
HAL Id: hal-01083100
https://hal.science/hal-01083100

Submitted on 15 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Proposed Evolution of DEVSimPy Environment
Towards Activity Tracking

Jean François Santucci, Laurent Capocchi

To cite this version:
Jean François Santucci, Laurent Capocchi. A Proposed Evolution of DEVSimPy Environment To-
wards Activity Tracking. 2012, pp.9. �hal-01083100�

https://hal.science/hal-01083100
https://hal.archives-ouvertes.fr


A Proposed Evolution of DEVSimPy
Environment Towards Activity Tracking
ACTIMS Workshop, May 28 - June 1 2012, Cargese, Corsica (France)

J.F. Santucci, L. Capocchi

This paper deals with the potential evolutions of the DEVSimPy environ-
ment involving Activity Tracking (AT) concepts. The DEVSimPy environ-
ment is being developed at University of Corsica in order to facilitate the
modeling and the simulation of dynamic systems described with the DEVS
formalism. Currently, DEVSimPy can be used as an AT software providing
some features like simulation profiling or step-by-step simulation. However,
DEVSimPy has been developed in an object-oriented way using as far as
possible Design Patterns. This property makes easy the introduction of new
concepts or functionalities in order to extend the DEVSimPy towards a real
AT software for DEVS systems.

1 Introduction

This presentation concerns the potential evolutions of the DEVSimPy frame-
work involving Activity Tracking (AT) concepts. This framework is being
developed at University of Corsica using the Python language. DEVSimPy is
an open source project under GPL V3 license and the SPE research labora-
tory team supports its development. It uses the wxPython User Interface li-
brary, the Python Language and the PythonDEVS API [1]. The DEVSimPy
environment is being developed in order to facilitate the modeling and the
simulation of dynamic systems described with the DEVS formalism. Cur-
rently DEVSimPy can be used as an AT software providing some features
as simulation profiling or step-by-step simulations. Furthermore DEVSimPy
has been developed in an object oriented way using as much as possible De-
sign Patterns. This feature allows an easy introduction of new concepts or
functionalities in order to extend the DEVSimPy framework towards a real
AT software for DEVS systems. The goal of this paper is therefore threefold:

• Over-viewing of the DEVSimPy framework: An overview of the object
oriented architecture will be presented and the following features will be

1



pointed out: (i) how the re-usability of models is achieved; (ii) how dif-
ferent types of simulation is allowed and (iii) how it is easy to implement
plug-ins in order to extend the semantic of DEVSimPy.

• Highlighting AT in actual DEVSimPy framework: Some AT features
already implemented in the DEVSimPy framework. will be described.
In particular the implementation of a special plug-in named ’Blink’ will
be pointed out. The aim of this plug-in is to detect which atomic model
is currently active and indicate interactively with the user all the infor-
mation concerning the simulation process. A ’No Time Limit’ option
has been defined and implemented based on the concept of starting
and finishing activities. The main idea was to implement two methods
allowing to: (i) initiate a thread corresponding with the beginning of
a simulation process; (ii) detect the fact that no activity is currently
present in a given simulation process. A profiling option allows the user
to obtain a set of statistical information about the activity of models
which have been collected during the simulation.

• Envisioning evolution of DEVSimPy framework in order to deal with
AT concepts: the potential extensions of DEVSimPy will be explored
in order to implement the concepts stemming from AT domain [6]. The
oriented object implementation of DEVSimPy based on the use of design
patterns facilitate the introduction of new concepts in order to extend
the DEVSimPy framework. Addition of extensions of DEVSimPy could
be easily performed own to : (i) a simulator based on AT using the
Design Pattern Strategy; (ii) information about activity tracking during
the simulation using a dedicated plug-in.

The rest of this paper is organized as follows : the next part introduces
the DEVSimPy framework. The object oriented architecture is presented
and the main functionalities are described. Section 3 deals with AT notions
already introduced in the DEVSimPy framework. The main features already
implemented will be detailed : the ’Blink’ plug-in, the ’No Time Limit’
option, the start and finish methods and the profiling option. In section
4 the basic ideas allowing to extend the DEVSimPy framework using AT
features are given.

2 DEVSimPy Environment

DEVSimPy is an open source project initiated by the Modeling and Simula-
tion team of the SPE (Sciences Pour lEnvironnement) laboratory (University
of Corsica). The aim of this software is to provide developers a collabora-
tive modeling and simulation (M&S) framework in Python language [2]. It
uses the wxPython library which is a blending of the wxWidgets C++ class
library with Python. The DEVSimPy M&S kernel is based on the Python-
DEVS API which offers a consistent and coherent set of classes in order to

2



construct a modular system and to achieve its hierarchical simulation. Ini-
tially, the idea of the DEVSimPy project was to decorate the PythonDEVS
kernel with a graphical user interface (GUI) specially to be able to handling
models in a visually dynamic way. All DEVS models implemented with the
PythonDEVS API are admissible into a DEVSimPy diagram as a graphical
box with ports. Basically, a DEVSimPy library is composed with Python-
DEVS models which can be instantiated using a drag and drop operation.
Subsequently, many customizable aspects have been added to the user inter-
face in particular to simplify the coupling between models, to save them in
a specific format or to edit the corresponding code. If the PythonDEVS file
can be considered as the default model handled by DEVSimPy, .amd and
.cmd files have been introduced to represent respectively atomic and coupled
DEVS models. More specifically, these are compressed files containing sep-
arately a behavioral and graphic file. The behavioral file implements DEVS
specification with the PythonDEVS rules and the graphic file allows the view
of the model in DEVSimPy interface. The approach consisting to separate
the behavior and the view of model provides a way to handle these two as-
pects in a efficient way. In fact, when it is necessary to change or to permute
a behavior of model, the view may stay the same. Finally, the high-level
coupled model (called diagram) which includes models (.amd, .cmd, .py) has
a specific format named dsp. The developers have the possibility to share
dsp associated with libraries in order to simulate diagrams which have been
already built.

The philosophy of DEVSimPy is to be an open, extensible and participative
environment for the developers. A plug-in manager is proposed in order to
expand the functionalities of DEVSimPy allowing their enabling/disabling
through a dialog window. DEVSimPy provides a set of existing plug-ins
allowing the verbose simulation, the double click event overwriting with the
specification of a new action, the hierarchical view of the simulation objects
using a tree graph, the representation of GIS in Google Earth [5] and even
more. The list of active plug-ins is saved in a configuration file loaded during
the starting of DEVSimPy.

2.1 Architecture

From the perspective of a software engineering, DEVSimPy is implemented in
a object oriented way with the use of design patterns to insure a perfect soft-
ware evolution. Furthermore, the Model-View-Controller (MVC) has been
used to organize the interaction with the users and to split the software ar-
chitecture into two entities: the PythonDEVS kernel and the DEVSimPy
engine. This separation help to facilitate the independent development, test-
ing, and maintenance of DEVSimPy. Moreover, the “Strategy“ pattern is
used to allow the definition of interchangeable simulation algorithm family.
Users can choose at run-time between the classic hierarchical DEVS simu-

3



lator, the flat version, or other simulators proposed by the developers. The
use of the Strategy pattern insures the indecency of simulator algorithms
and provide a way to separate algorithms into classes that can be plugged
in at runtime. According to the fact that Python language allows the in-
trospection of its objects, DEVSimPy provides the possibility to change the
behavior of models during the simulation process. This feature has been used
for the fault simulation of system by injection. In [3,4], DEVSimPy is used
to facilitate the fault injection into a neural network based discrete event
model of electrical machines for its diagnosis.

2.2 Functionalities

A modeling and simulation software should be able to propose a set of func-
tionalities dedicated to facilitate handling of models and to automate as far
as possible the simulation process. DEVSimPy has been build in order to ma-
nipulate PythonDEVS models in a graphical way using drag and drop func-
tion to instantiate DEVS models and save them in a specific file with a .dsp
extension. DEVSimPy offers basic functionality like the copy/cut/past of
models, the edition of model properties (graphical and behavioral attributes),
the coupling between models (with drag and drop), the export of models in
a library (with .amd or .cmd format resp. for atomic and coupled model),
the automatic simulation by using a simple click on a button. In addition,
DEVSimPy has been build with a set of extra functionalities making it a
powerful software to model and simulate DEVS models:

• With DEVSimPy, the modeler can use plug-ins in order to control and
extend the behavior of a set of models (called general plug-in)or a simple
model (called specific plug-in). The user controls all of these plug-ins
by using a plug-in manager in charge of enable or disable them. For
example, DEVSimPy proposes a general plug-in which is in charge to
blink the models whose the transition functions are executed. There is
also a specific plug-in in charge of the double right click overwriting by
disabling the default functionality which displays the property manager.

• An another functionality which makes DEVSimPy unique is the possi-
bility of changing the code of model during simulation. The modeler can
decide to suspend simulation to change the code of model and restart
the simulation to include the new behavior of the model. This func-
tionality is often used when visualizing the simulation results and when
the modeler decides to interact with the model and wants to change the
behavior of one or more models to control the simulation results.

• With DEVSimPy, the modeler can export or import models from dy-
namic libraries composed by local or web models. When models are
stored in a local directory, the importation is made knowing the abso-
lute path of .amd, .cmd or .py files. When models are stored on the

4



Web server (http(s)or ftp), the importation is made from the url of the
model file. This functionality is useful when developers want to manage
DEVSimPy files in a collaborative way. Moreover the distribution of
Web libraries is much easier than the local libraries. In addition, all of
these functionalities make DEVSimPy a powerful software for the mod-
eling and simulation of hybrid system due to the possibility of using
dynamic libraries composed with connectible and compatible models.

• An interesting functionality in DEVSimPy is the profiling option once
the simulation is over. The developers can analyse the execution time,
the number of transition function execution for all DEVS atomic models.
This last functionality is often use to measure a certain notion of model
activities. This functionality can be also used during the simulation.

The set of these DEVSimPy functionalities are possible with a software ar-
chitecture based on a modular class diagram using a MVC design.

3 Activity Tracking according to DEVSimPy

3.1 Activity Tracking Concept

Basically, the activity notion for a DEVS system can be viewed in two ways:
in the modeling part or in the simulation part (figure 1). In the modeling
part, a DEVS model activity can be considered as the number of transition
functions executions. In the simulation part, an activity measure can be a
quantification of an entity (like the number of CPU cycles) used to execute
the model.

Figure 1: Notion of activity in the modeling and simulation part.

When the simulation activity is tracked in the simulation part, a main
goal could be to analyze the computation simulation process (considering a
measure like CPU time consumption) to improve it by changing or adapting
its algorithm. For the modeling part, a goal could be to calculate the number
of model execution in order to improve its modeling.

3.2 DEVSimPy functionalities involving Activity Tracking

According to the DEVS formalism, the state of a model changes when an
internal or an external event occurs during the simulation. The simulation

5



process unfolds as long as at least one atomic model has its internal transition
function which must be active. The simulation is over when the time advance
of models is infinity. This condition is not unique and can be coupled with
another constraint specified by the modeler. A simulation time limit can be
imposed by the modeler in order to end the simulation process. DEVSimPy
offers a ’No Time Limit’ option to disable this one. If this option is true,
the simulation process is active if at least one model is active. In addition,
DEVSimPy allows the implementation of two functions (advisable but not
mandatory): the ”start” function and the ”finish” function. These functions
can be used to specify the behavior of atomic models respectively at the
beginning and the end of the simulation. The activation of these functions
is automatic in the simulation part in so far as they are implemented by the
modeler.

DEVSimPy includes a plug-in manager to extend its functionalities called
’Blink’. The plug-in ’Blink’ is proposed to visualize the activity of models
during the simulation (Figure 2). It is based on a step by step approach
and filled each active model with a color which depends on the executed
transition function.

(a) Blink starting the simulation.

(b) Blink during the simulation.

Figure 2: Example of activity visualization with blink plug-in.

6



For instance,the model becomes red when intercepting a external event and
then executes its external transition function (see figure 2(a)). It becomes
green when a model performs its internal transition function (see figure 2(b)).
With this plug-in, the modeler can also find (in a associated dialog window
shown in both figure 2(a) and 2(b)) details about messages composition,
the evolution of models state or the messages intercepted/sent on their in-
put/output port during the simulation.

4 Proposed Evolution of DEVSimPy

We describe in this part the basic idea we envision to extend the DEVSimPy
framework by implementing AT concepts. The idea is to propose an enhanced
simulation based on AT concepts. In order to improve the performance of the
simulation of complex DEVS systems in terms of CPU time we propose to
develop an approach based on AT. In order to clarify the activity notion we
have to point out that two level of activity can be highlighted as introduced
in part 3.1: (1) activity at the model level; (2) activity at the computing
level. The first one refers to the notion of activity linked to: (i) the number
of internal discrete-events (internal function activation by atomic models)
over a simulation-time period; (ii) the number of external discrete-events
(messages exchanged by atomic models) over a simulation-time period. The
second one concerns the CPU time consumption linked with the processing
of atomic models involved in the studied models. The idea is to measure
the CPU time associated with the different atomic models and to adapt the
simulation according to the result of the measurement of the computational
activity. Two steps are necessary to implement this improvement: (1) mea-
surement of the computational activity associated with atomic models; (2)
re-organization of the simulation architecture according to the previous ob-
tained measurement. The re-organization will consist in selecting the best
simulation algorithm in order to improve the CPU time when performing
the simulation. The implementation of simulation algorithms in DEVSimPy
has been done using the Design Pattern called Strategy [7]. The Strategy
Design Pattern allows to: (i) define a family of algorithms, encapsulate each
one, and make them interchangeable; (ii) capture the abstraction in an in-
terface, bury implementation details in derived classes. The Strategy Design
Pattern we have defined allows the user to choose between different sim-
ulation algorithms. We already have implemented three different kinds of
simulation: (i) classical hierarchical DEVS simulation [8]; (ii) direct coupling
simulation; (iii) Concurrent DEVS simulation. The figure 3 illustrates the ac-
tual implementation of the Strategy Design Pattern allowing the DEVSimPy
framework to run the hierarchical simulation (Hierarchical), direct coupling
simulation (DirectCoupling) and concurrent simulation (Concurrent). We
plan to add a fourth strategy corresponding to AT simulation (it is called

7



ActivityTracking).

Figure 3: UML diagram pointing out the implementation of Design Pattern strategy.

The measurement of CPU time consumption will be performed using the
profiling option presented in part 3. The integration of the measurement of
activity within the simulation architecture is performed according to figure 4.
The measurement of activity is performed using the profiling option already
implemented in the DEVSimPy framework. This measurement is then used
in order to dynamically choose between the best simulation algorithm as it
is shown on figure 4. The implementation of different simulation algorithms
organized according to the Strategy Design Pattern will allow the selection
of the best algorithm while the simulation is conducted.

Figure 4: Integration of activity measurement with simulation algorithm.

The dynamic switching between the different simulation algorithms in or-
der to improve the CPU time consumption according to the activity measure-
ment is being implemented own to both the Strategy Design Pattern concept
and the intrinsic dynamic programming feature of the Python language.

8



5 Conclusion and Perspectives

This paper deals with the links between AT concepts and DEVSimPy frame-
work. After a brief description of the DEVSimPy environment we first
pointed out how AT concepts are already involved in the DEVSimPy. Two
main examples have been given : the ’No Time Limit’ option and the ’Blink’
plug-in. Then we present the main ideas we envision in order to propose
extension of the DEVSimPy framework based on AT concepts : (i) im-
plementation of a simulation algorithm based on AT ; (ii) definition of a
plug-in allowing AT measures to be obtained during simulation of DEVS
models. Own to the DEVSimPy architecture the extensions can be easily
implemented and furthermore using the numerous already existing libraries
the developers will able to exploit the new capabilities stemming from AT.
Another original perspective of DEVSimPy to activity is to relate ”Activity-
based execution” to ”Activity-based simulation” by differencing the number
of transitions from the corresponding execution times of the transitions.

References

[1] J. S. Bolduc and H. Vangheluwe, The modelling and simulation pack-
age PythonDEVS for classical hierarchical devs., MSDL Technical Report
MSDL-TR-2001-01. Montreal, Quebec, Canada: McGill University, (2001)

[2] L. Capocchi, J. F. Santucci, B. Poggi, C. Nicolai, and others, DEVSimPy:
A Collaborative Python Software for Modeling and Simulation of DEVS
Systems, in 2011 20th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, pp. 170175, (2011)

[3] L. Capocchi, S. Toma, G. A. Capolino, F. Fnaiech, A. Yazidi, Wound-
Rotor Induction Generator Short-Circuit Fault Classification Using a New
Neural Network Based on Digital Data, in Proceedings of the 8th IEEE
International Symposium on Diagnostics for Electrical Machines, Power
Electronics and Drives will be held during, September 5-8, 2011, Bologna
(Italy), ISBN 978-1-4244-9302-9, IEEE Catalog Number CFP11SDE-USB

[4] S. Toma, L. Capocchi, D. Federici, A New DEVS-Based Generic Ar-
tificial Neural Network Modeling Approach, in Proceedings of The 23rd
European Modeling and Simulation Symposium (Simulation in Industry),
Rome, Italy, September 12-14, 2011.

[5] J. F. Santucci, L. Capocchi, Visualization of Folktales on a map by cou-
pling dynamic DEVS simulation within Google Earth. SIMULTECH 2011,
Noordwijkerhout : Netherlands.

[6] A. Muzy, F. Varenne, B. P. Zeigler, J. Caux, P. Coquillard, L. Touraille,
D. Prunetti, P. Caillou, O. Michel, and D. R. . Hill, Refounding of Activity
Concept? Towards a Federative Paradigm for Modeling and Simulation.

9



[7] E. Gamma,R. Helm,R. Johnson, J.Vlissides, Design Patterns Elements
of Reusable Object Oriented Sofware, Addison-Wesley, 1995.

[8] B.P. Zeigler, H. Praehofer , T.G. Kim,Theory of Modeling and Simulation,
2nd Edition (Academic Press, jan 2000) 510 pages.

10


