Cell decomposition and classification of definable sets in p-optimal fields

Abstract : We prove that for p-optimal fields (a very large subclass of p-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef's paper [Invent. Math, 77 (1984)]. We derive from it the existence of definable Skolem functions and strong p-minimality. Then we turn to strongly p-optimal fields satisfying the Extreme Value Property (a property which in particular holds in fields which are elementarily equivalent to a p-adic one). For such fields K, we prove that every definable subset of KxK^d whose fibers are inverse images by the valuation of subsets of the value group, are semi-algebraic. Combining the two we get a preparation theorem for definable functions on p-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are isomorphic iff they have the same dimension.
Type de document :
Article dans une revue
The Journal of Symbolic Logic, Association for Symbolic Logic, 2017, 82 (1), pp.120-136
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01083119
Contributeur : Luck Darnière <>
Soumis le : vendredi 5 février 2016 - 13:38:19
Dernière modification le : jeudi 11 octobre 2018 - 01:08:55
Document(s) archivé(s) le : samedi 12 novembre 2016 - 11:02:01

Fichiers

p-optimal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01083119, version 4
  • ARXIV : 1412.2571

Collections

Citation

Luck Darnière, Immanuel Halupczok. Cell decomposition and classification of definable sets in p-optimal fields. The Journal of Symbolic Logic, Association for Symbolic Logic, 2017, 82 (1), pp.120-136. 〈hal-01083119v4〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

66