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Phase-type aging modeling
for health dependent costs

Maria Govorun*  Guy Latouche! Stéphane Loisel*
November 5, 2014

Abstract

In the present paper we develop recursive algorithms to evaluate
the distribution of the net present value (abbreviated as "NPV”) of
a health care contract. The duration of the program is a random
variable representing the lifetime of an individual. We suggest a dis-
crete time phase-type approach to model individual health care costs.
In this approach, annual health care costs depend naturally on the
health state of the individual. We also derive the distribution of the
NPV assuming that annual health care costs are iid random variables.
We demonstrate analytically that, under special parametrisation, the
model with iid costs gives a similar expectation of the NPV to the
one of the model with health dependent costs. We propose techniques
to evaluate the impact of health related events and demonstrate it on
numerical examples.

Keywords: Health dependent costs, net present value, phase-type
aging process, Markov reward model, cost-effectiveness of a new treat-
ment, cost of bad health

1 Introduction

Many life insurance companies are exposed to long term care risks. In op-
position to classical health insurance where contracts are renewed every year
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and most lines of business are short-tailed, management of long term care
contracts is complicated as it involves uncertainty about life and health of an
individual over a long-term horizon. It is not only the uncertainty about the
remaining life length which complicates the estimation of future health costs,
but also the uncertainty related to the quality of this remaining lifetime,
which is highly affected by the progress of medical science, by economical
factors, etc.

Modelling health care costs is a problem of great interest in health in-
surance and health economics (Zhao and Zhou [2012]). The estimation of
the costs plays a key role in pricing, reserving and risk assessment in health
insurance, as well as performing cost-effectiveness and cost-utility analyses
in health economics.

It is quite common to use multi-state Markov models for the problems
arising in long term care. For example, in Guibert and Planchet [2014]
the authors use a Markovian approach to construct inception rates with
competing risks in long term care insurance where multiple pathologies are
likely to cause disability. Also, Markovian models are widely used for the
estimation of health care costs over a fixed period of time, where the changes
of individual health states are taken into account. Specifically, it is assumed
that health care costs depend on an individual health state, which is modelled
by a Markov chain. In Castelli et al. [2007], Gardiner et al. [2006] and
Zhao and Zhou [2012] the Markov chain has a fixed number of states, which
is a subjectively chosen parameter, and does not depend on the age of an
individual. The health care cost related quantities that are studied in Castelli
et al. [2007], Gardiner et al. [2006] and Zhao and Zhou [2012] slightly differ
from each other, but all are computed as expected values. In particular,
Gardiner et al. [2006] work in continuous time and determine the expected
net present value (abbreviated as "NPV”) of health care costs over a fixed
time horizon. In the present paper, we are focused on the distribution of
NPV.

We develop models for NPV with our underlying assumption being that
the lifetime and health of an individual are described by the phase-type dis-
tribution. Our motivation to use a phase-type representation for the lifetime
of an individual came from Lin and Liu [2007]. Specifically, the authors define
a finite-state continuous-time Markov process to represent the hypothetical
aging process of an individual, this is called a phase-type aging model (below,
"PH-aging model”). Aging is described as a process of consecutive transitions
from one health state to another until death. One important property of this
model is that the states have some physical interpretation, and their number
is not chosen arbitrarily, it depends on mortality data through a well specified
algorithmic procedure. Another important characteristic of the model, which
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makes it different from other phase-type models for health, and very relevant
for actuarial applications at the same time, is that it provides a connection
between the health state of an individual and his/her age. In our opinion,
this property opens new horizons in health insurance and health economics.
The model has been employed by different research groups: Su and Sherris
[2012] use the model to study the impact of mortality heterogeneity on the
insurance market, Govorun and Latouche [2014] and Govorun et al. [2011]
use the model to estimate the financial impact of health on profits and losses
of a pension fund.

We construct two discrete-time models designed to determine the distri-
bution of NPV over a random phase-type horizon which is the lifetime of an
individual. In our Markov reward model model, similarly to Castelli et al.
[2007], Gardiner et al. [2006] and Zhao and Zhou [2012], we naturally assume
that the annual health care costs depend on the health of an individual and
that the value of the cost is a random variable or constant for each given
health state. However, in reality not all types of health care costs are aging
dependent. There is almost no age dependence for dental care costs as well as
for costs related to a health damage caused by accidents. This is why in our
second model we assume that the annual health care costs are independent
and identically distributed random variables. In insurance, this approach
might be useful to estimate personal accident type of policies. The model
with iid costs is also useful when there is not enough data to evaluate the
Markov reward model.

In the two models, NPV is a sum of discounted random health costs,
where the number of terms in the sum has a phase-type distribution. In
the absence of discounting and if the health costs are iid, in order to find
the distribution of NPV one may apply the algorithm suggested by Eisele
[2006], which is a natural extension of the widely used procedure introduced
by Panjer [1981]. In our work, we develop a method that enables us to write
similar algorithms for the distribution of NPV in both models. We suggest
a parametrization procedure, and we show that, under a special choice of
parameters, the two models give approximately same results for the NPV.

We provide numerical illustrations to show the flexibility of the Markov
reward model for costs. In our first example, we use the model to estimate
the financial impact of longer survival in bad health states. In the second
example we demonstrate the applicability of the model in health economics
by estimating cost-effectiveness of different treatment strategies (see Drum-
mond et al. [2005]). In the third example, we study the impact of market
fluctuations by performing sensitivity analysis with respect to discounting.

The paper is structured as follows. In Section 2, we describe the phase-
type assumption for the lifetime by presenting the model of Lin and Liu
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Figure 1: Phase-type aging process

[2007]. In Section 3, we introduce our model with random health dependent
costs and consider a special case when cost is a constant for a given state.
We also present the model with iid costs, and in Section 4 we suggest a
parametrization procedure for both models for costs that results in a similar
expected NPV. In Section 5, we demonstrate the flexibility of the phase-type
approach on numerical examples. We present our conclusions and future
research directions in Section 6.

2 Phase-type lifetime

Lin and Liu [2007] define a finite-state continuous-time Markov process to
model the hypothetical aging process of an individual. Aging is described as
a process of consecutive transitions from one health state to another until
death, as shown on Figure 1. There, the system has n phases with the
transition rates \; from ¢ to ¢ + 1, for : = 1,...,n — 1, and the transition
rates ¢; to the absorbing phase, which is interpreted as the state of death of
the individual: the time to reach the absorbing phase is interpreted as the
lifetime of the individual.
The generator is

A g
o= g ¢ )
where ¢ = [ql Q@ .. qn}T and
[— (A1 +q1) A1 0 .. 07
0 —<)\2—|—QQ) )\2 0
A= 0 0 —(Ns+q) - 0. (2)
i 0 0 0 cee —Qn

Newborns start from state 1, thus the initial probability vector is [QT,O}

with a = [1 0 ... O}T. The transition rates have a special structure, it
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suffices here to mention that they accommodate a developmental period for
very young ages and a period of higher accident probability in the mid-range
of childhood. Some of the rates are constant, thus although the model poten-
tially consists of a large number of parameters, 9 to 13 different parameters
are often enough to give a good approximation of mortality data. For a more
detailed explanation of the parameters structure and fitting, we refer the
reader to Lin and Liu [2007] and Govorun and Latouche [2014].

The distribution of the Markov process at time ¢ is given by aTe®!, which
is equal to [aTeM, 1 —aTeM1], this means the following: (ae®); is the
probability to survive for t years and to be in the phase 7 at time ¢, 1 —aTe’1
is the probability to have died before time .

One important feature of the model, which makes it different from other
phase-type models for health, is that it provides a connection between the
age of an individual and his/her health states. Specifically, if we denote the
health distribution at age = as 7, we obtain from the model that

IT <& eA:vl) 1 T A:z: (3)

T

Therefore, the time until death of an individual of age = follows the phase-
type distribution with parameters (7,,A) (see Latouche and Ramaswami
[1999]) and the phase distribution of the individual after ¢ units of time is
7TeAt The probability that such an individual survives for ¢ units of time is

given by
S, (t) = TrelM]. (4)

Denote by L the expected remaining life for an individual in physiolog-
ical state ¢. It is given by

where o is a row-vector of size n with
O‘z@ =1, a§i) =0 for j # 1. (5)

The expected remaining lifetime for an individual aged x is

Ly =101 —e)71, (6)

3 Markov Reward Model for health costs

Our main objective is to obtain the distribution of the NPV of a health care
contract given by

L]
S=> v'X, (7)
t=1
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where [L] is the integer number of remaining years of life, and X; is the
health care cost in year t. The coefficient v is allowed to take any positive
value including greater than one, so as to include inflation, interest force, the
increase of health care prices, etc.

Denote by 9, the health state of the individual at time ¢. The distribution
of ¢ is given by

Pl =1] = (ITeAt)Z., i1=1,...,n.

Here, A is the generator of a phase-type aging process of a two-diagonal (see
(2)) or any other structure, (1); = P [¢y = i] is the health state distribution
of the individual at time 0. From Eq. (3), 7 = 7, for an individual aged z.

We focus on the distribution of S, which we denote by Hg(k), k& > 0.
The problem of determining Hg(k) is equivalent to the problem of finding
the conditional distribution given the health state at time 0, because Hg(k) =
71 H(k), where

H(k): Hi(k) =P[S<k|vyo=1i], i=1,....,n (8)

Denote by y the conditional probability to die in the first year, given the
health state at time 0. It is complement to the one year survival probability,
so that

y=1—¢€"l. 9)

For annual costs X; we define a Markov reward model (abbreviated as
"MRM?”). It is convenient to introduce the model as a triplet (AU{D}, W, P),
where

1. AU{D} is the set of possible states: A is the set of n health states
from the aging model, { D} is one absorbing state for death;

2. W is the set of n+1 variables representing annual cost in different health
states. We assume that, fori € A, W,;, i = 1,...,nis a discrete random
variable: it is defined on a given set C = {cy,...,cpr} of non-negative
values with a distribution which may depend on i. For i € {D}, W, 1
is zero with probability one. We denote by F'¥(k) and by f@ (k) the
cumulative distribution function and the probability mass function of
Wi, respectively.

3. P is the one year transition probability matrix for the states, which is
constructed as follows

P-4 (10)

where y is given by Eq. (9).
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Theorem 3.1 Suppose that {X;} follows the Markov Reward model defined
by the triplet (AU{D}, W, P). The conditional distribution H(k) of the net
present value S, defined by Eq. (7), is

k’—Cj

M
H@-<k:>:yiF<i><k>+<eA><@-,->Zf<i><cj>ﬂ( ) E>0, im1.m,
j=1

v

where y is given by Eq. (9).

Proof. We apply a renewal argument to obtain the recursive expression for
H (k). We notice that

if [L]=1 then S=Xi, (11)
if [L]>2 then S=X,+uvS, (12)

where S is a random variable with the same transition matrix as S, but with
a different initial health state vector. Thus, we have

Hi(k) =P[[L] =1|¢o=1i] P[X1 < k|py=i]+
> Plér=s|¢o=i]P[X1+0S <k|d) =5, =]

se{A}
M k—c;
:yzF(l)(k}> —+ Z <€A)(i,s) Z f(l) (Cj)Hs ( v ])
se{A} j=1
. M . k — c.
=)+ () D e (P2,
]:

|
In the theorem below we determine a closed form expression for the ex-
pectation of S. Denote by p(-) the spectral radius operator.

Theorem 3.2 If v # p~'(eM), the expectation of S in the Markov reward
model (AU{D}, W, P) is

E[S] =" — ve®) " E[W]],

where T 1is the initial health state distribution, A is the generator of the cor-
responding phase-type aging process.

Proof. Denote by g(¢) = E[(®] the probability generation function of S.
We have
9(¢) = 1" (), (13)
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where ¢(¢) is a column vector of size n with 04(¢) = E[(% | ¢y = i], i € A

and thus
dg(¢) 7 9a(()

We have
0i(()= > Plér=3jldo=1]E[(°]do=1i,¢1 =]
jEAU{D}
= "Plgr =gl =] B¢V g =i, 1 = j]
jEA
+ Y Pl =jlgo=i] E[¢* ¢ =i,61 = j]
je{D}
= [ D Plor =l oo =i E[(¢)* |61 = ] + J:(Qy
jEA
= fi(O) D (€M6n05(C) + fi(Qvs (15)
jEA
where f;(¢) = E[¢™]. In matrix form, we write
a(¢) = T(Q)eta(¢") + Ty (16)
with
f1(€) 0
T =1 : (17)
0 fa(€)
Therefore,
8%({4.) — T/<C>€AQ(CU) + UCv71T<C>€A agaiz) + Tl(C)g (18)
z=(V

which we evaluate at ¢ = 1 to obtain, using o(1) = 1,

8Q(C) _An 8Q(Z)
i T'(1)(e*L +y) +vet 9 |
with
EWy] ... 0
W= = - :
0 EW,]
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After rearranging the terms, using Eq. (9), we obtain

da(()

=22 = (I —veTTEWY]. (19)

9 ey A
Clearly, the inverse of (I — vet) exists when v # p~!(e*). By combining
Eq. (14) and Eq. (19) we obtain the statement of the lemma. u

A particular case of the MRM is the deterministic Markov reward model
(AU{D}, W, P), where W is the vector of size n+ 1 of constant health care
costs for each state so that

W; >0, ificA, and W;=0, if i € {D}. (20)

The recursive formula for S in this case is given by the corollary below and
results directly from Theorem 3.1.

Corollary 3.3 Suppose that X; follows the Markov Reward Model (A U
{D},W, P) with W defined by (20). The conditional distribution H(k) of
the net present value S of a health care contract defined by Fq. (7) is such
that

k—W;
10 =yt +@eott (F0) 0 kzo0

where y is given by Eq. (9), i = 1,..,n. In particular,
if Wy 20 then H;(0)=0,
if Wy=0 then H;(0)=y;+ (") H(0).

The closed form expression for the expectation of S is given in the corollary
below and results directly from Theorem 3.2.

Corollary 3.4 Ifv # p~l(eM), the expectation of S for the Markov Reward
Model (AU{D}, W, P) with W defined by (20) is

E[S] = 77(I — ve®) "W, (22)

where T 1is the initial health state distribution, A is the generator of the cor-
responding phase-type aging process and p(-) is a spectral radius operator.

Model with iid costs

For some types of health care costs it is convenient to assume that annual
health care costs X; are random, independent and have the same distribution.
We denote by X a random variable with this common distribution. This
assumption leads to the following theorems.
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Theorem 3.5 (iid costs) Suppose that X, are discrete iid random variables
distributed as X that takes M non-negative possible values, X € {c1,...,car},
with F(k) = P[X < k] and f(k) = P[X =k]. The conditional distribution
H(k) of the net present value S of a health care contract defined by Eq. (7)
s such that

—c
o,(k) =y, F (Z)Zf@ ( 9) k>0,  (23)
where y is given by Eq. (9), i =1,...,n. In particular,

Hi(0) = f(0)a®e(I — f(0)et) ™!
where o9 is given by Eq. (5).
Proof. The proof is based on the representation of S given by (11) and (12)
and analogous to the proof of Theorem 3.1 with F® (k) = F(k) and f® (k) =

f(k) fori=1,...,n. If k =0, this implies that all costs X, t =1, ..., [L] are
equal to zero and, therefore,

=Pl = Za@ vy

)GAZGA_
=/f(0)a" ( — f(0)eh)™!

We note that the existence of the inverse of (I — £(0)e?) is guaranteed by
f(0) being at most one and p(e*) being less than one. [

Theorem 3.6 If v # p~'(eM), the expectation of S in the model with iid
costs X is

E[S] = 7(I —ve)'1E[X]. (24)

Proof. If v = 1, we use the independency between X and L, and Eq. (6) to
obtain

> X,| =E[X|E[L] = £"(I - ") '1E[X].

If v # 1, the expectation of S is computed as follows

L)
E[S]|=E|) v'X, :E[X]E[

t=1

= (1—g(v)EIX], (25)

1 — pl& 1
1—v

1—vw
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where g(v) is the generating function of a discrete phase-type random variable
given, for example, in Latouche and Ramaswami [1999] as

9(0) = or (T — v (1~ M),
One can represent 1 as 77(1 — ve®)™1(I — ve)1. Therefore,

1—g(v) =151 —ve) M I — ve™)L —vrT (I —ve®) (1 — eP1)
= 77T —ve®) ™M — ve® — vl 4+ vet)l

= (1 —v)r"(I —ve™) 1.

This result together with Eq. (25) gives us the statement of the lemma. m

4 Approximation and parametrization

In this section, we discuss interesting parametrization aspects of the Markov
Reward Model and the model with iid costs. Often, in practice there is not
enough data to estimate the Markov Reward Model (AU {D}, W, P), so we
focus on the parametrization of the MRM (AU {D}, W, P) with constant
costs for a given state. The discussion about the parametrization of the
general MRM we refer to Govorun et al. [2014].

Denote by Y, the health care cost for age x, observed from the data,
and denote by M an integer such that YV, < M (with probability one) for
all x. In order to fully parametrize the Markov Reward Model, one needs to
determine a value of the cost W; for every health state i € A. One method to
determine these values is to match the expectations of the costs for all ages.
For example, one can solve numerically the linear optimization problem

min||[ TW 4 — J113, (26)
Wy

where 7 = [17]s—1..00 and J = [E[Yy]]s=1..00. We note that, as shown
in Lin and Liu [2007], the number of states in A should be around 200 for
a good approximation of mortality rates. The number of ages in data can
not exceed, in general, 120. This is why the unconstrained optimisation
(26) leads to numerous and physically unlikely situations. Thus, we have
found it useful to impose the following natural constraint W, : 0 < W; <
Wipr <M, 1=1,...,n—1. We find it important to underline here that if we
consider health related expenditures Y, that have a non decreasing trend by
age, this property together with the ordering constraint provides one with a
good looking solution to (26).
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For the Model with iid costs one needs to determine a common distribu-
tion for the costs X of successive years. An individual aged x in the beginning
of a health care contract will be alive for unknown number of years, which
signifies that X might be considered as a combination of health care costs
for future years of life:

j=x

The weights [3; can be chosen in many different ways that we discuss later
in the section. In the proposition below, we show that there exists a spe-
cial choice of §; in the Model with iid costs that gives approximately same
expectation of S as in the Markov Reward Model.

Proposition 4.1 Denote by S the NPV in the MRM model with (26) and
by SB) the NPV of the health care costs in the model with #d costs with
parametrization (27). If the weights B, j =0, ..,00 are chosen such that

UjS:vU)
fi= e, (28)
>_vS(5)
then -
BLS) - BISP) = Y- 07S:) (TWa)ews = BlYans]) . (20)

The difference between the expectations only depends on the quality of the
fitting (26).

Proof. We first write the expectation of S in the MRM as

E[S] = Z virTeMW , = Z virteM1rl W, (30)
i>0 i>0

=) VS () TW )i, (31)
i>0

where (TW ,); is the average health cost at age j from Eq. (26). Secondly,
we derive the expectation of S in the Model with iid costs and weights 3;



Phase-type aging modeling for health dependent costs. 13

chosen as in Eq. (28)

E[S®)] = EIXP] " v'S, (i) (32)
_ <Z @Emﬂ]) <Z v@'sm@))
= Z 'U]Sa:(j)E[Yx-i-j] (33)

~

Clearly, in Eq. (31) and Eq. (33) the terms (TW 4),4; and E[Y,4,] are only
approximately the same as a result from the minimization procedure (26). m

We give to f3; the interpretation of "the importance of each year”. The
weights (28) suggest that the importance of future years depends on the
survival probabilities and on economical factors. If v < 1, future years have
less importance; if v > 1, they get more weight. Depending on particular
needs and purposes, ; can be chosen uniform or independent of discounting
(by setting v = 1 in (28)).

5 Cost of health. Numerical illustrations.

There are many health and non-health related events that may lead to sig-
nificant changes in future health development and, therefore, affect future
profits and losses of a health care contract. In this section, we present model
examples to demonstrate potential and sensitivity of the proposed Markov re-
ward model for costs. We provide our examples for the deterministic Markov
reward model (20), as one can naturally extend them to the general Markov
reward model case.

In our examples, we assume that health care costs Y, are available for
each age, from 0 to 100, as averages only. We take M from Section 4 to
be equal to 10 and assume that Y, has E[Yy] = 1, E[Yig] = 10 and E[Y}]
is linear in between. As our mortality model, we take the phase-type aging
model of Section 2 with parameters estimated in Lin and Liu [2007] for 1911
Swedish cohort of males with the number of states n = 200, and we consider
an individual aged 40 at time zero so that his initial health state distribution
Ty 1s given by (3) with x = 40.

We apply the fitting procedure (26) to the average costs E[Y,] by age
to determine the costs W , by state, which we present in Fig. 2. As we are
mostly interested in values of W , that provide a good fit to [Yx], we do not
give detailed comments about the obtained values of W ,, we only remark
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10~
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Figure 2: Health care costs W for states i € {A}
Markov reward model, M = 10, SW1911M

that the piecewise constant step structure is guaranteed by the constraint
W,y:0<W, <W;11 <10,i=1,....,n—1.

To give an impression of the fitting quality, in Fig. 3 we show E [Yw] and
compare it to (TW ,), for x = 1,...,100. One can observe that the fit of
average costs is quite good, especially for young ages. The total sum of the
squared differences between the average costs is 0.6242 with maximum cost
value being 10.

We compute the distribution of S from Corollary 3.3 with the obtained
values of W 4, and we present the distribution as a solid line in both Fig. 4
and Fig. 5 for v = 1 and v = 1.02, respectively. Below, we construct two
scenarios of future health development in order to examine the sensitivity of
the distribution.

Cost of living with bad health. A phenomenon, which becomes more
important with new developments in medicine and the accompanying change
in mortality, is that people survive longer in older ages and in bad health
states. To estimate the financial impact of such longevity, we suggest to
decrease by ¢ the mortality rates ¢;, ¢ = 1,...,n of the matrix A for the
last m states. In Fig. 4 we present the distributions of S, computed using
Theorem 3.3, taking v = 1 and m = 30 and different values of . One observes
from the figure that the decrease of mortality rates for the last 30 health states
leads to the change of the distribution starting with cost 200 approximately.
This indicates that the individuals who experience the change of mortality
rates also spend more than 200. This amount may be compared to the
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Figure 3: Expected health care costs for ages 1-100
M =10, SW1911M

expected cost until reaching state n — m. In our examples, the individuals
have age 40 at the start of the contract, which implies that their expected
health state is about 90. The average time spent in state i equals 1/|A;]
and the health cost in state ¢ is W;. Thus, the expected cost accumulated
from state 90 to state n —m = 170 is given by E@Z%o Wi /|Aii| ~ 209, which
confirms the observation.

Cost-effectiveness of a new treatment. Another problem that can
be analysed by the suggested approach and that might be of interest to
health economists, is the estimation of the financial impact of a new costly
treatment strategy. Let costs W , for health states represent average health
care costs of a general type, i.e. we assume that they include the costs of
drugs, treatments and all medical examinations. The invention of a new
expensive drug or an X-ray machine, for example, can increase the costs
significantly, and does not necessarily lead to a significant increase of life
length. Let us consider an example.

The average health state for 7, is around 90 out of 200, the average life
expectancy Ly given by (6) is 37.5, and the expected value of S is 413. We
show the cumulative distribution function of S as a solid line in Fig. 5.

We compute Lyg, E[S] and the distribution of S for increased costs W;
for states 1 to k by ¢ units and by decreasing the aging rates A;s in (2) by 0
percent for states k + 1 to n. For ¢ = 5, the results are
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Figure 4: Markov reward model: distribution of S
with mortality rates decreased for the last 30 states by ¢
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Ly | E[S]
no change 37.5 | 413
0 =10%, k=100 | 39.8 | 478
0 =50%, k=150 | 41.5 | 656

The table shows that the average price one needs to pay for extending the
lifetime by 2.3 years is 65 units or 15% of NPV, by 4 years - 243 units or 59%
of NPV. The corresponding distributions of S are shown in Fig. 5, as a dashed
and a dotted line, respectively. Clearly, the strategy with 6 = 50%, k = 150
is much more expensive than the other two strategies.

Sensitivity to discounting. As our third example, we examine the im-
pact of discount rate v on the distribution of NPV. In Fig. 6, we demonstrate
the distribution of S computed for v > 1, and in Fig. 7 it is computed for
v < 1. We give two different graphs because we need two different horizon-
tal scales. Both figures show that by increasing v we increase the difference
between the distributions, because, by increasing v, we increase the values S
can take, which leads to the shift of the probability mass to higher values.

Another observation is that whereas the distribution of S in Fig. 6 is quite
smooth, in Fig. 7 it is quite irregular. This can be explained by the following
argument. When v < 1, due to the presence of the powers of v in Eq. (7),
S effectively becomes a sum of a small number of random variables. For
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Figure 5: Markov reward model: distribution of S
for different treatment strategies with cost ¢ =5
v=1.02, W;, i € {A} from Fig. 2, SW1911M

example, if v = 0.7 already at time ¢ = 10 with maximal value of X; being
M = 10, the actual cost value does not exceed v'~"'M = 0.4. Furthermore,
in the Markov reward model the X;s are dependent random variables and
may take the same values for successive values of t due to the step structure
of costs for health states in our example (see Fig. (2)). This explains the
irregularity that we observe for S for v < 1. When v = 1.02, S is a sum of
a large number of random variables and, despite their dependence, we can
observe a smooth curve.

6 Perspectives

As our main contribution we indicate the development of two discrete time
mathematical models to determine recursive equations for the distribution of
NPV of a health dependent expense over a random phase-type time horizon.
The lifetime and health of the individual are described by the PH-aging
model with the generator @ (see (1)) of any structure.

Specifically, we have elaborated models with health dependent costs with
constant and random costs for a given state and a model with iid costs. We
have obtained recursive equations for the distribution of NPV by extending
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the procedure introduced in Panjer [1981]. For each of the models, we have
also derived closed form expressions for the expectation of NPV.

Furthermore, we have proposed a parametrization procedure and a tech-
nique to estimate the financial impact of two health related events. The first
one is related to longer survival in bad health states. In the second one, we
estimate the NPV and future life expectancy for different treatment strate-
gies, which we believe helps a decision process in health economics. We
remark that the constructed scenarios can be adapted to particular needs
and purposes, and can be used to describe more complex situations in health
insurance and health economics. We have also investigated sensitivity of the
NPV distribution to the discount rate.

We believe that the developed models and equations are general enough
and may be applied to any other quantities where total discounted payments
are correlated with the lifetime of an individual.

One natural extension of these results that we plan to examine in details is
the continuous time version of the proposed models. Clearly, continuous time
models would allow one for a more precise computation of the distribution
of NPV with flexible time horizons. Our main mathematical approach uses
fluid queue techniques, and it has been described in Govorun [2013].

Also, in our models we are interested in taking into account market fluc-
tuations by having a more complex time dependent model for the discount
rate v.
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