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Abstract

We present block algorithms and their implementation for the parallelization
of sub-cubic Gaussian elimination on shared memory architectures. Contrarily
to the classical cubic algorithms in parallel numerical linear algebra, we focus
here on recursive algorithms and coarse grain parallelization. Indeed, sub-cubic
matrix arithmetic can only be achieved through recursive algorithms making
coarse grain block algorithms perform more efficiently than fine grain ones.
This work is motivated by the design and implementation of dense linear alge-
bra over a finite field, where fast matrix multiplication is used extensively and
where costly modular reductions also advocate for coarse grain block decompo-
sition. We incrementally build efficient kernels, for matrix multiplication first,
then triangular system solving, on top of which a recursive PLUQ decomposition
algorithm is built. We study the parallelization of these kernels using several
algorithmic variants: either iterative or recursive and using different splitting
strategies. Experiments show that recursive adaptive methods for matrix mul-
tiplication, hybrid recursive-iterative methods for triangular system solve and
tile recursive versions of the PLUQ decomposition, together with various data
mapping policies, provide the best performance on a 32 cores NUMA architec-
ture. Overall, we show that the overhead of modular reductions is more than
compensated by the fast linear algebra algorithms and that exact dense linear
algebra matches the performance of full rank reference numerical software even
in the presence of rank deficiencies.
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1. Introduction

Dense Gaussian elimination over a finite field is a main building block in
computational linear algebra. Driven by a large range of applications in compu-
tational sciences, parallel numerical dense LU factorization has been intensively
studied for several decades which results in software of great maturity (e.g.,
LINPACK is used for benchmarking the efficiency of the top 500 supercomput-
ers). As in numerical linear algebra, exact dense Gaussian elimination is a key
building block for problems that are dense by nature but also for large sparse
problems, where some intermediate computations also involve dense linear al-
gebra:

- sparse direct methods, may switch to dense Gaussian elimination when
the fill-in becomes too large [30, §10.3];

- block iterative methods (like the block-Wiedemann or block-Lanczos algo-
rithms) also require dense linear algebra to handle the block projections.

Recently, efficient sequential exact linear algebra routines have been devel-
oped [12]. The kernel routines run over small finite fields and are usually lifted
over Z, Q or Z[X]. They are used in algebraic cryptanalysis [15, 3], computa-
tional number theory [27], or integer linear programming [18] and they benefit
from the experience in numerical linear algebra. In particular, a key point there
is to embed the finite field elements in integers stored as floating point numbers,
and then rely on the efficiency of the floating point matrix multiplication dgemm

of the BLAS. The conversion back to the finite field, done by costly modular
reductions, is delayed as much as possible.

Hence a natural ingredient in the design of efficient dense linear algebra
routines is the use of block algorithms that results in gathering arithmetic op-
erations in matrix-matrix multiplications [7]. Those can take full advantage of
vectorized SIMD instructions and have a high computation per memory access
rate, allowing to almost fully overlap the data accesses by computations and
hence deliver close to peak performance efficiency. A key feature of exact dense
linear algebra, is that fast matrix multiplication algorithms, like Strassen [28]
and Strassen-Winograd algorithms [16, 12] can be used with no concern of nu-
merical instability. The complexity improvement of these algorithms also gives
a significant speed-up in practice [12]. In order to benefit from these sub-cubic
time matrix multiplication algorithms, all other linear algebra computations,
including Gaussian elimination need to reduce to it by block recursive algo-
rithms. Hence, among the many variants of block algorithms, we only focus on
the recursive ones.

In a previous work [11], we presented our first investigations on the par-
allelization of exact dense Gaussian elimination for multicore computers. The
focus there was on exploring the variants of parallel exact Gaussian elimination
algorithms (block iterative or recursive, using slabs or tiles, etc) and showed
how and why the tile recursive variant outperforms the others.

We now focus in this manuscript on the building blocks on which these
elimination algorithms rely. Our approach is to also apply recursive algorithms
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with a task based parallelization, for these building blocks. We explore six vari-
ants for the parallelization of the matrix multiplication (five recursive variants
compared to the block iterative algorithm of [11]) and introduce a new hybrid
parallel algorithm for the triangular system solve with matrix right hand side.
We then recall the slab and tile recursive Gaussian elimination algorithms and
present their performance using these new building blocks.

The scope of this study extends more generally to the problem of paralleliz-
ing any set linear algebra routines based on sub-cubic time matrix arithmetic,
such as Strassen’s O(n2.81) algorithm. In particular, numerical linear algebra
based on Strassen’s algorithm (if numerical stability issues have been considered
acceptable) should clearly benefit from most of its results. Related work on the
parallelization of the sub-cubic numerical linear algebra include [1, 24, 6, 25, 2].

Our focus is on parallel implementations using various pivoting strategies
that will reveal the echelon form, or the rank profile of the matrix [21, 13].
The latter is a key invariant used in many applications such as Gröbner basis
computations [15] and computational number theory [27].

As the PLUQ decomposition reduces to matrix-matrix multiplication and
triangular matrix solve, we thus study several variants of the latter sub-routines
as single computations or composed in the higher level decomposition.

The sub-routines used for the computation of parallel PLUQ decomposition
are mainly:

• the fgemm routine that stands for Finite field General Matrix Multiplica-
tion and computes: C ← βC+αA×B where A, B, C are dense matrices.

• the ftrsm routine that stands for Finite field Triangular Solving Matrix
and computes: A← BU−1 where U is an upper triangular matrix, and B
a dense matrix (or A ← L−1B where L is a lower triangular matrix, and
B a dense matrix).

• the PLUQ routine that computes the triangular factorization P,L, U,Q =
A, where P and Q are permutation matrices, U is upper triangular and L
is unit invertible lower triangular.

Several schemes are used to design block linear algebra algorithms: the
splitting in blocks can occur on one dimension only, producing row or column
slabs [23], or both dimensions, producing tiles [5].

Algorithms processing blocks can also be either iterative or recursive. Fig-
ure 1 summarizes some of the various existing block splitting obtained by com-
bining these two aspects.

Finally, we study the impact of these cutting strategies with the implemen-
tation of parallel versions of the fgemm, ftrsm and PLUQ sub-routines. We use
the OpenMP library with task parallelization using two runtime implementations:
libgomp [22], the GNU implementation of the OpenMP Application Programming
Interface and libkomp an implementation of the OpenMP standard based on the
XKaapi library [17]. Expressing parallelism using tasks allows the programmer
to choose a finer grain parallelization. But the success of such an approach de-
pends greatly on the runtime system used. Indeed, the XKaapi library handles
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Slab iterative Slab recursive Tile iterative Tile recursive

Figure 1: Main types of block splitting

better parallelization with fine-granularity as we show in section 2 by compar-
ing the libkomp and libgomp runtime systems. However, over a finite field,
with a fixed number of resources, we show that parallelization’s priority is to
focus on finding the best number of threads to be executed rather than fixing a
fine-granularity.

Methodology of experiments

All experiments have been conducted on 32 cores Intel Xeon E5-4620 2.2Ghz
(Sandy Bridge) with L3 cache(16384 KB). All implemented routines are in the
fflas-ffpack library1. The numerical BLAS are ATLAS v3.11.4, OpenBLAS

v0.2.11, Intel-MKL sp1.1.106, LAPACK v3.4.2 and Plasma-Quark v2.5.0. We
used the XKaapi-2.1 version with last git commit: XKaapi 40ea2eb. The gcc
compiler version is 4.9.1 (supporting OpenMP 4.0), the clang compiler version is
3.5.0 and the icpc compiler version is sp1.1.106 (using some gcc 4.7.4).

In our experiments, we use the effective Gfops (Giga field operations per
second) metric, also used in [12, 25, 2] defined as

Gfops =
# of field ops using classic matrix product

time
.

This is 2mnk
time for the product of an m× k by a k × n matrix, and 2n3

3time for the
Gaussian elimination of a full rank n×nmatrix. We note that the effective Gfops
are only true Gfops (consistent with the Gflops of numerical computations) when
the classic matrix multiplication algorithm is used. Still this metric allows us
to compare all algorithms with a uniform measure: the inverse of the time,
normalized by an estimate of the problem size; the goal here is not to measure
the bandwidth of our usage of the processor’s arithmetic instructions.

In section 2 we detail the main parameters that we consider. In section 3
we study different iterative and recursive variants and cutting strategies for the
parallel matrix multiplication pfgemm and compare them with our best iterative
standard parallel matrix multiplication [11]. In section 4 we show three parallel
algorithms for the pftrsm routine: an iterative variant, a recursive variant and
a hybrid combination. We then study the impact of these variants when they
are composed in the PLUQ factorization, in section 5. Overall, our focus is on

1http://linalg.org/projects/fflas-ffpack
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the computation of echelon forms in the case of rank deficient matrices. We
show in this section that the performance of exact factorization can match that
of reference numerical software when no rank deficiency occurs. Furthermore,
even in the most heterogeneous case, namely when all pivot blocks are rank
deficient, we show that it is possible to maintain a high efficiency.

2. Ingredients for the design of parallel kernels

The parallelization of standard versions of basic linear algebra routines has
attained great maturity in numerical computation [26, 5]. Over a finite field,
while some aspects remain similar, the following particularities need to be con-
sidered:

Impact of modular reductions. Computations over a finite field are done, first, by
embedding the finite field elements in integers stored as floating point numbers.
Secondly, modular reduction operations are applied to convert back elements
over the finite field. To reduce the number of modular reductions, several mul-
tiplications can be accumulated before the reduction while keeping the result
exact. To maximizes the computational bandwidth, operations are grouped in
floating point matrix multiplications as much as possible, so as to benefit from
an optimized BLAS. This approach [10, 12] is only valid as long as the integer
computation does not exceed the capacity of the mantissa. For instance, in a
matrix multiplication over Z/pZ, with inner dimension n, the result and any
intermediate computation is bounded by n(p−1)2, provided that the algorithm
did not perform any other operation than additions and depth 1 multiplications.
Hence the computation with an m-bit mantissa is guaranteed to not overflow
as long as n(p− 1)2 < 2m.

Furthermore, in a block LU factorization algorithm, the output of a block
operation needs to be reduced modulo p. Hence the choice of a small block size
increases the overall number of modular reductions, and therefore the comput-
ing time. This is one argument in favor of a coarse granularity in our algorithms.
Table 1 taken from [11] shows the impact of the block size for iterative and recur-
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Tile Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4 log2 n)n2 − 1

2n log2 n− n

Table 1: Counting modular reductions in full rank block LU factorization of an n× n matrix
modulo p for a block size of k dividing n.

sive algorithms on the number of modular reductions. This table demonstrates
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that the number of modular reductions is smaller in the case of tile recursive LU
factorization, which is one motivation for the use of the tile recursive variant
over a finite field.

The impact of grain size. The granularity is the block dimension (or the dimen-
sion of the smallest blocks in recursive splittings). Matrices with dimensions
below this threshold are treated by a base-case variant (often referred to as the
panel factorization [8], in the case of the PLUQ decomposition). It is an im-
portant parameter for optimizations: a finer grain allows more flexibility in the
scheduling when running on numerous cores, but it also challenges the efficiency
of the scheduler and can increase the memory bus traffic. In numerical linear
algebra, where cubic time algorithm are used, the arithmetic cost is indepen-
dent of the cutting in blocks. Hence the granularity has very little impact on
the efficiency of a block algorithm run sequentially. On the contrary, we saw in
Table 1 that over a finite field, a finer granularity can lead to a larger number
of costly modular reductions. The use of sub-cubic variants for the sequential
matrix multiplications is another reason why coarser a granularity lead to a
higher sequential efficiency. On the other hand, the granularity needs to be fine
enough so as to generate enough independent tasks to be executed in parallel.
Therefore, with a fixed number of resources, we will rather set the number of
tasks to be created (usually to the number of available cores, or slightly more),
instead of setting a fixed small grain size as usually done in numerical linear al-
gebra. Hence, an increase in the dimensions, will result in a coarser granularity,
making each sequential task perform more efficiently.

Asymptotically fast matrix multiplication. Numerical stability is not an issue
over a finite field, and asymptotically fast matrix multiplication algorithms,
like Winograd’s variant of Strassen algorithm [16, §12] can be systematically
used on top of the BLAS [12]. Table 2 shows the impact on the performance
of this sub-cubic variant compared to the classical matrix multiplication. In

n 1024 2048 4096 8192 16384

OpenBLAS sgemm 27.30 28.16 28.80 29.01 29.17

O(n3)-fgemm Mod 37 21.90 24.93 26.93 28.10 28.62

O(n2.81)-fgemm Mod 37 22.32 27.40 32.32 37.75 43.66

OpenBLAS dgemm 15.31 16.01 16.27 16.36 16.40

O(n3)-fgemm Mod 131071 15.69 16.20 16.40 16.43 16.47

O(n2.81)-fgemm Mod 131071 16.17 18.05 20.28 22.87 25.81

Table 2: Effective Gfops (2n3/time/109) of matrix multiplications: fgemm vs OpenBLAS

d/sgemm on one core of a Xeon E5-4620 0 @ 2.20GHz

this table we compare the sequential speed of both variants implemented as the
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fgemm routine of the fflas-ffpack library linked against OpenBLAS. In table 2,
computations are done over a small finite field (modulo 37), a large finite field
(modulo 131071) and over integers without modular reductions, directly calling
OpenBLAS sgemm or dgemm routines, to show the impact of modular reductions.
Single precision floats and the sgemm routine are used for elements Modulo 37,
whereas modulo 131071, double precision and the dgemm routine are used.

Table 2 first shows that the overhead of performing the modular reductions in
the O(n3) implementations is noticeable, although limited. Then, when enabling
Strassen-Winograd O(n2.81) algorithm, a speed-up factor of up to 1.5 can be
attained in both single and double precision arithmetic.

Strassen-Winograd algorithm can also naturally be used in parallel. We
will restrict ourselves to using a classical block algorithm to generate parallel
tasks, each of which will use a sequential Strassen-Winograd algorithm. All our
attempts to parallelize Strassen-Winorgrad algorithm directly never reached
performances as good as the above strategy.

The impact of the runtime system and dataflow parallelism. Generating a large
number of tasks causes overheads that severely impacts parallel execution, if
the runtime does not handle it efficiently. This penalizes the use of fine-grain
parallelization. Based on the XKaapi library, the libkomp runtime [4] system
comes with very little task creation and scheduling overheads and implements
recursive tasks in a very efficient way. In table 3 we show the overhead of using
libgomp and libkomp runtime systems on one core compared to a sequential
execution of block algorithm. We use for this comparison the best recursive
algorithm for matrix multiplication, the 2D recursive adaptive, that is detailed
in section 3, with seven recursive calls. But even if we use optimized runtime
systems for OpenMP tasks, the cost of creating tasks should not be neglected.

matrix dimension block sequential 1 core libgomp 1 core libkomp

2000 13.87 13.58 13.67

4000 15.10 14.63 14.68

6000 15.50 15.44 15.47

Table 3: Execution speed (Gfops) on 1 core: overhead of using runtime systems on block
algorithms (using 128 tasks).

Using the latest version of gcc compiler we can also benefit from the feature
of tasks with data-flow dependency of the OpenMP-4.0 standard. In our experi-
ments we use the depend clause of OpenMP-4.0 to express dependencies between
data produced and/or consumed by tasks which makes it possible to construct
the DAG (directed acyclic graph) diagram that precomputes dependencies of all
tasks before execution. This feature helps reduce the idle time of resources by
removing unnecessary synchronizations. We will see in the next sections the im-
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pact of dataflow parallelization using the libkomp runtime that also implements
the latest norms of OpenMP-4.0.

Data mapping on NUMA architecture. The efficiency of computations on a
NUMA machine architecture can be disrupted due to remote accesses between
different NUMA nodes. This led us to focus on data placement strategies to
reduce as much as possible distant memory accesses.

In our experiments data are allocated, initialized and then computed. Recall
that the mapping of data to a specific node is only determined at their initializa-
tion. Hence in order to experiment with different mapping strategies, it suffices
to choose how the initialization phase is done. In the following section, and
more generally in the fflas-ffpack library, we use our custom data-mapping
for coarse grain data: data are initialized with two parallel for loops. Each
iteration is incremented with a fixed chunk size. This is equivalent to using the
numactl -interleave command, but with a coarser grain, better suited to the
data access pattern of our parallel algorithms. To see the impact of remote ac-
cesses, we conducted experiments with different mapping strategies of matrices
A, B and C in the case of matrix multiplication. First we map all the data on
a single NUMA node, and execute the program on all nodes. Then we conduct
the same experiments by mapping on two, three and then all four NUMA nodes.

For the sake of clarity and simplicity we show only the different mapping
strategies for one variant of matrix multiplication 2D recursive adaptive, with
four levels of recursion, in Table 4. Experiments are done on 32 cores (4 NUMA
nodes with 8 cores each). When all data are allocated on the same node, the
performances are degraded by the latency to transfer part of it to distant nodes.
This effect is naturally minimized when all nodes store an equal part of the data.
As a comparison, the data placement provided by the numactl -interleave

command generates a drop of up to 11% in performance.

matrix dimension 1 node 2 nodes 3 nodes all nodes numactl -i all

4000 233.99 275.97 291.18 307.68 295.60

6000 247.10 303.44 329.05 347.21 310.119

8000 265.66 292.02 342.85 350.72 310.147

Table 4: Execution speed (Gfops): with different data mapping.

3. Parallel matrix multiplication

In this section, we focus on the design of a parallel matrix multiplication
routine, based on Strassen’s O(n2.81) sequential algorithm. In order to paral-
lelize the computation at the coarsest grain, our approach is to first apply a
classical block algorithm generating a prescribed number of independent tasks,
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each of which will then use the sequential Strassen-Winograd algorithm. For
the choice of the classical parallel block algorithm, we explore a variety of well
known 2D and 3D cutting strategies, with their iterative or recursive variants.
The routines perform the operation C ← A × B, where A, B and C are dense
matrices with dimensions respectively (m, k), (k, n) and (m,n).

3.1. Algorithmic variants

The 2D partitioning. The strategy splits the row dimension of A and the column
dimension of B and each parallel task computes a submatrix of C. These tasks
are therefore all independent. More precisely, we distinguish an iterative and
two recursive variants, as shown in Figure 2.

The 2D iterative partitioning splits A in s row slabs and B in t column
slabs, and splits the matrix C in s × t tiles. The values for s and t are
chosen such that their product equals the number of threads available.

The 2D recursive partitioning performs a 2 × 2 splitting of the matrix C
at each level of recursion. Each recursive call is then allocated a quarter
of the number of threads available. This constrains the total number of
tasks created to be a power of 4 and the splitting will work best when the
number of threads is also a power of 4.

The 2D recursive adaptive partitioning cuts the largest dimension between
m and n, at each level of recursion, creating two independent recursive
calls. The number of threads is then divided by two and allocated for each
separate call (with a discrepancy of allocated threads of at most one). This
splitting better adapts to an arbitrary number of threads provided.

A1

A2

B1 B2

C11 C12

C21 C22

A

B

Cs

t

A1

A2

B1 B2

C11 C12

C21 C22

1st recursion cutting

2nd recursion cutting

Figure 2: 2D partitioning: recursive (left), iterative (middle) and recursive adaptive (right)
cutting.

The 3D partitioning. The strategy parallelizes the computation over dimensions
m, n and k and several parallel tasks contribute to the computation of a single
submatrix of C. Again we present three variants:
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A11 A12

A21
A22

B11 B12

B21 B22

C11 C12

C21 C22

Figure 3: 3D partitioning : cutting A and B according to dimensions m, n and k.

The 3D in-place recursive variant performs 4 multiply calls, waits until
blocks elements are computed and then performs 4 multiply and accumu-
lation. This variant is called inplace since blocks of matrix C are computed
in place. We show two implementations of this variant using OpenMP tasks
and using dependencies.

Implementation 1 3D-Inplace recursive with OpenMP tasks

Input: A = (aij) a m× k matrix over a field
B = (bij) a k × n matrix over a field

Output: C: m× n matrix over a field
#pragma omp task shared(C11, A11, B11)
C11 = A11.B11

#pragma omp task shared(C12, A12, B22)
C12 = A12.B22

#pragma omp task shared(C21, A22, B21)
C21 = A22.B21

#pragma omp task shared(C22, A21, B12)
C22 = A21.B12

#pragma omp taskwait
#pragma omp task shared(C11, A12, B21)
C11+ = A12.B21

#pragma omp task shared(C12, A11, B12)
C12+ = A11.B12

#pragma omp task shared(C21, A21, B11)
C21+ = A21.B11

#pragma omp task shared(C22, A22, B22)
C22+ = A22.B22

#pragma omp taskwait
Return (C)

In this 3D scheme we generate more tasks than in the 2D scheme. But
with the 3D-Inplace recursive variant we add synchronizations between
tasks at each level of recursion. This can slow down the performance of
this variant. The “#pragma omp taskwait” directive synchronizes all four
tasks created before. So, the second task that rewrites in the block C11,

10



for instance, needs to wait for all data of the matrix to be produced.

Implementation 2 3D-Inplace recursive using OpenMP-4.0 dependencies

Input: A = (aij) a m× k matrix over a field
B = (bij) a k × n matrix over a field

Output: C: m× n matrix over a field
#pragma omp task shared(C11, A11, B11) depend(in:A11, B11) depend(out:C11)
C11 = A11.B11

#pragma omp task shared(C12, A12, B22) depend(in:A12, B22) depend(out:C12)
C12 = A12.B22

#pragma omp task shared(C21, A22, B21) depend(in:A22, B21) depend(out:C21)
C21 = A22.B21

#pragma omp task shared(C22, A21, B12) depend(in:A21, B12) depend(out:C22)
C22 = A21.B12

#pragma omp task shared(C11, A12, B21) depend(in:A12, B21) depend(inout:C11)
C11+ = A12.B21

#pragma omp task shared(C12, A11, B12) depend(in:A11, B12) depend(inout:C12)
C12+ = A11.B12

#pragma omp task shared(C21, A21, B11) depend(in:A21, B11) depend(inout:C21)
C21+ = A21.B11

#pragma omp task shared(C22, A22, B22) depend(in:A22, B22) depend(inout:C22)
C22+ = A22.B22

#pragma omp taskwait
Return (C)

In this OpenMP Implementation 1, each task calls recursively the 3D-Inplace
recursive routine. Using OpenMP 4.0 directives helps specifying dependen-
cies between tasks, indicating when to start the computations on a block
once its data are produced. We show the OpenMP code of the 3D-Inplace
recursive routine using the clause ”depend” in Implementation 2.

The 3D recursive variant performs 8 multiply calls in parallel and then per-
forms the add at the end. To perform 8 multiplications in parallel we need
to store the block results of 4 multiplications in temporary matrices. As
in the previous routine, each task calls recursively the routine.

The 3D recursive adaptive variant cuts the largest of the three dimensions
in halves. When the dimension k is split, a temporary is allocated to
perform the two products in parallel. Since the split along the inner
dimension introduces some overhead, we introduce a weighted penalty
system to determine when to split. For a penalty factor of p, the inner
dimension only splits when max(m,n) < pk.

In all these recursive schemes, the recursion is stopped when the number
of threads allocated is less than or equal to one or when the matrix dimension
becomes below a threshold (set to 220 in the experiments).

Even if the 3D recursive variant suffers from an additional cost for temporary
matrix allocation, we will show that it behaves better in parallel than the 3D-
Inplace recursive. Using dependencies allows for a better scheduling of the tasks.
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3.2. Experiments on square matrices

3.2.1. Comparing all variants over Z131071
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Figure 4: Speed of the matrix multiplication variants using libgomp
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Figure 5: Speed of the matrix multiplication variants using libkomp

Figures 4 and 5 show the execution speed of all variants over the field Z131071,
using OpenMP 4.0 task model, linked with the two runtimes libgomp and libkomp

respectively. The number of sequential tasks is limited to the number of threads
available, a constant, which implies that the asymptotic complexity of the par-
allel algorithm is that of Strassen-Winograd’s algorithm: O(n2.81).

With libgomp, the 2D iterative variant is much faster, as recursive tasks
seem to be poorly handled. Thanks to its efficient management of recursive
tasks, the libkomp runtime behaves better for the recursive variants, except the

12



3D in-place recursive one, for a reason that we could not explain. The speed
is now at least as good as that with libgomp. In the next experiments we
will therefore only show executions of implementations linked against libkomp

library. If the 3D recursive adaptive variant performs best on large matrices,
the 2D recursive adaptive algorithm is close to it on large instances (550 Gflops
for n = 32000), but maintains a better efficiency with smaller matrices.

3.2.2. Comparison with the state of the art in numerical computation

Figure 6 shows the computation time of various numerical matrix multipli-
cations: the dgemm implementation of Plasma-Quark, and Intel-MKL and the
implementation of pfgemm of fflas-ffpack using OpenMP-4.0 dataflow model.
This implementation is run with or without Strassen-Winograd matrix product.
Intel-MKL dgemm performs consistently faster than all other cubic time variants,
which perform rather similarly. However, the speed-up of Strassen-Winograd
algorithm makes pfgemm faster on larger matrices.
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Figure 6: Speed of numerical matrix multiplication routines

3.3. Experiments on rectangular matrices

As shown in the previous section, the 3D splitting variants perform similarly
to the 2D variants for large matrices (with a slight improvement), but are less
efficient on smaller matrices, due to more synchronizations and data copies.
We now compare these variants in a situation supposed to be favorable for the
3D splitting: when the dimension k is large compared to m and n. Figure 7
reveals that indeed, the 3D recursive adaptive variant (with best penalty factor,
found to be 12) outperforms the best 2D variants for very unbalanced cases:
m,n ≤ 1000 and k = 20000. However, the computation speed gets quickly
similar in all three variants.

This fact, combined with the results of Figure 5 lead us to only consider
the 2D splitting variants when calling pfgemm from other other routines. This
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has been confirmed by experiments on e.g. the PLUQ decomposition where 3D
splitting of pfgemm always led to slightly slower computations.
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Figure 7: Computation speed on rectangular matrices with large inner dimension k.

4. Parallel triangular solving with matrix unknown

In this section we study various cutting strategies for the computation of
parallel pftrsm routine. We identify three different types of parallelizations:
the block iterative, the block recursive and a hybrid variant combining both.
The latter proves to deliver the best efficiency in practice, in particular when the
unknown rectangular matrix is very skinny. We will consider here, without loss
of generality, the lower left case of the ftrsm operation: computing X ← L−1B.

Iterative variant. In the iterative variant (Algorithm 1), the parallelization is
obtained by splitting the outer dimension of the matrices X and B:[

X1 . . . Xk

]
← L−1

[
B1 . . . Bk

]
.

The computation of eachXi ← L−1Bi is independent from the others. Hence
the algorithm consists in a length k parallel iteration creating k sequential ftrsm
tasks. The cost of these sequential ftrsm is not associative, and one need to
maximize the computational size of each of these tasks. Hence the number of
blocks k is set as the number of available threads.

Recursive variant. This variant is simply based on the block recursive algorithm
(Algorithm 2) where each matrix multiplication is performed by the parallel
matrix multiplication pfgemm of section 3. The three tasks in Algorithm 2 can
not be executed concurrently.

14



Algorithm 1 Iterative TRSM

Split
[
X1 . . . Xk

]
=

L−1
[
B1 . . . Bk

]
for i = 1 . . . k do

Xi ← L−1Bi

Algorithm 2 Recursive TRSM

Split

[
X1

X2

]
=

[
L1

L2 L3

]−1 [
B1

B2

]
X1 ← L−1

1 B1

X2 ← B2 − L2X1

X2 ← L−1
3 BX2

Hybrid variant. Lastly, we propose to combine the two above variants into a
hybrid algorithm. The motivation is to handle the case when the column dimen-
sion of B is rather small: the cutting of Algorithm 1 produces slices that may
become very thin, and reduce the efficiency of each of the sequential TRSM. In-
stead, the hybrid variant applies the iterative algorithm with the restriction that
the column dimension of the slices Xi and Bi remains above a given threshold.
Consequently, this splitting may create fewer tasks than the number of available
threads. Each of them then runs the parallel recursive variant using an equal
part of the unused remaining threads. More precisely, the parameters are set so
that the number of threads given to the recursive variant, and henceforth to the
matrix multiplications, is always a power of 2, in order to better benefit from
the adaptive recursive splitting.

Let T be the threshold, p the number of threads provided and n, the column
dimension of B. Let ` = min{` ∈ Z≥0 : p

2`
T < n}. Then each recursive TRSM

task is allocated 2` threads and the iterative TRSM splits X and B in k = p/2`

slices.
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Experiments on parallel ftrsm. Figure 8 compares the computation speed of
the iterative and the hybrid version of the parallel ftrsm, on triangular sys-
tems of dimension 10000 but with right hand side of varying column dimension.
The hybrid variant clearly improves over the iterative variant up to n = 3000.
Moreover, the libkomp and libgomp runtimes perform similarly on the itera-
tive algorithm (which is essentially a parallel for loop), but for the hybrid vari-
ant, libkomp reaches a higher efficiency for it handles more efficiently recursive
tasks. Lastly, the performances of the numerical dtrsm routines of Intel-MKL

and Plasma-Quark are shown, and appear to be consistently slower.

5. Parallel Gaussian elimination

In this section, we present the parallelization of two different algorithms for
the computation of the PLUQ decomposition: a tile iterative and a tile recur-
sive algorithm. Although this computation has already been widely studied
for numerical computation [8], applications over a finite field have additional
specific requirements and constraints that need to be taken into consideration.
In particular, rank deficiency is a well defined notion there, and many appli-
cations rely on the computation of the echelon form, or the rank profile of the
matrix [21, 13] only revealed by certain pivoting strategies in the PLUQ factor-
ization algorithm.

In [11], parallel iterative and recursive implementations of exact PLUQ de-
composition revealing the rank profiles of the matrix are presented. It is there
shown that the parallel recursive implementation behaves best in terms of per-
formance. We thus focus mainly on the optimization of this state of the art
parallel recursive implementation in order to benefit from the optimized build-
ing blocks presented in the previous sections and some new tasking strategies
using data-flow dependencies. We will then present parallel experiments in the
case of full rank and rank deficient matrices.

5.1. Algorithmic variants for PLUQ factorization

We consider the general case of matrices with arbitrary rank profile, that
can lead to rank deficiencies in the panel eliminations. Algorithms computing
the row rank profile (or equivalently the column echelon form) used to share a
common pivoting strategy: to search for pivots in a row-major fashion and con-
sider the next row only if no non-zero pivot was found (see [21] and references
therein). Such an iterative algorithm can be translated into a slab recursive
algorithm splitting the row dimension in halves (as implemented in sequential
in [12]) or into a slab iterative algorithm. More recently, a more flexible pivoting
strategy that results in a tile recursive algorithm, cutting both dimensions si-
multaneously was presented in [13, 14]. As a by product, both row and column
rank profiles are also computed simultaneously.

It has been shown in [11] that the slab iterative algorithm performing a
PLUQ decomposition is slow due to large sequential tasks (see [11, § 4, Fig-
ure 5]). At each iteration a PLUQ decomposition is called sequentially on large
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slab blocks of size k×n, where k is the block size and n is the column dimension
of the input matrix. These sequential tasks are costly and therefore impose a
finer granularity. We will therefore limit our study to the tile iterative and tile
recursive variants.

Tile iterative algorithm. We use the tile iterative algorithm presented in [11]. It
is constructed from the slab iterative algorithm, where the panel computation is
split it into column tiles. With this splitting [11, § 4, Figure 6], the operations
remain more local and updates can be parallelized. This optimization used in
the computation of the slab factorization improved the computation speed by
a factor of 2. This approach shares similarities with the recursive computation
of the panel described in [9].

Moreover, the workload of each block operation may strongly vary, depend-
ing on the rank of the corresponding slab. Such heterogeneous tasks loads lead
us to opt for work-stealing based runtime systems instead of static thread man-
agement. This is also a place where data-flow dependencies are expected to
behave better than explicit task synchronizations.

Tile recursive algorithm. Recursive algorithms in dense linear algebra are a
natural choice for hierarchical memory systems [29]. For large problems, the
geometric nature of the recursion implies that the total area of operands for
recursive algorithms is less than that of iterative algorithms [20]. The paral-
lelization of the recursive variant of PLUQ decomposition over a finite field is
presented in [11] using OpenMP tasks. The recursive splitting is done in four
quadrants. Pivoting is done first recursively inside each quadrant and then be-
tween quadrants. It has the interesting feature that if the top-left tile is rank
deficient, then the elimination of the bottom-left and top-right tiles can be ex-
ecuted in parallel as shown on Figure 9. As an illustration, Algorithm 3 shows

0

0

0

0
0

0
0

0

Figure 9: PLUQ quad-recursive scheme

the first half of this algorithm implemented with OpenMP tasks with dataflow
dependencies. Compared to [11], we introduce in the present implementations
the dataflow dependencies between consumed and produced data in the tile it-
erative and tile recursive implementations, together with the use of optimized
building blocks for pfgemm and pftrsm.
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Implementation 3 PLUQ (A) tile recursive algorithm

if min(m,n) < T then
Base Case done by an iterative PLUQ decomposition

Split A =

[
A1 A2

A3 A4

]
where A1 is bm

2
c × bn

2
c.

PLUQ(A1) . Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1

#pragma omp task shared(A2, P1) depend(in:P1) depend(inout:A2)

laswp(A2, PT
1 ) .

[
B1

B2

]
← PT

1 A2

#pragma omp task shared(A3, Q1) depend(in:Q1) depend(inout:A3)

laswp(A3, QT
1 ) .

[
C1 C2

]
← A3QT

1

Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2 A4

.

#pragma omp task shared(L1, B1) depend(in:L1) depend(inout:B1)

trsm(L1, B1) . D ← L−1
1 B1

#pragma omp task shared(U1, C1) depend(in:U1) depend(inout:C1)

trsm(C1, U1) . E ← C1U
−1
1

#pragma omp task shared(B2,M1, D) depend(in:M1, D) depend(inout:B2)

gemm(B2,M1, D) . F ← B2 −M1D
#pragma omp task shared(C2, E, V1) depend(in:E, V1) depend(inout:C2)

gemm(C2, E, V1) . G← C2 − EV1

#pragma omp task shared(A4, E,D) depend(in:E,D) depend(inout:A4)

gemm(A4, E,D) . H ← A4 − ED

Here A =

 L1\U1 V1 D
M1 0 F
E G H

.

#pragma omp task shared(F, P2, Q2) depend(out:P2, Q2) depend(inout:F)

PLUQ(F ) . Decompose F = P2

[
L2

M2

] [
U2 V2

]
Q2

#pragma omp task shared(G,P3, Q3) depend(out:P3, Q3) depend(inout:G)

PLUQ(G) . Decompose G = P3

[
L3

M3

] [
U3 V3

]
Q3

#pragma omp task shared(P3, Q2, H) depend(in:P3, Q2) depend(inout:H)

laswp(H,PT
3 ); laswp(H,QT

2 ) .

[
H1 H2

H3 H4

]
← PT

3 HQT
2

#pragma omp task shared(P3, E) depend(in:P3) depend(inout:E)

laswp(E,PT
3 ) .

[
E1

E2

]
← PT

3 E

#pragma omp task shared(P2,M1) depend(in:P2) depend(inout:M1)

laswp(M1, PT
2 ) .

[
M11

M12

]
← PT

2 M1

#pragma omp task shared(D,Q2) depend(in:Q2) depend(inout:D)

laswp(D,QT
2 ) .

[
D1 D2

]
← DQT

2
#pragma omp task shared(V1, Q3) depend(in:Q3) depend(inout:V1)

laswp(V1, QT
3 ) .

[
V11 V12

]
← V1QT

3

Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0
E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

. . . (continue the elimination of H following [13, Alg 1])
#pragma omp taskwait
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5.2. Parallel experiments on full rank matrices

In figures 10 and 11, we compare the parallel behavior of the PLUQ decompo-
sition using explicit synchronizations and dataflow synchronizations.
We denote by explicit synchronization the classical fork-join model, where
synchronizations are explicitly defined by the programmer, e.g. by a # pragma

omp taskwait instruction. We denote by dataflow synchronization the task
model where synchronizations are automatically inferred by the scheduler thanks
to data dependencies specified by the programmer.
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Figure 10: Effective Gfops of numerical parallel LU factorization on full rank matrices.

Figure 10 shows that our tile recursive parallel PLUQ implementation, with-
out modular reduction, behaves better than the plasma quark getrf and matches
the performance of the state of the art MKL getrf. This is mainly due to the
bi-dimensional cutting which allows for a faster panel elimination, parallel hy-
brid pftrsm kernels, more balanced and adaptive pfgemm kernels and some use
of Strassen-Winograd algorithm. The use of the latter speeds up computation
when the matrix dimension gets larger.

Figure 11 compares execution speed over a finite field. It first shows how
the tile recursive variants performs faster than the tile iterative variants, mostly
for their lesser number of modular reductions, and the asymptotic speed-up of
Strassen-Winograd algorithm. Now the tile recursive algorithm does not seem
to take advantage of the use of tasks with data-flow dependencies, probably
because each recursive level has to do an explicit synchronization termination,
thus limiting the gain of this approach, whereas the overhead of the task de-
pendency calculation slows down the computation. The tile iterative variants
perform slower, but allow for a better use of tasks with data-flow dependency,
which perform slightly better there.

In figures 10 and 11, the number of inner threads (it) allocated to the com-
putation impacts the overall performance. On one hand, a large number of
inner threads (it=1024) makes the recursive parallel PLUQ routine with dataflow
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Figure 11: Parallel tile recursive and iterative PLUQ over Z/131071Z on full rank matrices
on 32 cores

synchronizations perform faster. This illustrates that finer granularity provides
more tasks and therefore reduces CPU idle time. The fact that the libkomp run-
time handles numerous tasks, helps making this happen. On the other hand,
finer grain acts also as a penalty because reduces the speed-up of Strassen-
Winograd algorithm.

5.3. Parallel experiments on rank deficient matrices

Figure 12 shows the execution speed of the parallel PLUQ variants on ma-
trices with rank equal to half their dimension. Overall the computation speed

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5000  10000  15000  20000

e
ff

e
ct

iv
e
 G

fo
p

s

matrix dimension

speed of parallel PLUQ on rank deficient matrices (rank=dim/2)

dataflow synch pluq<131071> (it=1024)
explicit synch pluq<131071> (it=32)

dataflow synch pluq<131071> (it=32)
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remains of the same order of magnitude. The overhead of additional permuta-
tions introduced by the rank deficiency is compensated by the reduced amount
of arithmetic operations to be performed. This time again, the variant with ex-
plicit synchronizations performs best, but the data-flow synchronization variant
matches its speed when the granularity is increased to 1024 inner threads.

6. Conclusion

We studied in this work several implementations of the subroutines used by
a parallel recursive PLUQ decomposition algorithm. We identified that the best
recursive variant for matrix multiplication is the 2D adaptive variant, combined
with a sequential Strassen-Winograd algorithm. While the impact of modular
reductions seem to be limited, the use of sub-cubic matrix multiplication requires
to use a coarse grain parallelization scheme. Hence the data placement strategy
need to be adapted consequently and the granularity has to be tuned as close
as possible to the available resources. We also proposed a hybrid iterative and
recursive parallelization for the triangular system solve with matrix right-hand
side, performing efficiently even with unbalanced dimensions.

These two building blocks, combined in our recent tile recursive algorithm
deliver a high computing efficiency. Comparing to our previous results in [11]
experiments show a 18% gain for matrix multiplication and 23% gain for PLUQ
decomposition. The best performance is obtained with the parallel recursive
PLUQ variant using the 2D recursive adaptive variant for matrix multiplication
algorithm and the hybrid parallel pftrsm variant. As expected, the use of
recursion challenges the runtime, and light-weight task implementations, such
as the one in XKaapi happen to be crucial there. Dataflow task dependencies
also help slightly improve performances. However, it seems to work best with
numerous tasks, which in the other hand, implies a finer grain, and therefore a
lesser improvement of the sub-cubic matrix multiplication algorithms.

Perspective. Our future work focuses on two main directions. First, improv-
ing the parallelization of the recursive steps of Strassen-Winograd algorithm
directly. The focus will be on the scheduling heuristics that will reduce as much
as possible task dependencies, while keeping the memory footprint contained.
Second, the distant data accesses has an impact on the overall performance.
Adapting the communication avoiding techniques of [19] in the framework of
our recursive algorithm is highly relevant. Over a finite field, tournament piv-
oting seem to reduce to computing the union of the non-zero pivots found in
concurrent eliminations. It is still unclear whether the rank profile information
can still be revealed with such an algorithm.

Acknowledgment

We are grateful to the anonymous referees whose reviews helped to greatly
improve the quality of this document.

21



References

[1] D. H. Bailey, K. Lee, and H. Simon. Using strassen’s algorithm to accelerate the solution
of linear systems. The Journal of Supercomputing, 4(4):357–371, 1991. doi:10.1007/

BF00129836.

[2] A. R. Benson and G. Ballard. A framework for practical parallel fast matrix multiplica-
tion. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2015, pages 42–53, New York, NY, USA, 2015. ACM.
doi:10.1145/2688500.2688513.

[3] L. Bettale, J.-C. Faugre, and L. Perret. Cryptanalysis of hfe, multi-hfe and variants
for odd and even characteristic. Designs, Codes and Cryptography, 69(1):1 – 52, 2013.
doi:10.1007/s10623-012-9617-2.

[4] F. Broquedis, T. Gautier, and V. Danjean. libKOMP, an Efficient OpenMP Runtime
System for Both Fork-Join and Data Flow Paradigms. In IWOMP, pages 102–115, Rome,
Italy, jun 2012.

[5] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing, 35(1):38 – 53, 2009.
doi:http://dx.doi.org/10.1016/j.parco.2008.10.002.

[6] P. D’alberto, M. Bodrato, and A. Nicolau. Exploiting parallelism in matrix-computation
kernels for symmetric multiprocessor systems: Matrix-multiplication and matrix-addition
algorithm optimizations by software pipelining and threads allocation. ACM Trans.
Math. Softw., 38(1):2:1–2:30, Dec. 2011. doi:10.1145/2049662.2049664.

[7] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A proposal for a set of level 3
basic linear algebra subprograms. SIGNUM Newsl., 22(3):2–14, July 1987. doi:10.1145/
36318.36319.

[8] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst. Numerical Linear Algebra
for High Performance Computers. SIAM, 1998.

[9] J. J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Achieving numerical accuracy
and high performance using recursive tile LU factorization. Concurrency and Compu-
tation: Practice and Experience, 26(7):1408–1431, 2014. URL: http://hal.inria.fr/
hal-00809765.

[10] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. In Proc.
ISSAC’02. ACM Press, July 2002. doi:10.1145/780506.780515.

[11] J.-G. Dumas, T. Gautier, C. Pernet, and Z. Sultan. Parallel computation of echelon
forms. In F. Silva, I. Dutra, and V. Santos Costa, editors, Euro-Par 2014 Parallel
Processing, volume 8632 of Lecture Notes in Computer Science, pages 499–510. Springer
International Publishing, 2014. doi:10.1007/978-3-319-09873-9_42.

[12] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields:
the fflas and ffpack packages. ACM Trans. on Mathematical Software (TOMS), 35(3):1–
42, 2008. doi:10.1145/1391989.1391992.

[13] J.-G. Dumas, C. Pernet, and Z. Sultan. Simultaneous computation of the row and column
rank profiles. In M. Kauers, editor, Proc. ISSAC’13, Grenoble, France, pages 181–188.
ACM Press, New York, June 2013. doi:10.1145/2465506.2465517.

[14] J.-G. Dumas, C. Pernet, and Z. Sultan. Computing the Rank Profile Matrix. In Proc.
ISSAC’15, Bath, U.K., pages 149–156. ACM Press, New York, July 2015. doi:10.1145/
2755996.2756682.

22

http://dx.doi.org/10.1007/BF00129836
http://dx.doi.org/10.1007/BF00129836
http://dx.doi.org/10.1145/2688500.2688513
http://dx.doi.org/10.1007/s10623-012-9617-2
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1145/2049662.2049664
http://dx.doi.org/10.1145/36318.36319
http://dx.doi.org/10.1145/36318.36319
http://hal.inria.fr/hal-00809765
http://hal.inria.fr/hal-00809765
http://dx.doi.org/10.1145/780506.780515
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://dx.doi.org/10.1145/1391989.1391992
http://dx.doi.org/10.1145/2465506.2465517
http://dx.doi.org/10.1145/2755996.2756682
http://dx.doi.org/10.1145/2755996.2756682


[15] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of
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