2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

V. Hue T. Cavalié 1 F. Hersant 2 M. Dobrijevic 3, 4, 5, 1 Thomas, Greathouse 6 Emmanuel, Lellouch 7 Paul, Hartogh 8 Timothy, Cassidy Aymeric, Spiga 9 Sandrine, Guerlet Melody, Sylvestre 10
1 ASP 2014
L3AB - Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux, OASU - Observatoire aquitain des sciences de l'univers, LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac], Université Sciences et Technologies - Bordeaux 1
2 ECLIPSE 2014
L3AB - Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux, OASU - Observatoire aquitain des sciences de l'univers, LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac], Université Sciences et Technologies - Bordeaux 1
Abstract : Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting(Abstract P21B06). Guerlet et al., 2009. Icarus, 203, 214-232. Moses et al., 2005. JGR 110. Feuchtgruber et al., 1997. 389, 159-162. Hartogh et al., 2009. PSS 57, 1596-1606 Hartogh et al., 2011. A&A, 532, L2. Cassidy et al., 2010. Icarus, 209, 696-703
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01082264
Contributor : Marie-Paule Pomies <>
Submitted on : Thursday, November 13, 2014 - 10:04:36 AM
Last modification on : Friday, April 5, 2019 - 8:23:44 PM

Identifiers

Citation

V. Hue, T. Cavalié, F. Hersant, M. Dobrijevic, Thomas, Greathouse, et al.. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions. American Astronomical Society, DPS meeting #46, #508.08 - 2014, held in Tucson (USA) 2014-11-09, Nov 2014, Tucson, United States. pp.#508.08. ⟨hal-01082264⟩

Share

Metrics

Record views

534