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UNTANGLING TRIGONAL DIAGRAMS

ERWAN BRUGALLÉ, PIERRE-VINCENT KOSELEFF, AND DANIEL PECKER

Abstract. LetK be a link of Conway’s normal form C(m), m ≥ 0, or C(m,n)
with mn > 0, and let D be a trigonal diagram of K. We show that it is possible
to transform D into an alternating trigonal diagram, so that all intermediate
diagrams remain trigonal, and the number of crossings never increases.

1. Introduction

If we try to simplify a knot or link diagram, then the number of crossings may
have to be increased in some intermediate diagrams, see [G, KL2, A, Cr]. In this
paper, we shall see that this strange phenomenon cannot occur for trigonal diagrams
of two-bridge torus links and for generalized twist links. The next theorem is the
main result of this paper.

Theorem 1.1. Let K be a link of Conway’s normal form C(m), m ≥ 0, or C(m,n)
with mn > 0, and let D be a trigonal diagram of K. Then, it is possible to transform
D into an alternating trigonal diagram, so that all intermediate diagrams remain
trigonal, and the number of crossings never increases.

We also prove that if K is a two-bridge link which is not of these two types, then
K admits diagrams that cannot be simplified without increasing the number of
crossings. Our original motivation to tackle this problem is the study of polynomial
knots, their polynomial isotopies and their degrees, see examples in Figure 1, [BKP,
KP1, KP2, RS, V]. In particular this is why we prefer to consider our knots as long

41 = C(2, 2) 51 = C(5)

Figure 1. Polynomial representations of the knots 41 and 51

knots. As an application of Theorem 1.1, we determine in [BKP] the lexicographic
degree of two-bridge knots of Conway’s normal form C(m) with m odd, or C(m,n)
with mn positive and even.
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The paper is organized as follows. In Section 2, we recall Conway’s notation
for trigonal diagrams of two-bridge links, and their classification by their Schubert
fractions. In Section 3 we define slide isotopies as trigonal isotopies such that
the number of crossings never increases. We find necessary conditions for a two-
bridge link diagram to be simple, that is to say it cannot be transformed into a
simpler diagram by any slide isotopy. We use continued fraction properties to prove
Theorem 1.1 in Section 4. In Section 5 we show that if a two-bridge link is neither
a torus link nor a twist link, then it possesses awkward trigonal diagrams.

2. Trigonal diagrams of two-bridge knots

A two-bridge link admits a diagram in Conway’s open form (or trigonal form).
This diagram, denoted by D(m1,m2, . . . ,mk) where mi ∈ Z

∗ are integers, is ex-
plained by the following picture (see [Co], [M, p. 187]). The number of twists is

m1

m2 mk−1

mk

m1

m2

mk−1

mk

Figure 2. Conway’s form for long links

denoted by the integer |mi|, and the sign of mi is defined as follows: if i is odd, then
the right twist is positive, if i is even, then the right twist is negative. In Figure 2
the mi are positive (the m1 first twists are right twists). These diagrams are also

called 3-strand-braid representations, see [KL1, KL2].

The two-bridge links are classified by their Schubert fractions

α

β
= m1 +

1

m2 +
1

· · ·+
1

mk

= [m1, . . . ,mk], α > 0, (α, β) = 1.

Given [m1, . . . ,mk] =
α

β
and [m′

1, . . . ,m
′

l
] =

α′

β′
, the diagrams D(m1,m2, . . . ,mk)

and D(m′
1,m

′
2, . . . ,m

′

l
) correspond to isotopic links if and only if α = α′ and β′ ≡

β±1 (modα), see [M, Theorem 9.3.3]. The integer α is odd for a knot, and even for
a two-component link.

Any fraction admits a continued fraction expansion
α

β
= [m1, . . . ,mk] where all the

m′
i
s have the same sign. Therefore every two-bridge link K admits a diagram in

Conway’s normal form, that is an alternating diagram of the formD(m1,m2, . . .mk)
where all the m′

i
s have the same sign. In this case we will write L = C(m1, . . . ,mk).
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It is classical that one can transform any trigonal diagram of a two-bridge link into
its Conway’s normal form using the Lagrange isotopies, see [KL2] or [Cr, p. 204]:

(1) D(x,m,−n,−y) → D(x,m− ε, ε, n− ε, y), ε = ±1,

where m,n are integers, and x, y are sequences of integers (possibly empty), see
Figure 3. These isotopies twist a part of the diagram, and the number of crossings

m− 1

1− n

m− 1 n− 1

Figure 3. Lagrange isotopies

may increase in intermediate diagrams. Since we want to simplify links without
increasing their complexity, we introduce different isotopies in the following section.

3. Slide isotopies, simple and awkward diagrams

Definition 3.1. We shall say that an isotopy of trigonal diagrams is a slide isotopy
if the number of crossings never increases and if all the intermediate diagrams
remain trigonal.

Example 3.2. Some diagrams of the torus knot 51 = C(5): D(5), D(2, 1,−1,−2),
D(−1,−1,−1, 1, 1, 1), D(−2, 2,−2, 2), and D(2, 2,−1, 2, 2) are depicted in Figure
4. By Theorem 1.1, it is possible to simplify these diagrams into the alternating
diagram D(5) by slide isotopies only.

Figure 4. Some trigonal diagrams of the torus knot 51

Remark 3.3. (Göritz, 1934) Let D be a trigonal diagram of a link K. Let K̃ be the

image of K by a half-turn around the x-axis, and let D̃ be the xy-projection of K̃,

see Figure 5. The diagrams D and D̃ are diagrams of the same link K, nevertheless
they are generally not isotopic by a slide isotopy ([G]). It is often convenient to

identify the diagrams D and D̃.

Definition 3.4. We define the complexity of a trigonal diagram D(m1, . . . ,mk) as
c(D) = k +

∑
|mi| .

Definition 3.5. A trigonal diagram is called a simple diagram if it cannot be
simplified into a diagram of lower complexity by using slide isotopies only. A non-
alternating simple diagram is called an awkward diagram.

The next example shows the existence of awkward diagrams.
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m1

m2 mk−1

mk

m1

m2 mk−1

mk

Figure 5. The two diagrams D and D̃ with the same Conway notation.

Example 3.6. Let us consider the diagram D = D(4,−3). It is an awkward dia-
gram of the knot 62 = C(3, 1, 2): the only possible Reidemeister moves increase the
number of crossings. Of course, we can transform this diagram into an alternating
one using Lagrange isotopies, but in this process some intermediate diagrams will
have more crossings than D.

D(4,−3) 62 = C(3, 1, 2)

Figure 6. D(4,−3) is an awkward diagram of the knot 62 = C(3, 1, 2)

Remark 3.7. More generally, let m1, . . .mk be integers that are neither all positive
nor all negative, and such that |mi| ≥ 2, (|m1| ≥ 3 or m1m2 > 0) and (|mk| ≥ 3
or mk−1mk > 0) . Then the diagram D(m1, . . . ,mk) is awkward. In fact the only
Reidemeister moves that can be applied increase the number of crossings. Kauffman
and Lambropoulou call such diagrams hard diagrams, see [KL2].

Proposition 3.8. Let D = D(m1, . . . ,mk), k > 1 be a simple trigonal diagram.
Then we have

(i) |m1| ≥ 2; |mk| ≥ 2; mi 6= 0, i = 2, . . . , k − 1;
(ii) m1m2 > 0 or |m1| ≥ 3; mk−1mk > 0 or |mk| ≥ 3;
(iii) for i = 2, . . . , k, mi−1mi 6= −1;
(iv) suppose that |mi| = 1, then

(a) if mi−1mi < 0, then i ≤ k − 2, mimi+1 > 0, and mimi+2 > 0;
(b) if mimi+1 < 0, then i ≥ 3, mi−2mi > 0, and mi−1mi > 0.

Proof.
(i) the slide isotopy D(x,m, 0) → D(x) diminishes the complexity, consequently
mk 6= 0, and similarly m1 6= 0. The slide isotopy D(x,m, 1) → D(x,m + 1) dimin-
ishes the complexity, see Figure 7. Consequently mk 6= 1 since D is simple. We
also have mk 6= −1, and similarly m1 6= ±1. The slide isotopy D(x,m, 0, n, y) →
D(x,m+ n, y) shows that mi 6= 0.
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m m+ 1

Figure 7. The slide isotopy D(x,m, 1) → D(x,m+ 1)

(ii) Let us show that if |mk| = 2 then mkmk−1 > 0. Suppose on the contrary
that, for example, mk = −2 and mk−1 > 0. Then the slide isotopy D(x,m,−2) →
D(x,m − 1, 2) decreases the complexity of D, see Figure 8. This contradicts the

m− 1 m− 1

m− 1

Figure 8. The slide isotopy D(x,m,−2) → D(x,m− 1, 2), m > 0

simplicity of D. Similarly, we see that if |m1| = 2 then m1m2 > 0.

(iii) Consider the slide isotopyD(x,m,−1, 1, n, p, y) → D(x,m−n,−1, 1+p, y), see
Figure 9. When (p, y) = ∅, this isotopy becomesD(x,m,−1, 1, n) → D(x,m−n−1).
It lowers the complexity, and consequently a simple diagram cannot be of the form

m

n

p

m

−n

p

m− n p+ 1

Figure 9. The slide isotopy D(x,m,−1, 1, n, p, y) → D(x,m −
n,−1, 1 + p, y)

D(u,−1, 1, v).

(iv) By (i) we have i 6= 1 and i 6= k. Let us assume that mi−1mi < 0, the proof
in the case mimi+1 < 0 being entirely similar. The slide isotopy D(x,m,−1, n) →
D(x,m−1,−n+1) depicted in Figure 10 shows that i ≤ k−2. Since D is minimal,
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the slide isotopyD(x,m,−1, n, p, y) → D(x,m−1,−n, 1, p−1, y) depicted in Figure
11 implies that p < 0, that is mimi+2 > 0.

m− 1 n m− 1 −n

m− 1

−n+ 1

m− 1

−n+ 1

Figure 10. The slide isotopy D(x,m,−1, n) 7→ D(x,m− 1,−n+
1), m > 0

Now, assume that mimi+1 < 0. Let i be the maximal integer such that there
exists a simple diagram D(m1, . . .mk) of length k such that |mi| = 1, mi−1mi <
0, and mimi+1 < 0. Once more we use the slide isotopy D(x,m,−1, n, p, y) →
D(x,m − 1,−n, 1, p − 1, y) depicted in Figure 11. Since p = mi+2 > 0 and n =
mi+1 > 0 by assumption, the new diagram contradicts the maximality of i. 2

m− 1 n

p

m− 1 −n

p

m− 1

−n p

Figure 11. The slide isotopy D(x,m,−1, n, p, y) → D(x,m −
1,−n, 1, p− 1, y), m > 0, p < 0

The condition (iv) of Proposition 3.8 asserts that a simple diagram cannot contain
any subsequence ±(m,−1, n), m,n > 0. Nevertheless, it can contain subsequences
of the form ±(m,−1), m > 1. However, the next corollary shows that this phe-
nomenon can be avoided.

Corollary 3.9. Let D be a trigonal Conway diagram of a two-bridge link. Then it
is possible to transform D by slide isotopies into a simple diagram D(m1, . . . ,mk)
such that for i = 2, . . . , k, either |mi| 6= 1, or mi−1 mi > 0.
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Proof. Let us suppose that each simple diagram deduced from D by slide isotopies
contains subsequences of the form ±(m,−1), m ≥ 2, and let µ 6= 0 be the minimum
number of such subsequences.

Among all simple diagramsD(m1, . . . ,mk) deduced fromD by slide isotopies and
possessing µ such subsequences there is a minimal integer r such that (mr−1,mr) =
±(m,−1), m ≥ 2. By Proposition 3.8, (iv) we have r ≤ k − 2 and our diagram is
of the form ∆ = D(x,m,−1, n, p, y), where n, p < 0. The use of the slide isotopy
depicted in Figure 11: ∆ → ∆′ = D(x,m − 1,−n, 1, p − 1, y), contradicts the
minimality of either µ or r. 2

4. Proof of Theorem 1.1

The proof is based on some arithmetical properties of the continued fractions
[m1, . . . ,mk] related to simple diagrams D(m1, . . . ,mk), that are consequences of
Proposition 3.8 and Corollary 3.9.

Lemma 4.1. Let x be a rational number defined by its continued fraction expansion

x =
α

β
= [m1,m2, . . . ,mk], m1 > 0, |mk| ≥ 2, mi ∈ Z∗, α ≥ 0. Suppose that for

i = 2, . . . , k, we have either |mi| 6= 1 or mi−1mi > 0. Then the following hold:

(a) x > m1 − 1, and consequently α > 0 and β > 0;
(b) if k ≥ 2 and (mk−1mk > 0 or |mk| ≥ 3), then α ≥ 2 and β ≥ 2;
(c) if in addition we have m1 ≥ 2 and (m1m2 > 0 or m1 ≥ 3) then x > 2;
(d) if in addition we have k ≥ 3 and (|m2| 6= 1 or m2m3 > 0), then α 6≡

1 (modβ).

Proof.

(a) We use an induction on k. If k = 1, then we have x = m1 > m1−1, and the result
is true. Let us suppose that k ≥ 2. If m2 > 0, then we have y = [m2, . . . ,mk] > 0,
and then x = m1 + 1/y > m1 > m1 − 1. If m2 < 0, then by assumption −m2 ≥ 2.
By induction we have y = [−m2, . . . ,−mk] > 1, and then x = m1 − 1/y > m1 − 1.

(b) We use again an induction on k. If k = 2, then there are two cases to consider.
If m2 > 0, then we have β = m2 ≥ 2, and α = m1m2 + 1 ≥ 2.
If m2 < 0, then we have |m2| ≥ 3. Then β = |m2| ≥ 3 and α = m1|m2| − 1 ≥

3m1 − 1 ≥ 2.

Let us suppose now that k ≥ 3. Let x = m1+q/p, where p/q = [m2, . . . ,mk], p > 0.
If m2 > 0, then β = p ≥ 2 and q ≥ 2 by induction, and then α = m1p+ q ≥ 2.

If m2 < 0, then −m2 ≥ 2. By induction, [−m2 − 1,−m3, . . . ,−mk] =
p+ q

−q
is

such that p + q ≥ 2 and −q ≥ 2. Consequently, we obtain β = p ≥ 2 − q ≥ 4 ≥ 2,
and α = m1p+ q = m1(p+ q) + (m1 − 1)(−q) ≥ 2m1 ≥ 2.

(c) If m2 > 0, then x > m1 ≥ 2. If m2 < 0, then m1 ≥ 3, and then x > m1 − 1 ≥ 2
by (a).

(d) If m2 < 0, then −m2 ≥ 2 and as in the proof of (b) we get p+q ≥ 2 and −q ≥ 2,

where
p

−q
= [−m2, . . . ,−mk] > 1. Consequently we obtain p ≥ 2 − q > 1 − q > 0

and then q 6≡ 1 (mod p). As α = m1p + q and β = p, the result is proved in this
case.
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Suppose now that m2 > 0, and consider
u

v
= [m3, . . . ,mk] with u > 0. In

particular, we have β = m2u+ v, and α = m1β + u ≡ u (mod β).
If m3 > 0, then v > 0 and so β > u. If k = 3, then u = m3 ≥ 2. If k > 3, then

we have u ≥ 2 by (b). Hence β > u ≥ 2, and so α ≡ u 6≡ 1 (modβ).

If m3 < 0, then m2 ≥ 2, −m3 ≥ 2, and v < 0. We have
u

−v
> 1 by (a), i.e.

u > −v. Hence we have β ≥ 2u+ v > u ≥ 2, and we obtain α ≡ u 6≡ 1 (modβ). 2

Proof of Theorem 1.1. Let D(m1, . . . ,mk) be a simple diagram deduced from D
by admissible isotopies, and satisfying the condition of Corollary 3.9. Recall that

it also satisfies all conclusions of Proposition 3.8. We write
α

β
= [m1,m2, . . . ,mk]

with α > 0 and (α, β) = 1. Without loss of generality, we may assume that both
m and n are nonnegative.

Let us first consider the case when K is the torus link C(m). By the classification
of torus links by their Schubert fractions, we have α = m and β = 1 (modm). If
k ≥ 2, then Lemma 4.1 (b) implies that |β| ≥ 2 so |β| ≥ m − 1. But then, by
Lemma 4.1 (c), we would have α = m > 2|β| ≥ 2m− 2 so m ≤ 1. Hence we obtain
k = 1, which proves the result.

Now, let us consider the case when K is the twist link C(m,n) with m ≥ 2 and
n ≥ 2. Then we have α = mn + 1, and either β ≡ n (modα) or β ≡ −m (modα).
Lemma 4.1 (c) implies that α > 2|β|, from which we deduce that β = n or β = −m.
Consequently we have α ≡ 1 (modβ), which implies by Lemma 4.1 (d) that k = 2.

By Proposition 3.8 (i), we have |m1| ≥ 2 and |m2| ≥ 2. If m1m2 < 0, then

we would have
α

β
=

|m1m2| − 1

±m2

. In particular we would have α ≡ −1 (modβ),

which is impossible since α ≡ 1 (modβ) and |β| = |m2| ≥ 3 by Proposition 3.8 (ii).
Consequently we have m1m2 > 0 and the diagram is alternating. 2

5. Some awkward trigonal diagrams

The following result shows that if a two-bridge link is not of the Conway nor-
mal form C(m), or C(m,n) with mn > 0, then it possesses an awkward trigonal
diagram.

Proposition 5.1. Let k ≥ 3 and let K be a two-bridge link of Conway normal form
C(m1, . . . ,mk), mi > 0, m1 ≥ 2, mk ≥ 2. Then K possesses an awkward trigonal
diagram.

Proof. Let [mk−2,mk−1,mk] = [m, a, n]. Using the Lagrange identity we have
[m, a, n] = [m + 1,−1, 1 − a,−n]. If a = 1, then this last continued fraction is
[m+ 1,−n− 1]. Therefore K admits the trigonal diagram

D(m1, . . . ,mk−3,m+ 1,−1, 1− a,−n), if a > 1;
or D(m1, . . . ,mk−3,m+ 1,−n− 1) if a = 1.

These two diagrams are awkward (see Figure 12). 2

Furthermore, we have a stronger result.
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m 1− a

−n

m

−n

Figure 12. The awkward diagramsD(x,m+1,−1, 1−a,−n) and
D(x,m + 1,−n− 1).

Theorem 5.2. Let k ≥ 3 and let K be a two-bridge link of Conway normal form
C(m1, . . . ,mk), mi > 0, m1 ≥ 2, mk ≥ 2. Then K possesses a hard trigonal
diagram.

Proof. Using the identity
az + 1

(a− 1)z + 1
= [2,−2, 2, . . . , (−1)a−22︸ ︷︷ ︸

a−1 terms

, (−1)a−1(z + 1)],

we obtain

[m, a, n] = [m+1,−
an+ 1

(a− 1)n+ 1
] = [m+1,−2, 2,−2, . . . , (−1)a−12, (−1)a(n+1)],

and we deduce that

[m1, . . . ,mk] = [x,m, a, n] = [x,m+ 1,−2, 2, . . . , (−1)a−12, (−1)a(n+ 1)].

Therefore, the diagram D = D(x,m + 1,−2, 2, . . . , (−1)a−12, (−1)a(n + 1)) is a
diagram of K, and it is a hard diagram by Remark 3.7. 2

Remark 5.3. Theorem 1.1 shows that the trivial knot has no trigonal awkward
diagram. On the other hand, Göritz found an awkward diagram of the trivial knot
in [G], and Kauffman and Lambropoulou constructed many such examples (see
[KL2, A, Cr]).
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Mathématique, 49, 357-410, (2003)

[KL2] L. H. Kauffman, S. Lambropoulou, Hard unknots and collapsing tangles, Introductory

lectures on knot theory, Ser. Knots Everything, 46, World Sci. Publ., Hackensack, 187-
247, (2012)

[KP1] P. -V. Koseleff, D. Pecker, On polynomial Torus Knots, Journal of Knot Theory and its
Ramifications, Vol. 17 (12) (2008), 1525-1537
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