Meaningful Disjoint Level Lines Selection
Yongchao Xu, Edwin Carlinet, Thierry Géraud, Laurent Najman

To cite this version:

HAL Id: hal-01082342
https://hal.archives-ouvertes.fr/hal-01082342
Submitted on 13 Nov 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEANINGFUL DISJOINT LEVEL LINES SELECTION

Yongchao Xu1,2, Edwin Carlinet1,2

1 EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire
FR-94276 Le Kremlin-Bicêtre, France

2 Université Paris-Est,
Laboratoire d’Informatique Gaspard-Monge (LIGM),
A3SI, ESIEE Paris, Cité Descartes, BP 99
FR-93162 Noisy-le-Grand, France

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{An example of the proposed method. (b-d): selected level lines.}
\end{figure}

\textbf{ABSTRACT}

Many methods based on the morphological notion of \textit{shapes} (i.e., connected components of level sets) have been proved to be very efficient in shape recognition and shape analysis. The inclusion relationship of the level lines (boundaries of level sets) forms the tree of shapes, a tree-based image representation with a high potential. Numerous applications using this tree representation have been proposed. In this article, we propose an efficient algorithm that extracts a set of disjoint level lines in the image. These selected level lines yield a simplified image with clean contours, which provides an intuitive idea about the main structure of the tree of shapes. Besides, we obtain a saliency map without transition problems around the contours by weighting level lines with their significance. Experimental results demonstrate the efficiency and usefulness of our method.

\textbf{Index Terms}— Mathematical morphology, Level lines, Tree of shapes, Saliency map, Connected filters.

\section{1. INTRODUCTION}

Many authors \cite{1,2,3} claim that significant contours of objects coincide with segments of level lines in images. Each level line is the contour of a \textit{level set} or a \textit{shape} which is a connected component with holes filled. The set of shapes equipped with the inclusion relationship allows to represent an image by a tree structure, called \textit{tree of shapes} \cite{4} or \textit{topographic map} \cite{1}. Numerous applications using the tree of shapes have been proposed: image filtering (grain filter \cite{5}, our proposed morphological shaping \cite{6}), image simplification \cite{2,7,8}, image segmentation \cite{9,10,11}, scenery images analysis \cite{12,13}, object recognition \cite{14}, and texture indexing \cite{15}. In spite of all these abundant applications, the strong potential of the tree of shapes is still under-exploited.

The number of connected components in the tree of shapes is about as large as the number of pixels in the image. Hence, it is not straightforward to know \textit{a priori} the structure of the tree (as shown in Fig. 1). However, this information is fundamental for a deep tree analysis and developing tree-based methods. In this paper, we propose an efficient algorithm that selects a set of disjoint level lines of the tree of shapes from meaningful ones to meaningless ones. These level lines represent the main structure of the original tree, which can now be easily perceived from the contour clean image reconstructed from those level lines. This is the main contribution of this paper. An example of selected level lines is given in Fig. 1. In (b), too many level lines are preserved that makes it difficult to perceive the main structure of the image. In (c) and (d), the bottom-up and top-down level lines selection do not retrieve correctly the image geometry, whereas the selection by meaningfulness in (e) reveals the main structure of the image.

There exist many similar applications relying on the ex-
tification of level lines from the tree of shapes to achieve image filtering, simplification, and segmentation tasks. Saeed and Wilkinson [16] give a detailed review of the tree-based filtering strategies. The works in [9,10,17,2,11,7,18,8] are closest to what we propose here. In [9], the author proposes a segmentation algorithm that selects the perceptible level lines matching some criteria, e.g., number of T-junctions, compactness, and contrast. In [10], the authors remove the level lines that enclose a region similar to its parent w.r.t. a histogram-based distance. Then they select interesting regions by identifying parts of the tree having an interesting shape. Salembier et al. [17] and Wilkinson [16] give some perspectives in Section 5.

Finally, we conclude and give some perspectives in Section 5.

2. BACKGROUND

2.1. The Tree of Shapes

Let \(f \) be an image defined on a domain \(\Omega \) and with values on an ordered set \(V \) (typically \(\mathbb{R} \) or \(\mathbb{Z} \)). For any \(\lambda \in V \), the upper level sets \(\lambda^{\geq} \) and lower level sets \(\lambda^{\leq} \) of an image \(f \) are respectively defined by \(\lambda^{\geq}(f) = \{ p \in \Omega \mid f(p) \geq \lambda \} \) and \(\lambda^{\leq}(f) = \{ p \in \Omega \mid f(p) \leq \lambda \} \). Both upper and lower level sets have a natural inclusion structure: \(\forall \lambda_1 \leq \lambda_2, \lambda_1^{\geq} \subseteq \lambda_2^{\geq} \), and \(\lambda_1^{\leq} \subseteq \lambda_2^{\leq} \), which leads to two distinct and dual representations of an image, the Max-tree and the Min-tree [21]. The tree of shapes is a fusion of the Max-tree and Min-tree via the notion of \textit{shapes} [9]. A shape is defined as a connected component of an upper or lower level set with its holes filled in. Thanks to the inclusion relationship of both kinds of level sets, the set of shapes can be structured into a tree structure, called the tree of shapes. This tree features several interesting properties: it is invariant to contrast changes and forms a self-dual, non-redundant, and complete representation of an image. Furthermore, such a tree inherently embeds a morphological scale-space (the parent of a node/shape is a larger shape) w.r.t. the theory of multi-scale analysis [22]. An example of these trees is depicted in Fig. 2.

2.2. Tree computation and representation

Though many tree of shapes computation algorithms exist [4,23,19], we rely on the one proposed in [20] that ensures a worst-case quasi-linear complexity. Even if this paper does not aim at explaining this algorithm since it has already been fully described by its authors, we still need to remind that it does not work directly on the domain \(\Omega \) but on a simplicial version of the 2D discrete grid: the Khalimsky grid. We note \(K_\Omega \), the domain \(\Omega \) immersed on this grid. In Fig. 3 the original points of the image are the 2-faces, the boundaries are materialized with 0-faces and 1-faces. Géraud et al. [20]'s algorithm ensures that shapes are open connected sets (e.g., the purple shape in Fig. 3) and that levels lines (shape's borders) are composed of 0-faces and 1-faces only (e.g., the dark curve in Fig. 3). Given a connected open set \(A \), we note \(\partial A \) the closure of \(A \) and \(\partial A \) the frontier of \(A \), i.e., the level line associated to the shape \(A \).

Using the tree representation from [20], a node is represented by a single pixel (2-face) called the canonical element. The tree is encoded through an image \textit{parent} : \(K_\Omega \rightarrow K_\Omega \) that states the parenthood relationship between nodes. In \textit{parent}, each non-canonical element point is attached to the canonical element representing the node it belongs to. In the following, we denote by getCanonical : \(K_\Omega \rightarrow K_\Omega \) the routine that returns the canonical element of each point in the image. We also rely on a sorted vector of pixels \(S \) such that processing \(S \) in the direct order is a top-down traversal of the tree and the reverse order is a bottom-up traversal.
As shortly reviewed in Section 2.2, a shape overlap. In this section, we propose an efficient algorithm els, which make the tree of shapes difficult to be visualized for

In natural images, there are about as many level lines as pix-

We can focus on computing only the first one: the set
dual. W e can focus on computing only the first one: the set

Algorithm 1: Computation of SES.

3. DISJOINT LEVEL LINES SELECTION

In natural images, there are about as many level lines as pix-

els, which make the tree of shapes difficult to be visualized for

algorithm that enables to access for each shape, the

such that for each

When processing each 0 and 1-face
e
canonical element

Algorithm 2: Disjoint level lines selection algorithm.

3.2. Final disjoint nodes selection

Based on the Smallest Enclosing Shapes, we are able to se-

lct a set of nodes in an arbitrary order such that any pair

of nodes have disjoint borders. In this paper, we consider

three selection strategies: top-down, bottom-up and another

one based on a meaningfulness criterion. Let Order denotes

the sequence of shapes sorted by one of the previous strategy.

Order is actually an array of canonical elements. The final

disjoint nodes selection is given in Algorithm 2 which pro-

ceeds as follows. Every shape has a three-state status: Null,

the shape has not yet been processed, it is a candidate shape;

Active, the shape has been selected; Unactive, the shape has

been dismissed. At first, every shape has the Null status and

we process the candidate shapes in the order given by Order.

Given a candidate shape A, we have to check that the bor-

der does not intersect with an already Active shape, that is:

A has not been marked Unactive by a sub-shape and that any

shape in [A ⊳ SES(A)] is not Active. If both conditions are

fulfilled, A is selected, marked Active and we dismiss every

shape in [A ⊳ SES(A)] since they intersect A’s border.

The smallest enclosing shapes computation described in

Algorithm 1 has a linear complexity. For the disjoint level

lines selection shown in Algorithm 2, the bottom-up selection

has also a linear complexity, whereas the other two strategies

have a worst case complexity, where N is the number of

shapes. We have implemented the proposed method using

our C++ image processing library. Processing a 640 ×

960 pixels image takes about 3s on a regular PC station, where

the tree computation takes half of the time.

4. EXPERIMENTAL RESULTS

We have experienced three different orders for disjoint level lines selection: top-down (from the root to the leaves), bottom-up (from the leaves to the root), and by meaningfulness, e.g., the average of the gradient’s magnitude along the level lines. An example of such disjoint level lines selec-
Fig. 4: An illustration of the disjoint level lines selection with different orders. From top to down: original image, bottom-up, top-down, average of gradient’s magnitude ordering. Left: grayscale image; Right: corresponding randomly colorized image.

Fig. 5: An illustration of the disjoint level lines selection applied to an image of bee board.

Fig. 6: An illustration of the disjoint level lines selection applied to an image of license plate.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an efficient algorithm that selects disjoint level lines from a tree of shapes. The selection process is based on the incremental computation of the smallest enclosing shapes. The method extracts a set of disjoint level lines from meaningful ones to meaningless ones, that briefly reflect the main structure of the tree of shapes. Not only does it allow to analyse the tree structure, but it can also be a start for more advanced tree-based processing methods. Indeed, we have shown that it provides a relevant simplification of the images where the meaningful objects are separated one from each other and also provides a saliency map without transition problem around image contours. However, in natural images, the meaningful level lines are not all strictly separated, so in the future, we would like to relax this condition and tolerate a small superposition between the selected level lines. As a second future work, we aim at applying level lines shortening that yields an image curvature microscope [25] before extracting disjoint level lines. Another major perspective is to extend this method to 3D images and the tree of shapes for color images [26, 27].
References

