Wound Rotor Induction Generator Inter-Turn Short-Circuits Diagnosis Using a New Digital Neural Network

Abstract : This paper deals with a new transformation and fusion of digital input patterns used to train and test feedforward neural network for a wound-rotor three-phase induction machine windings short-circuit diagnosis. The single type of short-circuits tested by the proposed approach is based on turn-to-turn fault which is known as the first stage of insulation degradation. Used input/output data have been binary coded in order to reduce the computation complexity. A new procedure, namely addition and mean of the set of same rank, has been implemented to eliminate the redundancy due to the periodic character of input signals. However, this approach has a great impact on the statistical properties on the processed data in terms of richness and of statistical distribution. The proposed neural network has been trained and tested with experimental signals coming from six current sensors implemented around a setup with a prime mover and a 5.5 kW wound-rotor three-phase induction generator. Both stator and rotor windings have been modified in order to sort out first and last turns in each phase. The experimental results highlight the superiority of using this new procedure in both training and testing modes.
Type de document :
Article dans une revue
IEEE Transactions on Industrial Electronics, Institute of Electrical and Electronics Engineers, 2013, 60 (9), pp.4043 - 4052. 〈10.1109/TIE.2012.2229675〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01083108
Contributeur : Laurent Capocchi <>
Soumis le : lundi 4 janvier 2016 - 10:13:45
Dernière modification le : lundi 21 mars 2016 - 17:34:09
Document(s) archivé(s) le : vendredi 15 avril 2016 - 15:42:22

Fichier

TIE_Toma.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Samuel Toma, Laurent Capocchi, Gerard-André Capolino. Wound Rotor Induction Generator Inter-Turn Short-Circuits Diagnosis Using a New Digital Neural Network. IEEE Transactions on Industrial Electronics, Institute of Electrical and Electronics Engineers, 2013, 60 (9), pp.4043 - 4052. 〈10.1109/TIE.2012.2229675〉. 〈hal-01083108〉

Partager

Métriques

Consultations de
la notice

71

Téléchargements du document

197