
HAL Id: hal-01082408
https://hal.science/hal-01082408

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Modelling and Analysing Non-Functional
Properties of Systems of Systems

Vanea Chiprianov, Katrina Falkner, Laurent Gallon, Manuel Munier

To cite this version:
Vanea Chiprianov, Katrina Falkner, Laurent Gallon, Manuel Munier. Towards Modelling and
Analysing Non-Functional Properties of Systems of Systems. IEEE 9th International System of Sys-
tems Engineering Conference (SoSE’2014), Jun 2014, Stamford Grand, Adelaide, Australia. pp.289-
294. �hal-01082408�

https://hal.science/hal-01082408
https://hal.archives-ouvertes.fr

Towards Modelling and Analysing Non-functional
Properties of Systems of Systems

Vanea Chiprianov
LIUPPA, Univ Pau & Pays Adour

Mont de Marsan, France
vanea.chiprianov@univ-pau.fr

Katrina Falkner
School of Computer Science

University of Adelaide
Adelaide, SA, Australia

katrina.falkner@adelaide.edu.au

Laurent Gallon, Manuel Munier
LIUPPA, Univ Pau & Pays Adour

Mont de Marsan, France
name.surname@univ-pau.fr

Abstract � Systems of systems (SoS) are large-scale
systems composed of complex systems with difficult to
predict emergent properties. One of the most significant
challenges in the engineering of such systems is how to
predict their Non-functional Properties (NFP) such as
performance and security, and more specifically, how to
model NFP when the overall system functionality is not
available. In this paper, we identify, describe and analyse
challenges to modelling and analysing the performance
and security NFP of SoS. We define an architectural
framework to SoS NFP prediction based on the modelling
of system interactions and their impacts. We adopt an
Event Driven Architecture to support this modelling, as it
allows for more realistic and flexible NFP simulation,
which enables more accurate NFP prediction. A
framework integrating the analysis of several NFP allows
for exploring the impacts of changes made to
accommodate issues on one NFP on other NFPs.

Keywords: System of system, non-functional property,
performance, security, model, analysis, prediction,
architecture, framework.

1 Introduction

 Systems of systems (SoS) are large-scale concurrent
and distributed systems that are comprised of complex
systems [19]. Several definitions of SoS have been
proposed, some of them historically reviewed in e.g. [14].
SoS are complex systems themselves, and are distributed
and characterised by interdependence, independence,
cooperation, competition, and adaptation [8].

Characteristics that have been proposed to distinguish
between complex but monolithic systems and SoS are
[27]: operational independence of the elements,
managerial independence of the elements, evolutionary
development, emergent behaviour, geographic
distribution. Other sets of characteristics of SoS, partially
overlapping, have been identified, e.g. [4]: autonomy,
belonging, connectivity, diversity, emergence.

Investigating Non-functional Properties (NFP), like
performance or security, of SoS comprise all the issues
associated with the investigation of NFP of composing
systems. Moreover, there are challenges related to the
specific nature of SoS [19], [8] [6], [24]. The

decentralised, distributed nature of SoS require an
emphasis on interface architecting to foster collaborative
functions among its composing independent systems. The
interaction between systems creates new unexpected
behaviours. Hidden failures cascade, becoming more
damaging. The loose connectivity between composing
systems runs contrary to ensuring a high performance of
the overall SoS. All these factors increase the difficulty of
analysing NFP of SoS.

One approach for the early checking of meeting
performance requirements is performance prediction
modelling. In this paper, we adopt the definition
introduced by [2]: �the process of predicting (at early
phases of the life cycle) and evaluating (at the end) based
on performance models, whether the software system
satisfies the user performance goals�. Similarly, we
require that our understanding of performance prediction
be based upon an existing performance model. Prediction
of software performance has developed from early
approaches based on abstract models to Model-Driven
Engineering (MDE) [3] based approaches. MDE is
typically applied to the development of software, but may
also be used in the configuration and deployment phases,
system execution emulation and analysis. One of the main
techniques in MDE is the use of Domain Specific
Modelling Languages (DSMLs). A DSML is defined in
this paper to be a language that offers expressive power
focused on a particular problem domain through
appropriate notation and abstractions. This provides the
specification, construction and documentation of artefacts
of a software-intensive system.

System Execution Modelling (SEM) [17], a recent
development from research into measurement-based
performance prediction, provides detailed early insight
into the performance of a system design. A SEM-based
approach supports the evaluation of overall (software)
system performance, incorporating component
interactions. These approaches are based upon simple
models of resource consumption from the component�s
�business logic� [17], [34], [15], and support detailed
performance modelling of software systems, thus enabling
predictions of performance through execution of
representative source code of behaviour and workload
models deployed upon realistic hardware testbeds. SEM
and MDE may be used in combination to support the

emulation of system components and performance
models, enabling performance data to be used to redesign
and reconfigure the system, prior to any construction of
the corresponding real system.

Identifying challenges to security engineering within SoS
is the first step in engineering security within SoS. As
highlighted by [28], a very desirable research direction
would be an integrated description and analysis method
that can express and guarantee user level security,
reliability, and timeliness properties of systems built by
integrating large application layer parts - SoS. Moreover,
systems engineering must incorporate consideration of
threats and vulnerabilities into the requirements,
architecture, and design processes; the importance and the
challenges of applying system security engineering
beyond individual systems to SoS has been recognised [9].

SoS analysis can drive changes in the composing systems
to exploit opportunities or correct problems that were not
originally anticipated. A key architectural tool may be the
use of predictive modelling and simulation to compare
architectural alternatives [21]. Approaches to modelling
and analysing system security also comprise quantitative
evaluation and prediction, using attack models, e.g. CWE
[7] and CVSS [13], and security models, e.g. Secure i*
[10] and SecureTropos [32], or UMLSec [20] and
CARiSMA [39], in addition to system models.

How could these approaches for modelling and analysing
performance and security of systems be extended in the
context of SoS? How could they be combined in a
coherent architectural framework that supports modelling
and analysing of both performance and security issues of
SoS? Such a framework would open the way to an
integrated solution for predicting other NFP of SoS, like
safety or reliability. An integrated solution would allow
exploring architecture alternatives by analysing not only
one NFP in isolation, but also the impacts of changes
made to satisfy one NFP on other NFP.

In what follows, we identify, describe and analyse
challenges to modelling and analysing performance and
security of SoS, in Section 2. From these challenges, we
deduce requirements an architectural framework for
predicting performance and security of SoS should fulfil,
in Section 3. We then define an architectural framework,
in Section 4. We conclude and indicate future work.

2 Challenges to Modelling and

Analysing NFP of SoS

NFP engineering for SoS needs to take into account the
characteristics specific to SoS, and how they impact NFP
of SoS. At a general, abstract level, these impacts on
performance and security of NFP include [37], [14]:

Operational Independence: The component systems of an
SoS may be operated separately, under different policies,
using different implementations. This can lead to potential

incompatibilities and conflicts between the security or the
performance of each system, including different
requirements, protocols, procedures, technologies and
culture. Additionally, some systems may be more
vulnerable to attacks or have less critical real-time
constraints than others, and compromise or non-fulfilment
of time constraints of such systems may lead to
compromise or non-fulfilment of constraints of the SoS.

Managerial Independence: Component systems may be
managed by completely different organisations, each with
their own agenda. Activities of one system may produce
difficulties for the security or performance of another
system. What rights should one system have to specify the
security or performance of another system for SoS
activities and independent activities? How can systems
protect themselves within the SoS from other component
systems and from SoS emerging activities?

Evolutionary Development: An SoS typically evolves over
time. Therefore, the security mitigations and performance
optimisations in place for an evolving SoS will be difficult
to completely specify at design time, and will need to
evolve as the SoS evolves.

Emergent Behaviour: SoS are typically characterised by
emerging or non-localised behaviours and functions that
occur after the SoS has been deployed. These could
clearly introduce security and performance issues for the
SoS or for its component systems. Who should respond
and where are responses needed?

Geographic Distribution: An SoS is often geographically
dispersed, which may cause difficulties in trying to secure
the SoS as a whole if national regulations differ or in
ensuring performance requirements are met due to
numerous and long paths of interaction.

NFP are often taken into account only at the end of the
development life-cycle of a system. Consequently, any a
posteriori modification is expensive. That is why, they
must be taken into account as soon as possible and
designed-in rather than relying on hardening of systems
post implementation [23], [26]. But how can security and
performance be integrated into the SoS architecture [5]?
How to represent the SoS in a form that enables detailed
analysis, especially when full details of the component
systems may not be readily available? A key architectural
tool in this respect may be the use of predictive modelling
and simulation to compare architectural alternatives. In
any process for improving a SoS, alternative architectures
would need to be carefully considered and modelled to
ensure the SoS is not compromised or undesirable
emergent behaviours result. Moreover, the SoS may not
be responsive to a single analysis. Should, therefore, SoS
analysis be incremental and the SoS should be available
for testing almost on a continuous basis [21]?

Interdependency analysis is concerned with examining the
possible cumulative effects of a single security or

performance incident on multiple systems. Such cascading
failures or bottlenecks could result in a complete blackout.
Hence, it is important to identify them before they happen
[29]. How to identify threats that may appear insignificant
when examining only first-order dependencies between
composing systems of a SoS, but may have potentially
significant impact if one assesses multi-order
dependencies [25]? How can such an approach be
integrated in a SoS risk assessment methodology [12]?

Designing SoS needs to be addressed different from the
traditional process of stove-piped systems [11]. Which
would be the best suited process for architecting SoS?
Should it be iterative, agile, or model-based, etc? How
does the type of dependencies (strong, loose) between the
development of SoS and that of its constituent systems
influence the design process of the SoS?

Security of SoS that have strong real-time constraints
needs that devices properly mutually authenticate
themselves to prevent insertion of malicious devices or
messages in case of attacks like man-in-the middle. The
main challenge in the design and implementation is to
retain the temporal properties of a real-time system. Any
additional and unpredictable delay is critical for the
communication and consequently for the access control
and traffic separation based on the time-triggered protocol
[36]. Of course, the authentication case can be generalised
to other security mechanisms that may introduce delays in
time-constrained SoS. Such cases show how assuring one
NFP may affect negatively another NFP. How to analyse
the interplay between several NFP of SoS?

Authorisation is concerned with the management and
control of the authorisation schemes used and the ability
to grant SoS authentication to interested parties [22]. In a
SoS, users with different backgrounds and requirements
should be granted accesses to different resources of each
composing system [40]. How would delegation of rights
be handled? Who would be responsible for it?

Accounting/Auditing is necessary for the record of events
and operations, and the saving of log information about
them, for SoS and fault analysis, for responsibility
delegation and transfer, and even digital forensics.
However, there is no well-defined best-practice guideline
on accounting agreed upon and adopted [40]. Where will
this information be stored and who will be responsible for
the generation and maintenance of logs [22]?

NFP metrics specific for SoS constitute another challenge.
What could be security- and performance-specific metrics
and aggregation functions for an SoS [9] [38] [18]?

What kind of data should meta-data contain? What kind of
meta-data should be legally permitted to collect and
employ? Should meta-data tags include data classification
to provide controlled access, ensure security, and protect
privacy? Should meta-data be crypto-bound to the original
data to ensure source and authenticity of contents [11]?

3 Requirements for an Architectural

Framework

From the challenges identified before, we deduce a series
of requirements which an architectural framework for
modelling and analysing NFP of SoS should fulfil:

1. Loose coupling: The systems that form an SoS are
independent, but also need to interoperate and interact.
Towards this, a mechanism that allows the description of
loosely coupled interactions is needed.

2. Interoperability of composing systems: Different
formalisms or modelling languages may be used to model
NFP prediction across the SoS. A means to interconnect
all these heterogeneous models is necessary.

3. Interaction specification: The mechanism allowing the
specification of loose interactions between composing
systems of the SoS needs to be precise enough so as to
limit the emergence of unexpected interactions to the
point that they can be analysed as part of the NFP
prediction process. This also implies that the mechanism
should allow for repeatability.

4. Time and data distribution: Because of its distributed
nature, the NFP prediction model of an SoS needs time
and data distribution mechanisms between its composing
NFP models.

5. Adaptability: Both at the composing system and the
SoS level, architectural reconfigurations within the NFP
models are necessary to analyse different architectural
alternatives. Thus, a mechanism to generate code for a
specific architectural configuration is necessary.

6. Sustainable evolution: The NFP model of an SoS needs
to accommodate for models of composing systems being
added, removed, and changed. Therefore it needs to
enable open-ended extension.

7. User interaction: The interaction specification may be
done in a repeatable, manner, or in an interactive manner,
in which the user manipulates the models at runtime.

8. Logging mechanism: To record events, operations
and NFP metrics, a logging mechanism is essential.

9. Authorisation specification: A proper authorisation
mechanism is necessary for the composing systems to
cooperate together and allow users with different
backgrounds and requirements to access different
resources of each composing system.

4 Architectural Framework for

Modelling and Analysing NFP of SoS

To address the requirements, we propose an architectural
framework for predicting in an integrated manner both
security and performance of SoS. This addresses the
challenge of analysing the interplay between several NFP.

The architectural framework addressing the requirements
defined above is presented in Figure 1, described in a
formalism inspired from UML component diagrams. To
predict the NFP of a SoS, the NFP of each of the
composing systems needs to be predicted. Therefore, for
each composing system, an NFP model is necessary. For
each of these composing NFP models a SEM approach
can be used. In addition to the composing NFP models, a
mechanism to specify the interaction of the loosely
coupled interoperable composing systems is necessary.

The NFP Models of a System (NFPMS) are integrated in
our architecture based on the Event Driven Architecture
(EDA) [30]. In an EDA, an event is immediately
disseminated to all interested parties. The interested
parties evaluate the event, and optionally take action. The
creator of the event (event generator) has no knowledge of
the event�s subsequent processing, or of the interested
parties (event sink). This makes EDA an extremely
loosely coupled and highly distributed architecture. After
an event has been triggered, a notification is produced and
propagated to an event processing engine. The engine may
order events according to priority criteria, or may do other
processing specified in the activity associated with the
event. Next, it publishes the notification on the event
channel, which propagates it to all interested parties. The
event sinks detect it and decide whether to consume it.

In addition to addressing the loose coupling requirement,
EDA also addresses the sustainable evolution requirement.
Since the EDA event generator knows nothing about the
event sinks, this enables an open-ended extension
approach, in which event generators do not need to be

modified to include new event sinks. The EDA event
channel can be enhanced with a time and data distribution
management bus. Such a bus, as long as it is independent
of technologies used to describe NFP models, and is
distributed, enables the interoperability of the NFPMS.

The NFPMS may be thought of as a component that
provides an interface, and may use other interfaces, cf.
Figure 1. It is described using a specific formalism.
Independent of this formalism, we model the interactions
with NFPMSs of other systems using event generators and
sinks. The event generators of an NFPMS produce
notifications that are sent to an Event Processing Engine,
which orders them in a queue using priority criteria. The
engine processes the first event, and executes its
associated activity. It publishes the event notification on
the Event Channel., which may use different patterns,
such as Reactor or Proactor [35], and propagates the event
notification to all interested parties. The event sinks of all
other NFPMS detect it and may decide on an action.
Event generators and sinks are introduced in the NFPMS
in ways specific to their NFP modelling formalism.

The events generated by all NFPMS are stored by the
logging component. These events, together with
associated meta-data are used to compute measurements
of performance and security of component systems and of
the SoS. These measurements can be aggregated into
more complex ones, serving as the basis for the analysis
and the prediction of SoS NFP. Therefore, the logging
component is essential for collecting all these measures.

We advance a Scenario DSML. It is built on top of the
SoS NFP prediction architecture framework, containing
concepts specific to EDA, and thus generic with respect to
the composing NFPMS. It is used to describe interactions
between NFPMS. It is presented in more detail in Section
4.1. The Scenario DSML uses MDE and code generation
techniques to facilitate adaptability. For example, from
the scenario model, code can be generated to different
middleware implementations of the event channel or bus,
which addresses the adaptability requirement.

Illustration 1: Architectural Framework for NFP Prediction of Systems of Systems

4.1 Scenario DSML

The Scenario DSML meta-model is presented in Figure 2.
Most of its concepts are generic, related to EDA, and
independent of the domain of the NFPMS. We introduce
three groups of concepts, related to modelling events,
publishing policies and security policies.

Modelling events are detailed in the following. The Event
concept has several Conditions that have to be met in
order for the event to be triggered. Conditions can be of
different types, either referring to the data that is
exchanged between events -
ExchangedDataTypeCondition, or to the time when an
event is triggered - TimeCondition. Once the event has
been triggered, Actions can be performed. These can be
one time actions, or IterativeActions, in which case a
frequency defining the iteration and an offCondition need
to be indicated.

Publishing policy entities are needed to indicate how the
messages are routed between Units, (EventToUnitPolicy,
EventToEventPolicy), or between Units inside the SEM of
a composing unit and other SEMs (SemPolicy) or SEM
components (SemComponentPolicy).

Security policies form the basis of several security
formalisms like OrBAC [1]. The entities we introduce in
the Scenario DSML are based on the meta-model
introduced by [31]. An Action may have several
SecurityPolicies, which contain several Rules and
Parameters. A SecurityPolicy is of a certain type,
PolicyType, and the same is true for Rules, which have a
RuleType, and Elements, which have an ElementType.
This meta-model allows defining security policies. This
answers the authorisation specification requirement we
have identified in Section 3.

From the Scenario DSML meta-model, using MDE meta-
tools like Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework (GMF), a graphical editor
can be generated, with which a Scenario model can be
described. From such a Scenario model, code, e.g. in C++,
can be generated, with a model-to-text transformation
written in e.g. Eclipse Xpand. The MDE meta-tools allow
the rapid generation of tools associated with the Scenario
DSML. This facilitates the evolution of the Scenario
DSML, changes in its meta-model being rapidly and semi-

automatically propagated in its associated tools. Model-to-
text transformations allow generating code for several
middleware platforms. This enables a dynamic
architecture at the SoS level, ensuring the adaptability of
our architectural framework for NFP prediction of SoS.

4.2 Architecture Framework for NFP Modelling and

Analysing of Standalone Systems

For completeness, we include here a discussion on NFP
analysis and prediction process for a standalone system.
For modelling the composing systems, DSMLs like
PICML [16] - for modelling the architecture; for
modelling behaviour - CBML [15] can be used. For
modelling performance workload, DSMLs like WML [15]
or MARTE [33] could be used. To model system security,
DSMLs and tools like Secure i* [10] and SecureTropos
[32], or UMLSec [20] and CARiSMA [39] could be used.
For attack models, dictionaries and tools like CWE [7]
and CVSS [13] could be used.

The SEM obtained after the modelling phase, including
the architectural structure and behaviour, weaved with the
NFPMS, is deployed on a hardware testbed to be
simulated and analysed. The SEM models how the system
is predicted to execute in a generic situation. Scenarios are
used to analyse the system performance and security
under various constraints, describing data ow� into the
system from external sources. The SEM, together with
scenarios and information to the platforms on which the
SEM will be deployed can be combined in various
possible experiments. An experimental plan chooses from
the different available alternatives for deploying the SEM
on available hardware. Executing the SEM code within its
indicated deployment produces execution traces and basic
metrics about the system NFP.

5 Conclusions and Future Work

In this paper, we have identified, described and analysed
challenges to modelling and analysing Non-functional
Properties (NFP) of Systems of Systems (SoS), focusing
on security and performance. We proposed an integrated
architectural framework to iteratively analyse alternatives
of the SoS architecture by executing predictive NFP
System Execution Models (SEM). To describe these NFP
models, we proposed the use of Model Driven

Illustration 2: Meta-model of the Scenario DSML

Engineering DSML families from which middleware-
specific code can be generated. To describe the
interactions between the NFP SEM, we proposed an
Event Driven Architecture and a Scenario DSML. The
process used in this framework is an iteratively, model-
based one. While this architectural framework answers
most challenges and requirements, there are still some
challenges that have not been answered. A mechanism for
interdependency analysis of multi-order dependencies
needs to be integrated. What type of meta-data can and is
legally permitted to collect is still an open question.

References

[1] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F.
Cuppens, Y. Deswarte, A. Miège, C. Saurel and G. Trouessin.
�Organization Based Access Control�, IEEE 4th Intl Wksh on Policies for
Distributed Systems and Networks, Lake Come, Italy, 2003.
[2] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, �Model-
based performance prediction in software development: a survey,� IEEE
Transactions on Software Engineering, vol. 30, pp. 295�310, 2004.
[3] S. Beydeda, M. Book, and V. Gruhn, Eds., Model Driven Software
Development. Spinger-Verlag, 2010.
[4] J. Boardman and B. Sauser. System of systems - the meaning of OF.
In System of Systems Engineering, 2006 IEEE/SMC International
Conference on, pages 6 pp.�, April 2006.

[5] D.J. Bodeau. �System-of-systems security engineering�. In 10th

Annual Computer Security Applications Conf., pages 228�235, 1994.

[6] R. Calinescu and M. Kwiatkowska, �Software engineering

techniques for the development of systems of systems,� in Foundations of
Computer Software. Future Trends and Techniques for Development, ser.
LNCS, C. Choppy and O. Sokolsky, Eds. 2010, vol. 6028, pp. 59�82.

[7] CWE - Common Weakness Enumeration, 2014, 17 March,

http://cwe.mitre.org.
[8] C. H. Dagli and N. Kilicay-Ergin, System of Systems Architecting.
John Wiley & Sons, Inc., 2008, pp. 77�100.
[9] J. Dahmann, G. Rebovich, M. McEvilley, and G. Turner. Security
engineering in a system of systems environment. In Systems Conference
(SysCon), 2013 IEEE Intl, pages 364�369, 2013.

[10] G. Elahi, E. Yu: A goal oriented approach for modeling and

analyzing security trade-offs. University of Toronto, Department of
Computer Science. Technical report, 2007.
[11] D.L. Farroha and B.S. Farroha. Agile development for system of
systems: Cyber security integration into information repositories
architecture. In IEEE Systems Conf, pages 182 �188, 2011.
[12] I.N. Fovino and M. Masera. Emergent disservices in interdependent
systems and system-of-systems. In IEEE Intl Conf on Systems, Man and
Cybernetics, volume 1, pages 590�595, 2006.

[13] L. Gallon and JJ. Bascou - Using CVSS in attack graphs -The Sixth

Intl Conf on Availability, Reliability and Security, 2011 � Vienna, Austria.
[14] A. Gorod, R. Gove, B. Sauser, and J. Boardman. System of systems
management: A network management approach. In System of Systems
Engineering, 2007. SoSE �07. IEEE International Conference on, pages 1�
5, April 2007.
[15] J. Hill, D. Schmidt, J. Edmondson, and A. Gokhale, �Tools for
continuously evaluating distributed system qualities,� IEEE Software, vol.
27, no. 4, pp. 65�71, 2010.
[16] J. Hill, D. Schmidt, A. Porter, and J. Slaby, �CiCUTS: Combining
System Execution Modeling Tools with Continuous Integration
Environments,� in Eng. of Computer Based Systems, 2008, pp. 66 �75.
[17] J. Hill, D. Schmidt, and J. Slaby, Designing Software-Intensive
Systems: Methods and Principles, IGI Global, 2008, ch. System Execution
Modeling Tools for Evaluating the Quality of Service of Enterprise
Distributed Real-time and Embedded Systems, pp. 335�371.

[18] Jackson, D.; Sedrick, G.; Tayeb, K., "Algorithmic development of

effectiveness prediction for system of systems," System Theory, 41st
Southeastern Symposium on , vol., no., pp.164,168, 2009.

[19] M. Jamshidi, �System of systems engineering - new challenges for

the 21st century,� Aerospace and Electronic Systems Magazine, IEEE,
Vol. 23, No. 5, pp. 4�19, 2008.

[20] J. Jurjens, �UMLsec: extending UML for secure systems

development�. The Uni ed� Modeling Language, Model Engineering,
Languages Concepts and Tools, 5th Intl Conf, 2002.
[21] Roy S. Kalawsky. The Next Generation of Grand Challenges for
Systems Engineering Research. Procedia Computer Science, 16(0):834 �
843, 2013. Conf. on Systems Engineering Research.

[22] Michael Kennedy, David Llewellyn-Jones, Qi Shi, and Madjid

Merabti. System-of-systems security: A survey. In 11th Annual Conf on
Convergence of Telecommunications, Networking & Broadcasting, 2010.

[23] R. Koelle and M. Hawley. �Sesar security 2020: How to embed and

assure security in system-of-systems engineering?� In Integrated
Communications, Navigation and Surveillance Conf,, pages 1�11, 2012.

[24] H. Kopetz, �System of systems challenges,� in Proc. of the 29th Intl

conf. on Computer safety, reliability, and security, 2010, pp. 480�480.
[25] Panayiotis Kotzanikolaou, Marianthi Theoharidou, and Dimitris
Gritzalis. Interdependencies between critical infrastructures: Analyzing the
risk of cascading �e ects. In Sandro Bologna, Bernhard Hmmerli, Dimitris
Gritzalis, and Stephen Wolthusen, editors, Critical Information
Infrastructure Security, volume 6983 of LNCS, pages 104�115, 2013.
[26] S.J. Lukasik. Vulnerabilities and failures of complex systems. Int. J.
Eng. Educ., 19(1):206�212, 2003.
[27] Mark W. Maier. Architecting principles for systems-of-systems.
Systems Engineering, 1(4):267�284, 1998.

[28] M.W. Maier. Research challenges for systems-of-systems. In

Systems, Man and Cybernetics, 2005 IEEE International Conference on,
volume 4, pages 3149�3154, Oct 2005.
[29] M. Merabti, M. Kennedy, and W. Hurst. Critical infrastructure
protection: A 21st century challenge. In Communications and Information
Technology (ICCIT), 2011 International Conference on, pages 1�6, 2011.
[30] B. M. Michelson, �Event-driven architecture overview,� Patricia
Seybold Group, Tech. Rep., 2006.

[31] T. Mouelhi, F. Fleurey and B. Baudry. "A Generic Metamodel For

Security Policies Mutation," Software Testing Verification and Validation
Workshop, IEEE Intl Conf. on , vol., no., pp.278 - 286, 2008.

[32] H. Mouratidis, P. Giorgini: Secure tropos: a security-oriented
extension of the tropos methodology. Int J Softw Eng Knowl Eng
17(2):285309, 2007
[33] OMG, UML Pro le� for MARTE: Modeling and Analysis of Real-
Time Embedded Systems V 1.1, OMG Std., 2011.
[34] S. Paunov, J. Hill, D. Schmidt, S. Baker, and J. Slaby, �Domain-
specific modeling languages for configuring and evaluating enterprise dre
system quality of service,� in 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer Based Systems, 2006.
[35] D. C. Schmidt, M. Stal, H. Rohnert, and F. Bushmann, Pattern-
oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley, 2000.
[36] Florian Skopik, Albert Treytl, Arjan Geven, Bernd Hirschler,
Thomas Bleier, Andreas Eckel, Christian El-Salloum, and Armin Wasicek.
Towards secure time-triggered systems. In Proc of the 2012 Intl Conf on
Computer Safety, Reliability, and Security, pages 365�372, 2012.

[37] A. Waller and R. Craddock. Managing runtime re-engineering of a

system-of-systems for cyber security. In System of Systems Engineering
(SoSE), 2011 6th Intl Conf on, pages 13�18, 2011.
[38] David Warshawsky and Dimitri Mavris, Choosing Aggregation
Functions for Modeling System of Systems Performance, Procedia
Computer Science, Volume 16, 2013, Pages 236-244.

[39] S. Wenzel, D. Poggenpohl, J. Jürjens, and M. Ochoa. Specifying

model changes with UMLchange to support security verification of
potential evolution. Comput. Stand. Interfaces 36, 4 (2014), 776-791.

[40] Zhizhong Zhang, Chuan Wu, and David W.L. Cheung. A survey on
cloud interoperability: Taxonomies, standards, and practice.
SIGMETRICS Perform. Eval. Rev., 40(4):13�22, 2013.

