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match the input instrument source. The proposed system

contains a “conservative” transcription pre-processing step

in order to detect notes with a high degree of confidence,

a dictionary adaptation step, and a final transcription step.

The diagram of the proposed system can be seen in Fig. 1.

2.1 Pre-processing

As a pre-processing step, we perform an initial transcrip-

tion which uses a fixed template dictionary (in which the

templates might not be extracted from the same instrument

source, model, or recording conditions). The main goal is

to only detect notes for which we have a high degree of

confidence; in order to achieve this, we perform a “conser-

vative” transcription, as in [16], where the employed tran-

scription system detects notes with high precision and low

recall. In other words, the system returns few false alarms

but might miss several notes present in the recording.

In order to perform the conservative transcription pre-

processing step, we use the spectrogram factorization-based

model of [2], which is based on probabilistic latent compo-

nent analysis (PLCA) [14] and supports the use of a fixed

template dictionary. It should be noted that the system

in [2] ranked first in the MIREX transcription tasks [1].

The model of [2] takes as input a normalized log-frequency

spectrogram Vω,t (ω denotes frequency and t time) and ap-

proximates it as a bivariate probability distributionP (ω, t).
P (ω, t) is in turn decomposed as:

P (ω, t) = P (t)
∑

p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)

(1)

where p, f, s denote pitch, log-frequency shifting, and in-

strument source (in the single-instrument case, s refers to

instrument model), respectively. P (t) is the spectrogram

energy (known quantity) andP (ω|s, p, f) are pre-extracted
spectral templates for pitch p, source/model s, which are

also pre-shifted across log-frequency according to param-

eter f . Pt(f |p) is the time-varying log-frequency shifting

for pitch p, Pt(s|p) is the source contribution, and Pt(p)
is the pitch activation. As a log-frequency representation

we use the constant-Q transform [13] with 60 bins/octave,

resulting in f ∈ [1, . . . , 5], where f = 3 is the ideal tuning
position for the template (using equal temperament).

Using a fixed template dictionary, the parameters that

need to be estimated are Pt(f |p), Pt(s|p), and Pt(p). This
can be achieved using the expectation-maximization (EM)

algorithm [5], with 15-20 iterations being typically suffi-

cient. The resulting multi-pitch output is given byP (p, t) =
P (t)Pt(p).

In order to extract note events in spectrogram factorization-

based AMT algorithms, typically thresholding is performed

on the pitch activations (P (p, t) in this case). The value

of the threshold θ controls the levels of precision/recall. A

low threshold has a high recall and low precision; the oppo-

site occurs with a high threshold. By selecting a high value

of θ, in essence we perform a conservative transcription.

The final output of the pre-processing step is a collection

of pitches and time frames {p1, t1}, {p2, t2}, ..., {pN , tN}
which can be used in order to adapt the template dictionary.
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Figure 2. Top: a collection of spectra V̂ (42) (note D4)

from piano recording ‘alb se2’ taken from the MAPS

database (piano model: ENSTDkCl). Middle: extracted

normalised template P (ω|p = 42). Bottom: a D4 template

from piano model AkPnBcht from the MAPS database.

2.2 Template Adaptation

Given a collection of detected pitches, the first step re-

garding template adaptation is to collect the spectra that

correspond to the aforementioned pitches in the recording.

Thus, for each pitch p all time frames tip that contain that

pitch are collected (where i = 1, ..., Np andNp is the num-

ber of frames containing p).

Subsequently, for each pitch p we create a collection of

spectra where that pitch is observed:

V̂ (p) = Vω,t∈tip ⊗ hp (2)

where hp is a harmonic comb that serves as an indicator

function (setting to zero all frequency bins not belonging

to pitch p), and ⊗ denotes elementwise multiplication. In

other words, V̂ (p) is a collection of the spectra correspond-

ing to detected pitch p in the input recording.

Using information from V̂ (p), new spectral templates

are created for each p that was detected in the conservative

transcription step. In order to create the new templates,

the standard PLCA algorithm is used with one component

[14], with the input in each case being V̂ (p). The output

for each p is a spectral templatew(p) which can be used in

order to expand the present dictionary.

Given that the conservative transcription step might not

have detected all possible pitches present in the recording,

information from the extracted templates can be used in or-

der to estimate missing templates. As in the user-assisted

case of [12], we can derive templates at missing pitches

by simply shifting existing templates across log-frequency.

Given a missing pitch template, we consider a neighbor-
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Figure 1. Proposed system diagram.

hood of up to 4 semitones; if a template exists in the neigh-

borhood, it is shifted accordingly in order to estimate the

missing template. Finally, the resulting template dictionary

is pre-shifted across log-frequency over a semitone range

in order to account for tuning deviations and frequency

modulations. The output of the template adaptation step

is normalized and denoted as P (ω|s = snew , p, f), where
snew refers to the new instrument source that is added to

the existing dictionary.

The template adaptation step is illustrated in Fig. 2,

where a collection of extracted spectra for note D4 of a pi-

ano recording can be seen, along with the computed tem-

plate, as well as with a template for the same note taken

from a different piano model. By comparing the two pi-

ano spectra, the importance of adapting templates to the

specific instrument source can be seen.

2.3 Transcription

Having created an expanded dictionary with a set of note

templates taken from the instrument source present in the

recording, the recording is re-transcribed using the new

dictionary and the model of (1). In order to further adapt

the extracted templates to the input source, an optional step

is also applied on updating the new template set during

the PLCA iterations. The modified iterative update rule is

based on the work of [15] (which incorporated prior infor-

mation on PLCA update rules) and is applied only for the

new set of templates. It is formulated as:

P̂ (ω|snew , p, f) =∑
t αPt(p, f, snew |ω)Vω,t + (1− α)P (ω|snew , p, f)∑

ω,t αPt(p, f, snew |ω)Vω,t + (1− α)P (ω|snew , p, f)

(3)

where Pt(p, f, s|ω) is the posterior of the model (defined

in [2]), and α is a parameter which controls the weight of

the PLCA adaptation, with (1 − α) giving weight to the

set of extracted templates from the procedure of Section

2.2. In this work, α is set to 0.05, thus the PLCA tem-

plate adaptation is only slightly changing the shape of the

templates (given that the model is unconstrained, giving a

large weight to the PLCA adaptation step would result in

non-meaningful templates).

Finally, the output of the transcription step is given by

P (p, t) = P (t)Pt(p). For converting the non-binary pitch

activation into a binary piano-roll representation, as in [6]

we perform thresholding on P (p, t) followed by a process

removing note events with a duration less than 80ms.

3. MULTIPLE-INSTRUMENT SYSTEM

In dictionary-based multiple-instrument transcription, the

dictionary typically consists of one or more sets of tem-

plates per instrument. Thus, in order to update dictionary

templates for multiple instruments, modifications need to

be made from the system presented in Section 2.

Regarding the pre-processing step, we still use the model

of (1), which supports multiple-instrument transcription.

In this case, s denotes instrument source. An advantage of

the model of (1) is that it can produce an instrument as-

signment output (i.e. each detected note is assigned to a

specific instrument). Thus, having estimated the unknown

model parameters, the instrument assignment output for

instrument sins is given by the following time-pitch rep-

resentation:

P (s = sins , p, t) = Pt(s = sins |p)Pt(p)P (t) (4)

The representationP (s, p, t) can be thresholded in the same

way as the pitch activation in order to derive a binary piano-

roll representation of the notes produced by a specific in-

strument. Here, we perform “conservative” thresholding

(i.e. use a high θ value) for every instrument in P (s, p, t)
in order to create a collection of detected pitches and time

frames per instrument:

{s1, p1, t1}, {s2, p2, t2}, ..., {sN , pN , tN} (5)

where s ∈ 1, . . . , S, p ∈ 1, . . . , 88, and t ∈ 1, . . . , T .
For performing multi-instrument template adaptation,

we collect all time frames tips that contain pitch p and in-

strument s. We create a collection of spectra V̂ (p,s) where

a pitch is observed for a specific instrument, in the same

way as in (2). Using information from V̂ (p,s), new spec-

tral templates are created for specific cases of s and p us-

ing the single-component PLCA algorithm. As in Section

2.2, templates at missing pitches are derived by translat-

ing existing templates across log-frequency. The output

of the template adaptation step is denoted as P (ω|s =
{snew1 , snew2 , ...}, p, f)where snew1 , snew2 , ... denote the

new sets of templates for the existing instruments.

Finally, the input recording is re-transcribed using the

model of (1), by utilizing the expanded dictionary. We also

apply the same optional PLCA-based dictionary adaptation

step shown in Section 2.3. The multiple-instrument tran-

scription system has two sets of outputs: the pitch activa-

tion P (p, t) (which is used for multi-pitch detection evalu-

ation) and the instrument contribution P (s, p, t) (which is

used for instrument assignment evaluation).
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Figure 3. (a) The pitch ground truth for the bassoon-violin

duet ‘Nun bitten’ from the Bach10 database. (b) The tran-

scription piano-roll without template adaptation. (c) The

transcription piano-roll with template adaptation.

An example of how template adaptation can improve

transcription performance for a multiple-instrument record-

ing (bassoon and violin) is given in Fig. 3, where the tran-

scription output with template adaptation has significantly

fewer false alarms compared with transcription without tem-

plate adaptation (in which many extra detected notes can

be seen in higher pitches).

4. EVALUATION

4.1 Datasets

For training the single-instrument system of Section 2, we

used isolated note recordings from the ‘AkPnBcht’ and ‘Sp-

tkBGCl’ piano models of the MAPS database [8]. We

used the standard PLCA algorithm with one component

[14] in order to extract a single template per note, cover-

ing the complete piano note range. For testing the single-

instrument system, we used thirty piano segments of 30s

duration from the MAPS database from the ‘ENSTDkCl’

piano model; the test dataset has in the past been used for

multi-pitch evaluation (e.g. [2,4,19]). For comparative pur-

poses, we also extracted training templates from the same

test source (‘ENSTDkCl’).

For training the multiple-instrument system of Section

3, we used isolated note samples of bassoon and violin

from the RWC database [11], covering the complete note

range of the instruments. For testing the multiple-instrument

system, we created ten duets of bassoon-violin, mixed from

single instrument tracks from the multi-track Bach10 dataset

[7]. The duration of the recordings varies from 25-41sec.

For comparative purposes, we also extracted dictionary tem-

System Pren Recn Fn

C1 66.41% 48.41% 55.33%

C2 68.07% 48.80% 56.26%

C3 67.84% 49.38% 56.56%

C4 (oracle) 70.43% 50.35% 58.17%

Table 1. Multi-pitch detection results for the single-

instrument system using the MAPS database.

plates for bassoon and violin from the single instrument

tracks of the Bach10 database, in order to demonstrate the

upper performance limit of the transcription system.

4.2 Metrics

For evaluating the performance of the proposed systems

for multi-pitch detection, we employ onset-only note-based

transcription metrics, which are used in the MIREX note

tracking task [1]. A detected note is considered correct if

its pitch matches a ground truth pitch and its onset is within

a 50ms tolerance of a ground-truth onset. The resulting

note-based precision, recall, and F-measure are defined as:

Pren =
Ntp

Nsys
Recn =

Ntp

Nref
Fn =

2RecnPren
Recn + Pren

(6)

whereNtp is the number of correctly detected pitches,Nsys

is the number of pitches detected by the system, and Nref

is the number of reference pitches.

For the instrument assignment evaluations we use the

pitch ground-truth of each instrument separately (compared

with the instrument-specific piano-roll output of the sys-

tem), and compute the F-measure metrics for bassoon (Fb)

and violin (Fv).

4.3 Results - Single Instrument Evaluation

For single-instrument transcription evaluation using the 30

MAPS recordings, results are shown in Table 1 using four

different system configurations. Configuration C1 corre-

sponds to the system without template adaptation; C2 to

the system with template adaptation; C3 to the system with

template adaptation using both the creation of the new dic-

tionary plus the PLCA update of the dictionary, as shown

in Section 2.2. Finally, C4 refers to comparative exper-

iments without template adaptation, but using templates

from the same instrument source (‘ENSTDkCl’ model in

the single-instrument case), which is meant to demonstrate

the upper performance limit of the transcription system.

From the single-instrument multi-pitch detection results,

it can be seen that an improvement of +0.9% in terms of

Fn is reported when using the template adaptation pro-

cedure; the improvement rises to +1.2% when also using

the PLCA dictionary adaptation updates. The performance

difference between the original C1 system (without knowl-

edge of the source templates) and the ‘optimal’ system

(C4) which contains templates from the same test source

is 2.8%; thus, the proposed template adaptation steps can

help bridge the gap, without requiring any knowledge of
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Figure 4. Multi-pitch detection results on the MAPS-

ENSTDkCl set using different values of θ.

the test instrument source. Regarding precision and recall,

in all cases it can be seen that the transcription system has

fewer false alarms than missed note detections. The pro-

posed template adaptation steps help in equally improving

precision and recall.

In order to determine the value of the conservative tran-

scription threshold θ, we used a training subset of 10 record-

ings from the MAPS ‘SptkBGCl’ models; the value of

θ = 0.028 was selected by maximising Pren. In Fig-

ure 4, transcription performance on the MAPS-ENSTDkCl

set is reported by selecting various values for θ. It can

be seen that the transcription performance can reach up to

Fn=57.4% with θ = 0.015, which enforces the argument

that the proposed template adaptation method can success-

fully adapt dictionary templates so that they match the in-

put instrument source.

Another comparison for the single-instrument system is

made, where the dictionary derived from Section 2.2 re-

places the dictionary of instrument ‘SptkBGCl’ (instead

of expanding the original dictionary). The resulting Fn

is 55.88%, indicating that expanding the dictionary leads

to better results compared with replacing the dictionary. It

should also be noted that the achieved transcription per-

formance outperforms the system in [19] which reports

a frame-based F-measure of 52.4%, whereas the template

adaptation system reports a frame-based F of 59.73%. Fi-

nally, no rigorous figures for statistical significance of the

results can be given since all signal frames cannot be con-

sidered as independent samples. However, the reported

tests are run on several thousands of frames which leads, if

the samples were independent, to a statistically significant

difference of the order of 0.6% (with 95% confidence).

4.4 Results - Multiple Instrument Evaluation

For multiple-instrument evaluation, we also use the four

different system configurations that were used for single-

instrument transcription. For system configuration C3, we

perform the PLCA dictionary update using 3 variants: by

updating the bassoon only, by updating the violin only, or

by updating both dictionaries. Transcription results for the

multiple-instrument case are shown in Table 2.

It can be seen that without any template adaptation (C1),

Fn = 67.72%; by performing the proposed template adap-

tation step (C2), the multi-pitch detection F-measure im-

System Pren Recn Fn Fb Fv

C1 64.79% 71.20% 67.72% 70.19% 42.10%

C2 69.71% 75.72% 72.51% 70.81% 45.98%

C3 (violin) 70.02% 75.41% 72.50% 70.54% 44.51%

C3 (bassoon) 72.49% 77.67% 74.90% 68.77% 45.87%

C3 (both) 71.30% 77.37% 74.11% 67.57% 44.08%

C4 (oracle) 74.90% 82.94% 78.64% 81.25% 62.05%

Table 2. Multi-pitch detection and instrument assign-

ment results for the multiple-instrument system using the

Bach10 dataset.

proves by +4.8%.

By performing template adaptation with C3 which also

includes the PLCA update rule of (3), although no perfor-

mance gain is obtained over the C2 configuration for the vi-

olin updates, there is a +2.4% improvement over C2 when

updating the bassoon dictionary only. Finally, when up-

dating both dictionaries, there is a performance drop over

the C2 configuration (but the system still outperforms the

original C1 system). The performance of the PLCA-based

dictionary updates can be explained by the fact that the up-

date rule of (3) might combine the observed spectra from

both instruments and produce dictionaries that might rep-

resent a combination of the two instruments. Finally, the

C4 system represents the upper performance limit, which

is +11.7% higher than when using a dictionary from a dif-

ferent instrument models or recording conditions. It can be

seen that the proposed template adaptation methods help

in bridging that performance gap, resulting in a dictionary

that closely matches the test instrument sources.

Regarding instrument assignment performance, in all

cases the bassoon note identification reports better results

compared to violin note identification. It can be seen that

with the proposed template adaptation, the bassoon identi-

fication remains relatively constant (a small improvement

of +0.6% is reported when comparing C1 with C2). On the

other hand, violin identification improves by +3.9%; this

indicates that the RWC bassoon templates closely matched

the Bach10 bassoon models, whereas the violin RWC tem-

plates could greatly benefit from template adaptation.

By comparing the MAPS and Bach10 evaluations, an

observation can be made that the performance improve-

ment using the proposed template adaptation method de-

pends on the mismatch between the original dictionary and

the spectral shape of the instruments present in the record-

ings. Thus, the 11.7% performance gap for the Bach10

dataset led to a greater improvement for the template adap-

tation method compared to the 2.8% performance gap re-

ported for the MAPS dataset (which led to a smaller, yet

consistent improvement when using the proposed template

adaptation method).

5. CONCLUSIONS

In this paper, we proposed a novel method for template

adaptation for automatic music transcription, that can be

used in dictionary-based systems. We utilized a multiple-

instrument transcription system based on probabilistic la-



tent component analysis, and performed a conservative tran-

scription pre-processing step in order to detect notes with

a high confidence. Based on the initial transcription, the

spectra of the detected notes are collected, processed, and

are used in order to create a new dictionary that closely

matches the spectral characteristics of the input instrument

source(s). Both single-instrument and multi-instrument vari-

ants of the proposed method are presented and evaluated,

in terms of multi-pitch detection and instrument assign-

ment. Experimental results using the MAPS and Bach10

datasets show that there is a clear and consistent perfor-

mance improvement when using the proposed template adap-

tation method, especially when there is a large discrepancy

between the original dictionary and the spectral character-

istics of the test instrument sources.

In the future, we will evaluate the proposed system us-

ing multiple-instrument recordings with more than two in-

struments. Parametric models (such as source-filter mod-

els) will also be investigated for updating the note tem-

plates, along with adaptive methods for deriving the con-

servative transcription threshold. We also plan to evaluate

the proposed system in the next MIREX evaluations [1].

Finally, the proposed template adaptation steps will also

be evaluated in the context of score-informed source sepa-

ration using spectrogram factorization models [9].
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