seven times higher during exercise than
during rest, but the peak-to-mean ratio is almost four times higher under resting
conditions than during exercise.

3.2. Flow in abdominal aneurysms during rest
3.2.1. Phenomenology

We consider a model aneurysm with W = 0.5 and H = 0.5 for a discussion of the
typical flow features; the flow conditions are given by Re= 264 and Wo= 12. Figure 6
shows the azimuthal vorticity component at various time instants during a pulse cycle.
As can be seen in frame (iii), by the time the flow rate reaches peak systole a layer
of (positive) vorticity has been formed. Subsequently, as the flow rate decreases, this
layer of vorticity detaches from the wall and rolls up into a ring-like vortex structure
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FIGURE 6. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3< z< 7 and the flow
parameters and geometrical parameters have values Re= 264,Wo= 12,W = 0.5,H = 0.5.

in the centre of the aneurysm, frames (iv) and (v), which moves towards the distal end
of the dilatation, frames (vi)–(x). As a consequence, vorticity of opposite (negative)
sign is produced at the wall, frames (v) and (vi). As this vorticity is torn off the
wall it rolls up in a second ring-like vortex structure, frames (vii)–(x). The two ring-
like vortex structures of opposite sign persist for a short period at the end of the
cycle, frames (x) and (i), but as the flow rate increases again at the beginning of a
new cycle, the primary (positively signed) vortex is washed away downstream, while
the second (negatively signed) vortex is annihilated by the newly produced positively
signed vorticity at the wall, frames (ii) and (iii). The process then repeats.

Differences between the wall shear stress distribution of a healthy artery and that of
an artery with a local dilatation can be deduced by comparing figure 5 with figure 7.
In the latter figure, the axial variation of the cycle-averaged wall shear stress and the
cycle-averaged magnitude of the wall shear are plotted. It will be seen that significant
deviations from the values found for a healthy artery are limited to the central part of
the dilatation, roughly in the range −1< z< 1. The minimum and maximum values
of the cycle-averaged wall shear stress magnitude in the dilated artery are 36 % and
197 %, respectively, of the values found for the healthy artery. However, with regard to
the cycle-averaged wall shear stress itself, it has a positive peak value for the inflated
vessel that is 2.8 times the cycle-averaged shear stress in a healthy vessel, and, at
another location, a negative peak with a level 4.8 times the mean shear stress in a
healthy vessel. It should be noted that these oppositely signed peak values of the mean
stress are located within a short distance of each other.

3.2.2. Variations of the geometry
The effect of varying the geometry, as represented by the dilatation ratio

DR = 1 + 2H/D, the ratio of the maximum diameter to the inlet diameter, is
investigated by varying the non-dimensional bulge height H for a fixed value of
W. As a first example we take W = 0.5. Figure 8 presents the vorticity distribution
of the flow in the model aneuryrsm at various time instants during a cycle for the
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FIGURE 7. Axial variation of the cycle-averaged wall shear stress (WSS; solid line)
and cycle-averaged magnitude of the wall shear stress (|WSS|; dotted line) in the model
aneurysm, calculated for the flow rate waveform Q1 (rest conditions) and with values of
the flow parameters and geometrical parameters as in figure 6: Re= 264,Wo= 12,W =
0.5,H = 0.5.

values H = 0.3 and H = 1.0; the waveform and values of the Reynolds number and
Womersley parameter are the same as in figure 6. It should be noted that the flow
phenomenology described in the previous section for H = 0.5 is also found for a
value of the dilatation ratio as low as DR = 1.6 (H = 0.3). However, in this shallow
dilatation the primary vortex occupies a relatively larger volume and is more readily
washed away and convected downstream. As a consequence, the secondary oppositely
signed vortex structure occupies less volume and its formation is delayed. In a more
developed dilatation, as characterized by H = 1.0, the vortices remain trapped during
a longer phase of the cycle and the secondary vortex persists throughout the whole
cycle.

As a second example, we consider W = 1, which is representative of a longer
aneurysm than in the first example (W = 0.5), for the same value of H. Figure 9
presents the vorticity distribution in the dilatation, again for H = 0.3 and H = 1.0,
and for the same waveform Q1, Reynolds number and Womersley parameter as in
figure 6. The differences are remarkable: the layer of vorticity at the wall remains
attached for a much larger part of the cycle, and, as a result, the primary ring-like
vortex structure forms much later during the deceleration phase after peak systole
and remains much weaker. The interaction with the wall is so weak that the primary
vortex does not move towards the distal wall and no secondary oppositely signed
vortex structure is formed during diastole.

The distributions of the cycle-averaged wall shear stress associated with the
examples just given are summarized in figure 10, where results for H = 0.7 have
also been added. A first conclusion from these plots is that the peak value of the
cycle-averaged wall shear stress does not seem to be a significant quantity to monitor
to decide on the growth of an aneurysm, as it varies very little with changes of H.
A similar conclusion could be drawn regarding the distribution itself, since that also
remains qualitatively similar as H increases while W is kept fixed. It should be noted,
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(a) (b)

FIGURE 8. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3< z< 7 and the flow
parameters and geometrical parameters have values Re= 264,Wo= 12,W = 0.5; H = 0.3
in (a) and H = 1.0 in (b).

(a) (b)

FIGURE 9. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The
flow parameters and geometrical parameters have the same values as in figure 8: Re =
264,Wo= 12, H = 0.3 in (a) and H = 1.0 in (b), but here W = 1.0.

however, that much stronger spatial gradients of the cycle-averaged wall shear stress
are found for W = 0.5 than for W = 1.0.

3.2.3. Variations of the flow parameters
In this section we consider the effects of varying the Reynolds number and

Womersley number. The geometry is characterized by W = 0.5 and H = 0.5, values
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FIGURE 10. Axial variation of the cycle-averaged wall shear stress (WSS) in the model
aneurysm, as calculated for the flow rate waveform Q1 (rest conditions) and with values
of the flow parameters as in figure 7: Re = 264, Wo = 12, but here W = 0.5 in (a) and
W = 1.0 in (b), while the values of H vary between 0.3 and 1.0.

for which the vorticity distribution and cycle-averaged wall shear stress have already
been shown in figures 6 and 7, for Re= 264 and Wo= 12.

In the first example the value of the Reynolds number is kept fixed at 264,
but the Womersley number has the values 10 and 15. Figure 11 presents the
vorticity distribution at various instants during the pulse cycle. It shows that the
flow characteristics for Wo= 12 are very different from those for Wo= 15. It should
be noted, however, that with all other parameters kept fixed, an increase in the
Womersley number corresponds to an increase of the square of the frequency of
pulsation (ω∝Wo2), so that a change from Wo= 10 to Wo= 15 means that the pulse
frequency increases by more than a factor of two. The phenomenology for Wo= 10
is similar to that for Wo= 12, with a layer of vorticity that separates from the wall
and rolls up to form a ring-like vortex structure. For Wo = 15 the wall shear layer
remains attached for a longer part of the cycle and the rolling up of the vorticity is
less prominent. Moreover, the vorticity in the structure that is formed is weaker and
the structure does not move towards the distal wall of the inflation; as a result also
no oppositely signed vortex structure is formed.

In the second example, the values of the Reynolds number are 200 and 500, while
the value of the Womersley number is kept at 12. Figure 12 indicates that the principal
effect of increasing the Reynolds number is that the magnitude of the vorticity is
larger in the primary vortex structure that forms during the deceleration phase after
peak systole. Flow separation occurs at an earlier moment in the cycle, the vortex
impinges at the distal wall and induces the formation of various vortices of alternating
sign everywhere in the dilatation.

These observations are reflected in figure 13, where the corresponding cycle-
averaged wall shear stress distributions are presented. Figure 13(a,b) show that the
peak values of the cycle-averaged wall shear stress are reduced as the Womersley
number is increased, and figure 13(c,d) show that an increase of the Reynolds number
results in stronger spatial variations in the cycle-averaged stress.

3.3. Flow in abdominal aneurysms during exercise
To follow up on the remark just made, this section presents a few results for the
waveform Q2 (figure 3). The geometry is characterized by H= 0.5 and W = 0.5, and
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(a) (b)

FIGURE 11. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The flow
parameters and geometrical parameters have the same values as in figure 6: Re = 264,
W = 0.5, H = 0.5, but here Wo= 10 in (a) and Wo= 15 in (b).

(a) (b)

FIGURE 12. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q1 (rest conditions). The dimensionless vorticity
values range from −20 (blue) to +20 (red). The axial range is −3 < z < 7. The flow
parameters and geometrical parameters have the same values as in figure 6: Wo = 12,
W = 0.5, H = 0.5, but here Re= 200 in (a) and Re= 500 in (b).

the flow by Wo=13.8 and Re=1700. Figure 14 shows the vorticity distribution during
various instants in a pulse cycle. At this high Reynolds number an intense separated
shear layer is formed at the proximal end of the aneurysm during flow deceleration
after peak systole. This shear layer rolls up and impinges at the distal end, where
subsequently an oppositely signed secondary vortex structure is formed. This is similar
to what was observed earlier for the waveform Q1, typical of rest conditions, but in
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FIGURE 13. (a,c) Axial variation of the cycle-averaged wall shear stress (WSS) and
(b,d) cycle-averaged magnitude of the wall shear stress (|WSS|) in the model aneurysm,
as calculated for the flow rate waveform Q1 (rest conditions) and with values of the
geometrical parameters as in figure 7: W = 0.5, H = 0.5. The flow parameters have the
values (a,b) Re= 264, Wo= 10 or Wo= 15; (c,d) Re= 200 or Re= 500, Wo= 12.

the present case, because the vortices are much stronger, a tertiary vortex with the
same sign as the primary vortex is induced inside the dilatation during the diastolic
phase. This can be seen clearly in frame (vi), where the (negatively signed) secondary
vortex pulls (positively signed) vorticity out of the shear layer, which then rolls up to
become a positively signed tertiary vortex. The secondary and tertiary vortices then
move together and collide with the proximal wall of the dilatation. The vortices are
found to persist during most of the pulse cycle, but gradually weaken by diffusive
effects.

Similar flows are observed for other values of H and W. The features of the flows
are reflected in the cycle-averaged wall shear stress distributions presented in figure 15.
The height H appears to have a relatively weak influence, except for with regard to
the minimum value of the averaged wall shear stress. As the aneurysms grow in size,
as represented by larger values of H, the secondary vorticity structure persists longer
inside the dilatation; this appears to correlate with higher absolute values of the wall
shear stress. Variations of the length of aneurysms, as represented by variations in the
width W, correspond to shifts in the locations of the maximum and minimum values
of the cycle-averaged wall shear stress.

Perhaps the most significant result from these observations is that at elevated
Reynolds numbers the flow fields are highly complex, with vortices of alternating
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FIGURE 14. (Colour online) Evolution of the azimuthal vorticity distribution during
one pulse cycle of the flow rate waveform Q2 (exercise conditions). The dimensionless
vorticity values range from −20 (blue) to +20 (red). The axial range is −3< z< 7. The
flow parameters and geometrical parameters have values Re= 1700, Wo= 13.8, W = 0.5,
H = 0.5.

sign present throughout the aneurysm. As mentioned in § 1, we believe that if such
flow conditions persist, this may have a detrimental effect on the vessel wall.

4. Stability characteristics
4.1. Flow in abdominal aneurysms during rest

4.1.1. Variations of the flow parameters
We begin this discussion of the stability of pulsatile flows in a model aneurysm

by looking at the flow associated with the pulse waveform Q1. The parameters have
values H = 0.5, W = 0.5, Wo= 15, while three values of the Reynolds number have
been investigated: Re= 200, Re= 250 and Re= 300. The results are summarized in
figure 16. The pulsatile flow is stable at Re = 200 and Re = 250, but at Re = 300
it is unstable to perturbations with mode numbers m = 2, m = 3 and m = 4. The
most unstable mode is that with m = 3. In figure 16 the modes that are classified
as subharmonic (period-doubling) are indicated by filled circles. The unstable modes
can be seen to arise from two different sets of eigenmodes: the subharmonic modes
dominate at small mode numbers, the harmonic modes at higher values of the mode
number. It may be noted that something similar was observed for stenotic flows
(Sherwin & Blackburn 2005; Griffith et al. 2009), where the mode m= 1 was found
to correspond to a period-doubling bifurcation.

The vorticity distributions of the perturbations associated with modes m = 1 and
m= 3 at various instants in a pulse cycle are shown in figure 17 for Re= 300. They
are arranged in bands and, although the modes are dominant inside the dilatation, they
extend far downstream. This is especially the case for mode m = 1, but appears to
be a characteristic feature of all subharmonic modes. Such structures of the vorticity
perturbations are very different from those that have been found for steady flows
through similarly shaped model aneurysms (Gopalakrishnan, Pier & Biesheuvel 2014);
in that case these vorticity perturbations are confined to the dilatation.
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FIGURE 15. (a,c) Axial variation of the cycle-averaged wall shear stress (WSS) and (b,d)
cycle-averaged magnitude of the wall shear stress (|WSS|) in the model aneurysm, as
calculated for the flow rate waveform Q2 (exercise conditions). The values of the flow
parameters and geometrical parameters are Re = 1700, Wo = 13.8, H = 0.3 or H = 1.0,
W = 0.5 (a,b) and W = 1.0 (c,d).

These observations imply that the presence of an abdominal aortic aneurysm may
create, for certain flow conditions, disturbed flows which extend far downstream into
healthy sections of the arterial system. The result is that healthy vessel walls become
exposed to sustained abnormal flow velocity conditions, which eventually may damage
these vessel walls. This, in turn, may lead to atherosclerosis (Barakat 2013), or to the
formation of a secondary aortic aneurysm. This might explain why about one-fifth of
large abdominal aortic aneurysms are accompanied by aneurysms of the common iliac
arteries.

Figure 18 summarizes the results of a stability analysis of the pulsatile flow at the
same values of the parameters as in figure 16, except that now Wo= 10 (a) and Wo=
12 (b). The most significant observation seems to be that as the Womersley number
is reduced, the flows become unstable at lower values of the Reynolds number. As
already mentioned, the flows at Wo= 10 and Wo= 12 are rather different from that at
Wo=15. The most unstable mode appears to be the mode m=2, which in the majority
of cases can be classified as period-doubling. The absolute values |µ| of the Floquet
multipliers are much higher for Wo= 10 and Wo= 12 than for Wo= 15. It should be
noted, however, that the time periods T ∝Wo−2 are longer too at Womersley numbers
10 and 12, in comparison with 15. Since the temporal growth rate σ (= ln µ/T) is
inversely proportional to the time period T , the growth rates at Wo= 10, 12 are not
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FIGURE 16. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for three different values
of the Reynolds number. The flow rate waveform is Q1 (rest) and the other parameters
have the values Wo= 15, H= 0.5 and W= 0.5. Subharmonic modes are indicated by filled
circles. The dotted line for |µ| = 1 is the stability boundary.
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FIGURE 17. (Colour online) Evolution during one pulse cycle of the azimuthal vorticity
distributions of the perturbed flows associated with the azimuthal modes m = 1 (a) and
m= 3 (b). The basic flow is that of the pulse waveform Q1 (rest) and the values of the
flow parameters and geometrical parameters are Re= 300, Wo= 15, H = 0.5, W = 0.5.

significantly higher than at Wo = 15, as the amplification of the perturbations takes
place over a longer time.

4.1.2. Response to harmonic forcing
The presence of vorticity perturbations downstream of the aneurysm, examples of

which are shown in figure 17, suggests that an abdominal aortic aneurysm can be
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FIGURE 18. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for three different values of
the Reynolds number. The flow rate waveform is Q1 (rest) and the geometrical parameters
have the same values as in figure 16, H = 0.5 and W = 0.5, but here Wo = 12 (a) and
Wo = 10 (b). Subharmonic modes are indicated by filled circles and the dotted line for
|µ| = 1 is the stability boundary.

viewed as acting as a wavemaker which forces the flow in the vessels downstream.
To verify this, we consider a straight circular vessel of sufficient length, and apply a
harmonic forcing and observe the linear response. The unperturbed flow in the circular
vessel is the Womersley solution. The external forcing is modelled as a body force
f (x, t) added to the linearized Navier–Stokes equations (2.5),

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ + 1

Re
1u′ + f (x, t), (4.1a)

∇ · u′ = 0, (4.1b)

where
f (x, t)=ψ(x) exp(−iσit). (4.2)

Here, the weight function ψ(x) is chosen such that the forcing is restricted to a
small region of space. The forcing frequency σi is taken as the imaginary part of the
complex growth rate obtained from the linear stability analysis of the flow through
the model aneurysm.

Figure 19(b,d) shows the response of pulsatile flow in a straight circular vessel to
harmonic forcing in comparison with the associated aneurysm flow (figure 19a,c) at
two different flow conditions: (a,b) Re = 200, Wo = 15, m = 1 and (c,d) Re = 300,
Wo = 15, m = 3 (H = 0.5, W = 0.5). The region of application of the forcing is the
black circular spot. The perturbed flow downstream of the aneurysm (figure 19a,c)
compares very well with the forced flow in (b,d).

4.1.3. Variations of the geometry
Figure 20 summarizes the results of a stability analysis of the pulsatile flow at Re=

264 and Wo = 12, for various values of H, while the value of W is kept fixed at
W= 0.5 in (a) and at W= 1.0 in (b). The radial extent of the dilatation, as represented
by the value of H, is found to be of significance for the stability of the flow. For
W = 0.5, the flow is unstable for H > 0.4, the dominant mode in all cases being a
subharmonic mode of azimuthal mode number 2. An additional calculation at H= 0.4
was carried out because of the substantial variation that was observed of the values of
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FIGURE 19. (Colour online) (a,c) Energy distribution of the axial velocity component
of the leading critical mode for pulsatile flow through a model aneurysm; (b,d) energy
distribution of the axial velocity component of the perturbation flow set up by a harmonic
forcing at the same frequency applied in the domain shown by a black circle of the
pulsatile flow through a straight vessel at the same values of the Reynolds number and
Womersley number. Parameter settings: W = 0.5, H= 0.5, (a,b) Re= 200, Wo= 15, m= 1,
(c,d) Re= 300, Wo= 15, m= 3.
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FIGURE 20. Variation of the absolute value of the Floquet multiplier µ with azimuthal
mode number m for pulsatile flow through a model aneurysm, for various values of the
depth of the aneurysm, as represented by H. The flow rate waveform is Q1 (rest) and
the other parameters have the values Re = 264, Wo = 12, W = 0.5 (a) and W = 1.0 (b).
Subharmonic modes are indicated by filled circles and the dotted line for |µ| = 1 is the
stability boundary.

the Floquet multipliers as H was changed from 0.3 to 0.5. As expected, and confirmed
in figure 20(b), the flow in a long aneurysm, as represented by the value of W, is less
prone to becoming unstable than that in a short aneurysm.

The azimuthal vorticity distributions associated with the least stable modes of the
flows in figure 20(a) are presented in figure 21. It is remarkable that already at the
small value of H = 0.3, the dominant mode extends downstream of the dilatation.
Similar features are observed for W = 1 in figure 22. We have already mentioned
the observation that an aneurysm may initiate disturbed flow conditions in healthy
segments of the arteries downstream of the aneurysm; the results shown in figures 21
and 22 now suggest that this will already occur in the incipient stages of an aneurysm.
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FIGURE 21. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with the least stable mode m for pulsatile flow through a model aneurysm. The
axial range shown is −1.5D6 z6 7D and the flow parameters and geometrical parameters
have the values Re = 264, Wo = 12, W = 0.5 and from top to bottom H = 0.3, 0.5, 1.0.
The flow rate waveform is Q1 (rest).

FIGURE 22. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with the least stable mode m for pulsatile flow through a model aneurysm. The
axial range shown is −1.5D6 z610D and the flow parameters and geometrical parameters
have the values Re= 264, Wo= 12, W = 1.0 and from top to bottom H= 0.3, 0.4, 0.5, 1.0.
The flow rate waveform is Q1 (rest).

Clearly, this study is not conclusive, since the presence of the iliac artery bifurcation
downstream of an abdominal aortic aneurysm can be expected to interact with the
flow inside the aneurysm. Yet, what it does show is that the iliac bifurcation and
segment of the common iliac arteries needs to be included in the computational
domain when carrying out realistic, patient-specific simulations of flows in abdominal
aortic aneurysms.

4.2. Flow in abdominal aneurysms during exercise
To conclude, we briefly consider the stability of pulsatile flow in the model aneurysm
under exercise conditions. The waveform Q2, recorded by Suh et al. (2011) and
shown in figure 3(b), corresponds to a Reynolds number of 1700 and a Womersley
number of 13.8, if the vessel diameter at the location of the recording is 1.7 cm.
However, to simplify the computations and to focus on the influence of the waveform,
we have chosen the lower value Re= 500 and kept the value Wo= 13.8. Nevertheless,
we believe that the results provide a qualitative picture of the flow perturbations
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FIGURE 23. Variation of the absolute value of the Floquet multiplier µ with the azimuthal
mode number m for pulsatile flow through a model aneurysm. The flow parameters and
geometrical parameters have the values Re = 500, Wo = 13.8, W = 0.5, H = 0.5. The
Womersley number corresponds to the flow rate waveform Q2 (exercise), but the Reynolds
number is reduced from 1700 to 500. Subharmonic modes are indicated by filled circles
and the dotted line for |µ| = 1 is the stability boundary.

prevailing for exercise waveforms at larger Reynolds numbers. In all calculations, the
geometrical parameters have the values W = 0.5 and H = 0.5.

The absolute values of the Floquet multipliers associated with the first eight
azimuthal modes of the flow perturbations are given in figure 23. All Floquet
multipliers are real; the most dominant mode is m = 5. Moreover, all modes with
m > 2 can be classified as period-doubling, as indicated by the filled circles.

The azimuthal vorticity distributions of the perturbations are shown in figure 24 for
various mode numbers. Here, the modes m= 1 and m= 2 are stable, and the modes
m= 3, m= 4 and m= 5 are unstable. The vorticity distributions associated with m= 6,
m= 7 and m= 8 are not shown, because they resemble closely that associated with
mode m = 5. It will be observed that in this case the perturbation fields associated
with the stable modes m = 1 and m = 2 and the marginally unstable mode m = 3
extend downstream of the dilatation, but that the perturbation fields associated with
the higher-valued unstable modes are much more localized inside the dilatation; these
more localized modes have the largest growth rate.

5. Sensitivity to geometrical details
During the tests that were conducted to validate our numerical tools we noticed a

remarkable sensitivity of the results to details of the model geometry. Here, we take
the opportunity to report these observations. We compare the results of numerical
computations using the Gaussian shaped vessel of the present paper with results
obtained for a sinusoidally shaped vessel wall, the model aneurysm studied in the
recent work of Sheard & Ryan (2008) and Sheard (2009). For this comparison the
same value of H is taken, while W is chosen such that the areas traced out in an axial
plane by the vessel walls are the same. The two geometries, with the ‘wavelength’
of the sinusoidally shaped wall denoted L, are shown in figure 25.

The pulsatile flow rate waveform in this comparison is that used by Salsac et al.
(2006) and Sheard (2009), which is called Q3 here and is shown in figure 26.
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FIGURE 24. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with modes m = 1, . . . , 5 for pulsatile flow through a model aneurysm. The
axial range shown is −2.5D 6 z 6 10D and the flow parameters and geometrical
parameters have the values Re=500, Wo=13.8, W=0.5, H=0.5. The Womersley number
corresponds to the flow rate waveform Q2 (exercise), but the Reynolds number is reduced
from 1700 to 500.
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FIGURE 25. The sinusoidal geometry used in the studies by Sheard & Ryan (2008) and
Sheard (2009) is shown by the dotted curves and the Gaussian shaped geometry used in
the present study is shown by the solid curves. Both model aneurysms have the same area
in a plane through the symmetry axis. Parameter values: H = 0.45, W = 0.58, L= 2.9.

The flow parameters have the values Re= 330 and Wo= 10.7. An important difference
between waveforms Q1 and Q3 is that much larger negative flow rates occur for Q3.

Figure 27 presents the evolution of the azimuthal vorticity distribution during one
pulse cycle of the pulsatile flow of Q3 through a model aneurysm with sinusoidal
shape (a) and with Gaussian shape (b). Qualitatively, the flow phenomena in the two
geometries are similar, but closer inspection reveals that there is a slight time delay
in the evolution of the vorticity distribution in the Gaussian shaped aneurysm with
respect to that in the sinusoidally shaped aneurysm. This may be attributed to the
fact that the sinusoidal wall, where it connects to the straight vessel, is not as well
rounded-off as the vessel with the Gaussian shaped wall. As a result, flow separation
occurs at a slightly earlier stage during systole. This phenomenon can be seen best
by comparing the frames (ii) which correspond (roughly) to peak systole.
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FIGURE 26. The waveform considered in the study by Salsac et al. (2006) and
Sheard (2009).

(a) (b)

FIGURE 27. (Colour online) Evolution of the azimuthal vorticity distribution during one
pulse cycle of the flow rate waveform Q3 in aneurysms modelled by a sinusoidal (a) and
a Gaussian (b) wall function. The dimensionless vorticity values range from −20 (blue)
to +20 (red). The axial range is −3D 6 z 6 5D. The values of the flow parameters and
geometrical parameters are Re= 330,Wo= 10.7,H = 0.45,W = 0.58, L= 2.9.

The wall shear stress distribution has been found to be rather sensitive to the details
of the vorticity distribution in an aneurysm, cf. § 3.2, so that one would expect that
the slight time delay just mentioned would be visible in plots of the wall shear stress.
This is indeed the case. As figure 28 shows, the most prominent differences are found
at the proximal and distal ends of the dilatation, i.e. close to the location where there
is a difference in differentiability of the functions that describe the vessel wall shapes.

It will now not come as a surprise that the slight differences in the vorticity
distributions of the pulsatile flows are also reflected in the stability characteristics
of these flows. Figure 29 compares the absolute value of the Floquet multiplier
associated with the azimuthal modes m = 1, . . . , 5 in the two geometries; here the
flow parameters are Re = 330 and Wo = 10.7. Qualitatively, the characteristics are
the same: all Floquet multipliers are complex and in both cases the mode m = 3 is
the least stable mode; this was found also by Sheard & Ryan (2008). The absolute
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FIGURE 28. Axial variation of the cycle-averaged wall shear stress WSS (a) and
cycle-averaged magnitude of the wall shear stress |WSS| (b) in aneurysms modelled by
a sinusoidal (dotted curves) and a Gaussian (solid curves) wall function. The flow rate
waveform is Q3 and the values of the flow parameters and geometrical parameters are
Re= 330, Wo= 10.7, H = 0.45, W = 0.58, L= 2.9.
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FIGURE 29. Variation of the absolute value of the Floquet multiplier µ with the azimuthal
mode number m for pulsatile flow through a model aneurysm with the wall described
by a sinusoidal function (dotted curve) and a Gaussian function (solid curve). The flow
parameters and geometrical parameters have the values Re = 330, Wo = 10.7, H = 0.45,
W = 0.58, L= 2.9.

values of the Floquet multipliers, though, are significantly larger for pulsatile flow
through the sinusoidally shaped aneurysm, the mode m= 1 even being unstable while
it is stable for the Gaussian shaped wall.

The azimuthal vorticity distributions of the perturbed flows associated with the
various modes are shown in figure 30, for the sinusoidally shaped wall in (a) and
for the Gaussian shaped wall in (b). Again, these vorticity distributions may seem
similar; however, they are not indistinguishable. As found earlier, the higher mode
numbers m= 2, 3, 4, 5 are localized within the dilatation, but the (most stable) mode
m= 1 extends far downstream.

This example shows that the details of pulsatile flow through aneurysms, the
wall shear stress distribution in particular, can be extremely sensitive to geometrical
details. The conclusion is that care must be taken when interpreting results from
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(a) (b)

FIGURE 30. (Colour online) Azimuthal vorticity distributions of the perturbed flows
associated with modes m = 1, . . . , 5 for pulsatile flow through a model aneurysm of
sinusoidal shape (a) and Gaussian shape (b). The axial range shown is −2.5D6 z6 10D.
The flow rate waveform is Q3, and the flow parameters and geometrical parameters have
the values Re= 330, Wo= 10.7, H = 0.45, W = 0.58, L= 2.9.

(‘patient-specific’) computations of the flow in an aneurysm geometry that is
constructed from medical imaging data.

6. Conclusions

In this paper we have presented the results of numerical computations of pulsatile
flow through a model abdominal aortic aneurysm, and of an analysis of the
hydrodynamic stability of this flow. The aneurysm is modelled as a circular cylindrical
vessel with a radius described by a Gaussian function. The flow at the inlet of the
calculational domain is the Womersley solution for pulsatile flow in a cylindrical
vessel. This solution is a Fourier–Bessel series; the coefficients of the series were
deduced from measurements by Suh et al. (2011) of the blood flow rate waveform
at the inlet of the infrarenal aorta, during rest and exercise conditions, of patients
suffering from an abdominal aortic aneurysm.

For a given flow rate waveform, the problem is characterized by four dimensionless
quantities: the Reynolds number Re and Womersley number Wo of the fluid flow, and
the ‘height’ H and ‘width’ W which specify the Gaussian geometry of the dilatation.
In the present study, the Reynolds number was varied between 200 and 500 and
the Womersley number between 10 and 15, for the flow rate waveform of the rest
condition. The flow structure corresponding to an exercise condition was studied for
Re= 1700 and Wo= 13.8, but it turned out to be easier to use the value Re= 500 in
the stability analysis. To learn about the influence of the aneurysm geometry on the
flow characteristics, the geometrical dimensionless quantities were varied in the ranges
0.3 6 H 6 1.0 and 0.5 6 W 6 1.0.

Typical flow phenomena that can be observed in pulsatile flow through an aneurysm
are the creation of vorticity at the vessel wall during the acceleration phase of systole,
followed by detachment of this wall-bounded shear layer at the proximal end of the
dilation during the deceleration phase of systole; this leads to the formation of a
cylindrical layer of concentrated vorticity with a radius comparable with that of the
vessel upstream of the dilatation. For ‘sufficiently localized’ aneurysms, for Reynolds
numbers and Womersley numbers in the physiological range, the shear layer rolls up
and forms a ring-like vortex structure which interacts with the vessel wall and collides
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with it near the distal end of the dilatation. During this vortex–wall interaction, new
vorticity of opposite sign is produced at the vessel wall; this eventually detaches
and forms a secondary vortex ring with vorticity of opposite sign to that of the
primary vortex ring. During the final stages of diastole, the primary vortex is washed
downstream with the flow, while the secondary opposite signed vortex decays. This
process then repeats in a new cardiac cycle. An increase of the Reynolds number
and/or an increase in the height of the dilatation yields more vigorous vortex
dynamics, in the sense that the vortices are more intense and approach the distal
vessel wall at higher speed, and that further ring-like vortex structures are formed.
The computations with the flow rate waveform corresponding to exercise conditions
show that at high Reynolds number a highly complex vorticity distribution emerges.

This description of the flow phenomena in pulsatile flow through a Gaussian shaped
model aneurysm agrees very well with what was found in experiments by Salsac
et al. (2006). These authors also observed that the vortex motions within the dilatation
induce strong spatial and temporal variations of the wall shear stress, especially near
the distal end. Again, this agrees with what was found by us. Our computational
approach allowed us to investigate a somewhat larger range of parameter values than
Salsac et al. (2006). Our results support the conclusion of Salsac et al. (2006) that
longer aneurysms are less pathological than short ones. Moreover, our results suggest
that physical activity is harmful for a patient with an abdominal aortic aneurysm; the
more-localized or well-developed aneurysms again being the most pathological.

Yip & Yu (2001) and Salsac et al. (2006) mention that during part of the
cardiac cycle the flow in an aneurysm may become weakly turbulent. Since this
repetitive occurrence of disturbed flow conditions seems especially harmful, we have
investigated the hydrodynamic stability of pulsatile flows through a model aneurysm. It
appears that such flows are unstable to small-amplitude three-dimensional disturbances
for flow conditions within the physiological range, flows through well-developed
aneurysms being the most susceptible. Our findings support the idea that patients
suffering from abdominal aortic aneurysms might want to avoid physical exercise.
A second important observation is that the vorticity structures associated with the
flow disturbances are not confined to the dilatation, but rather extend far downstream.
The abdominal aortic aneurysm acts as a ‘wavemaker’ which generates disturbed
flow conditions in the healthy section of the arterial system downstream of the aortic
aneurysm. This may be related to the fact that one-fifth of larger abdominal aortic
aneurysms are accompanied by an aneurysm in one or both of the common iliac
arteries (Armon et al. 1998). It also leads to the conclusion that patient-specific
computational studies of the biomechanics of abdominal aortic aneurysms should
include the iliac bifurcation and the common iliac arteries as part of the computational
domain.

Finally, during various numerical tests we observed a remarkable sensitivity of the
flow to geometrical details of the model aneurysm. This became clear by carrying out
the calculations of Sheard (2009), who modelled the aneurysm wall by a sinusoidal
function, using a Gaussian function with the same maximal vessel radius and which
encloses the same area in a plane through the axis of symmetry. The volume flow rate
waveform was that used by Salsac et al. (2006) and Sheard (2009), obtained from a
healthy male subject at rest, and so were the dimensionless flow quantities: Re= 330
and Wo= 10.7. What was observed was that the exceedingly small difference in the
differentiability of the shape functions, where the sinusoidal dilatation connects to the
inlet vessel, leads to small, but still significant, differences in the wall shear stress
distribution and the growth rate of three-dimensional flow perturbations. If the aim is
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to make a quantitative analysis through a patient-specific computational study it seems
wise to carry out a sensitivity analysis to assess the influence of unavoidable minor
errors that occur when transforming medical images into a computational domain.

Acknowledgements
The authors wish to express their gratitude to Professor P. Feugier of the Université

Claude-Bernard Lyon 1, and vascular surgeon at Hôpital Édouard-Herriot in Lyon, for
many useful discussions.

REFERENCES

ARMON, M. P., WENHAM, P. W., WHITAKER, S. C., GREGSON, R. H. S. & HOPKINSON, B. R.
1998 Common iliac artery aneurysms in patients with abdominal aortic aneurysms. Eur. J.
Vasc. Endovasc. Surg. 15, 255–257.

BARAKAT, A. I. 2013 Blood flow and arterial endothelial dysfunction: mechanisms and implications.
C. R. Phys. 14, 479–496.

DEPLANO, V., KNAPP, Y., BERTRAND, E. & GAILLARD, E. 2007 Flow behaviour in an asymmetric
compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40, 2406–2413.

EGELHOFF, C. J., BUDWIG, R. S., ELGER, D. F., KHRAISHI, T. A. & JOHANSEN, K. H. 1999
Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions.
Biorheology 32, 1319–1329.

FINOL, E. A., KEYHANI, K. & AMON, C. H. 2002 The effect of asymmetry in abdominal aortic
aneurysms under physiologically realistic pulsatile flow conditions. Trans. ASME J. Biomech.
Engng 125, 207–217.

GOPALAKRISHNAN, S. S. 2014 Dynamics and stability of flow through an abdominal aortic aneurysm.
PhD thesis, Université de Lyon.

GOPALAKRISHNAN, S. S., PIER, B. & BIESHEUVEL, A. 2014 Global stability analysis of flow
through a fusiform aneurysm: steady flows. J. Fluid Mech. 752, 90–106.

GRIFFITH, M. D. 2007 Stabilité et dynamique des écoulements en géométrie de sténose. PhD thesis,
Université de Provence, Aix-Marseille and Monash University, Melbourne.

GRIFFITH, M. D., LEWEKE, T., THOMPSON, M. C. & HOURIGAN, K. 2009 Pulsatile flow in stenotic
geometries: flow behaviour and stability. J. Fluid Mech. 622, 291–320.

GROOTENBOER, N., BOSCH, J. L., HENDRIKS, J. M. & VAN SAMBEEK, M. R. H. M. 2009
Epidemiology, aetiology, risk of rupture and treatment of abdominal aortic aneurysms. Eur. J.
Vasc. Endovasc. Surg. 38, 278–284.

HARTER, L. P., GROSS, B. H., CALLEN, P. W. & BARTH, R. A. 1982 Ultrasonic evaluation of
abdominal aortic thrombus. J. Ultrasound Med. 1, 315–318.

HERBERT, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487–526.
HUMPHREY, J. D. & HOLZAPFEL, G. A. 2012 Mechanics, mechanobiology, and modeling of human

abdominal aorta and aneurysms. J. Biomech. 45, 805–814.
HUMPHREY, J. D. & TAYLOR, C. A. 2008 Intracranial and abdominal aortic aneurysms: similarities,

differences, and need for a new class of computational models. Annu. Rev. Biomed. Engng
10, 221–246.

JOHNSTON, K. W., RUTHERFORD, R. B., TILSON, M. D., SHAH, D. M., HOLLIER, L. &
STANLEY, J. C. 1991 Suggested standards for reporting on arterial aneurysms. J. Vascu.
Surg. 13, 452–458.

KU, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434.
LASHERAS, J. C. 2007 The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293–319.
LES, A. S., SHADDEN, S. C., FIGUEROA, C. A., PARK, J. M., TEDESCO, M. M., HERFKENS,

R. J., DALMAN, R. L. & TAYLOR, C. A. 2010 Quantification of hemodynamics in abdominal
aortic aneurysms during rest and exercise using magnetic resonance imaging and computational
fluid dynamics. Ann. Biomed. Engng 38, 1288–1313.



Dynamics of pulsatile flow through model abdominal aortic aneurysms 179

PEDLEY, T. J. 1979 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
REININGER, A. J., HEINZMANN, U., REININGER, C. B., FRIEDRICH, P. & WURZINGER, L. J. 1994

Flow-mediated fibrin thrombus formation in an endothelium-lined model of arterial branching.
Thrombosis Res. 74 (6), 629–641.

ROBICHAUX, J., BALACHANDAR, S. & VANKA, S. P. 1999 Three-dimensional Floquet instability of
the wake of a square cylinder. Phys. Fluids 11, 560–578.

SALSAC, A. V. 2005 Évolution des contraintes hémodynamiques lors de la croissance des anévrismes
aortiques abdominaux. PhD thesis, École Polytechnique.

SALSAC, A. V., SPARKS, S. R., CHOMAZ, J. M. & LASHERAS, J. C. 2006 Evolution of the wall
shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms.
J. Fluid Mech. 560, 19–51.

SALSAC, A. V., SPARKS, S. R. & LASHERAS, J. C. 2004 Hemodynamic changes occurring during
the progressive enlargement of abdominal aortic aneurysms. Ann. Vascu. Surg. 18, 14–21.

SHEARD, G. J. 2009 Flow dynamics and wall shear stress variation in a fusiform aneurysm.
J. Engng Maths 64, 379–390.

SHEARD, G. J. & RYAN, K. 2008 Wall shear stress and flow stability in a model fusiform aneurysm.
ANZIAM J. 50, C1–C15.

SHEARD, G. J., THOMPSON, M. C. & HOURIGAN, K. 2005 Subharmonic mechanism of the mode
C instability. Phys. Fluids 17, 111702.

SHEIDAEI, A., HUNLEY, S. C., ZEINALI-DAVARANI, S., RAGUIN, L. G. & BAEK, S. 2011 Simulation
of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic
geometry. Med. Engng Phys. 33, 80–88.

SHERWIN, S. J. & BLACKBURN, H. M. 2005 Three-dimensional instabilities and transition of steady
and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297–327.

STAMATOPOULOS, C., MATHIOULAKIS, D. S., PAPAHARILAOU, Y. & KATSAMOURIS, A. 2011
Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp.
Fluids 50, 1695–1709.

SUH, G. Y., LES, A. S., TENFORDE, A. S., SHADDEN, S. C., SPILKER, R. L., YEUNG, J. J.,
CHENG, C. P., HERFKENS, R. J., DALMAN, R. L. & TAYLOR, C. A. 2011 Hemodynamic
changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR
exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Engng 39,
2186–2202.

TAYLOR, C. A. & DRANEY, M. T. 2004 Experimental and computational methods in cardiovascular
fluid mechanics. Annu. Rev. Fluid Mech. 36, 197–231.

TAYLOR, C. A. & FIGUEROA, C. A. 2009 Patient-specific modeling of cardiovascular mechanics.
Annu. Rev. Biomed. Engng 11, 109–134.

TAYLOR, C. A., HUGHES, T. J. R. & ZARINS, C. K. 1999 Effect of exercise on hemodynamic
conditions in the abdominal aorta. J. Vascu. Surg. 29, 1077–1089.

TAYLOR, C. A. & YAMAGUCHI, T. 1994 Three-dimensional simulation of blood flow in an abdominal
aortic aneurysm – steady and unsteady flow cases. Trans. ASME J. Biomech. Engng 116,
89–97.

VORP, D. A. 2007 Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902.
VORP, D. A., LEE, P. C., WANG, D. H. J., MAKAROUN, M. S., NEMOTO, E. M., OGAWA, S. &

WEBSTER, M. W. 2001 Association of intraluminal thrombus in abdominal aortic aneurysm
with local hypoxia and wall weakening. J. Vascu. Surg. 34, 291–299.

YIP, T. H. & YU, S. C. M. 2001 Cyclic transition to turbulence in rigid abdominal aortic aneurysm
models. Fluid Dyn. Res. 29, 81–113.

YIP, T. H. & YU, S. C. M. 2002 Oscillatory flows in straight tubes with an axisymmetric bulge.
Exp. Therm. Fluid Sci. 26, 947–961.


	Dynamics of pulsatile flow through model abdominal aortic aneurysms
	Introduction
	Methodology
	Geometry
	Fluid flow
	Physiological flow rate waveforms
	Stability analysis
	Numerical procedure

	The pulsatile flow
	Flow through a vessel with constant cross-sectional area
	Flow in abdominal aneurysms during rest
	Phenomenology
	Variations of the geometry
	Variations of the flow parameters

	Flow in abdominal aneurysms during exercise

	Stability characteristics
	Flow in abdominal aneurysms during rest
	Variations of the flow parameters
	Response to harmonic forcing
	Variations of the geometry

	Flow in abdominal aneurysms during exercise

	Sensitivity to geometrical details
	Conclusions
	Acknowledgements
	References


	animtiph.1: 
	animtiph.2: 
	animtiph.3: 
	animtiph.4: 
	animtiph.5: 
	animtiph.6: 
	animtiph.7: 
	animtiph.8: 
	animtiph.9: 
	animtiph.10: 
	animtiph.11: 
	animtiph.12: 
	animtiph.13: 
	animtiph.14: 
	animtiph.15: 
	animtiph.16: 
	animtiph.17: 
	animtiph.18: 
	animtiph.19: 
	animtiph.20: 
	animtiph.21: 
	animtiph.22: 
	animtiph.23: 
	animtiph.24: 
	animtiph.25: 
	animtiph.26: 
	animtiph.27: 
	animtiph.28: 
	animtiph.29: 
	animtiph.30: 
	animtiph.31: 
	animtiph.32: 
	animtiph.33: 
	animtiph.34: 
	animtiph.35: 
	animtiph.36: 
	animtiph.37: 
	animtiph.38: 
	animtiph.39: 
	animtiph.40: 
	animtiph.41: 
	animtiph.42: 
	animtiph.43: 
	animtiph.44: 
	animtiph.45: 
	animtiph.46: 
	animtiph.47: 
	animtiph.48: 
	animtiph.49: 
	animtiph.50: 
	animtiph.51: 
	animtiph.52: 
	animtiph.53: 
	animtiph.54: 
	animtiph.55: 
	animtiph.56: 
	animtiph.57: 
	animtiph.58: 
	animtiph.59: 
	animtiph.60: 
	animtiph.61: 
	animtiph.62: 
	animtiph.63: 
	animtiph.64: 
	animtiph.65: 
	animtiph.66: 
	animtiph.67: 
	animtiph.68: 
	animtiph.69: 
	animtiph.70: 
	animtiph.71: 
	animtiph.72: 
	animtiph.73: 
	animtiph.74: 
	animtiph.75: 
	ikona.150: 
	TooltipField: 
	ikona.151: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.152: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.153: 
	TooltipField: 
	TooltipField: 
	ikona.154: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.155: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.156: 
	TooltipField: 
	TooltipField: 
	ikona.157: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.158: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.159: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.160: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.161: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.162: 
	TooltipField: 
	ikona.163: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.164: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.165: 
	TooltipField: 
	TooltipField: 
	ikona.166: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.167: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.168: 
	TooltipField: 
	ikona.169: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.170: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.171: 
	TooltipField: 
	TooltipField: 
	ikona.172: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.173: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.174: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	ikona.175: 
	TooltipField: 
	ikona.176: 
	TooltipField: 
	ikona.177: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 
	TooltipField: 


