Conservativity of embeddings in the lambda-Pi calculus modulo rewriting (long version)

Abstract : The lambda-Pi calculus can be extended with rewrite rules to embed any other functional pure type system. The normalization and conserva-tivity properties of the embedding is an open problem. In this paper, we show that the embedding is conservative. We define an inverse translation into a pure type system completion and show that the completion is con-servative using the reducibility method. This result further justifies the use of the lambda-Pi calculus modulo rewriting as a logical framework.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01084165
Contributor : Ali Assaf <>
Submitted on : Monday, April 20, 2015 - 7:15:00 PM
Last modification on : Wednesday, January 23, 2019 - 10:29:31 AM
Document(s) archivé(s) le : Wednesday, April 19, 2017 - 12:41:32 AM

File

conservativity-embeddings-long...
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

  • HAL Id : hal-01084165, version 3
  • ARXIV : 1504.05038

Citation

Ali Assaf. Conservativity of embeddings in the lambda-Pi calculus modulo rewriting (long version). 2015. ⟨hal-01084165v3⟩

Share

Metrics

Record views

356

Files downloads

126