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Abstract
For more than a decade, distance-based methods have been widely employed and constantly improved in spatial economics.
These methods are a very useful tool for accurately evaluating the spatial distribution of economic activity. We introduce
a new distance-based statistical measure for evaluating the spatial concentration of industries. The m function is the first
relative density function to be proposed in economics. This tool supplements the typology of distance-based methods recently
drawn up by Marcon and Puech (2017). By considering several simulated and real examples, we show the advantages and
the limits of the m function for detecting spatial structures in economics.
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1. Introduction
Industrial agglomerations are doubtless the main feature of
today’s economic geography (Krugman, 1991; Henderson
and Thisse, 2004). Thus, it is not surprising that much re-
cent research has attempted to improve the measurement of
the spatial concentration of activities.1 Distance-based meth-

1See Duranton and Overman (2005); Marcon and Puech (2003, 2010);
Arbia et al. (2012); Mori and Smith (2013); Jensen and Michel (2011);
Bonneu and Thomas-Agnan (2015); Howard et al. (2016), among others.

ods are the latest statistical measures to be proposed in the
field of spatial economics for detecting spatial structures (ge-
ographic concentration or dispersion). By treating space as
continuous, distance-based methods provide a detailed analy-
sis with robust results.2 Consequently, many authors consider
them to be very promising techniques (Combes and Overman,
2004; Combes et al., 2008; Duranton, 2008; Arbia, 2016) and
that they open the way for new explanations of the spatial
concentration of activities (Ellison et al., 2010; Alfaro and
Chen, 2014; Kerr and Kominers, 2015; Sweeney and Gómez-
Antonio, 2015; Behrens and Guillain, 2017; Gómez-Antonio
and Sweeney, 2018). Today, the Duranton and Overman’s
Kd function (Duranton and Overman, 2005) is the most used
distance-based method in economics (Sweeney and Gómez-
Antonio, 2015; Marcon and Puech, 2017). It is a density
function that evaluates absolute concentration (Marcon and
Puech, 2015, 2017). In this article for the first time we shall
introduce a relative density function in spatial economics,
in a similar vein to the well-known location quotient (Flo-
rence, 1972). We have developed this for two main reasons.
First, this new function, called m, supplements the typology
of distance-based methods recently drawn up by Marcon and
Puech (2017). Second, as Brülhart and Traeger (2005) have
stressed, the nature of the spatial concentration (absolute, rel-
ative) matters. We shall prove that both Kd and m are useful
for evaluating the spatial distribution of activities because of
the complementary results they provide. For this, we shall
give various comparisons of Kd and m results obtained with
simulated and real examples to understand the advantages and

2Duranton and Overman (2008) provide many concrete examples of the
problems such functions can solve.
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the limits of both distance-based measures.
There is growing evidence that distance-based measures

are now preferred in spatial economics since Duranton and
Overman’s seminal paper (Duranton and Overman, 2005).
One of the main reasons for this is that they preserve the
richness of individual data. Unlike the Gini (1912) or the
Ellison and Glaeser (1997) indices, distance-based methods
do not rely on any predefined zoning (regions, counties. . . ).
Distance-based methods are implemented directly using the
position of entities (stores, plants. . . ). The analysis of the
spatial distribution of entities is based on the distance between
them. In contrast, it has been proven that indices that aggre-
gate data at a zonal level are sensitive to the zoning chosen
(Arbia, 2001; Briant et al., 2010) as described by the Modi-
fiable Areal Unit Problem – MAUP (Openshaw and Taylor,
1979; Arbia, 1989). One way of solving MAUP issues is to
treat space as “continuous” as suggested by Duranton (2008).
This is the main feature of distance-based measures. Con-
sequently, MAUP issues vanish because the data is treated
without loss of information or modification of the raw dataset.
The spatial structure of the distribution is analyzed at all scales
simultaneously (and not at only one level of observation as it
is the case with spatial zoning). Multiple patterns can be de-
tected: for example aggregation or repulsion between entities
according to the distance considered. These distance-based
measures are now deemed to be very powerful and we can eas-
ily understand why many studies now employ them to evaluate
spatial patterns (Arbia and Espa, 1996; Sweeney and Feser,
1998; Ó hUallacháin and Leslie, 2007; Bonneu, 2007; Arbia
et al., 2008; Nakajima et al., 2012; Barlet et al., 2013; Koh
and Riedel, 2014; Giuliani et al., 2014; Behrens and Bougna,
2015; Zhou and Clapp, 2015; Bade et al., 2015; Bocci and
Rocco, 2016; Buzard et al., 2017). Alternative approaches
exist. Billings and Johnson (2012) for instance developed a
test to detect and localize concentration based on the local
density of a chosen sector, compared to that of the whole
economic activity.3 We will rather focus in this paper on
the distance-based methods, which rely on the second-order
property of the underlying point process, i.e. the excess or
lack of neighbors, because they belong to a common, coherent
framework (Marcon and Puech, 2017).

In what follows, we shall introduce a new distance-
based method: the m function. We will devote a great deal
of attention to define it in order to respect a maximum number
of the good criteria for measuring spatial concentration in eco-
nomics (Combes and Overman, 2004; Bonneu and Thomas-
Agnan, 2015). In particular, the m function satisfies Duranton
and Overman’s five important criteria (Duranton and Over-
man, 2005): (1) the results are comparable across industries,
(2) it controls for the overall agglomeration of manufacturing,
(3) it controls for industrial concentration in the sense of Elli-
son and Glaeser (1997), (4) the measure does not depend on an
areal zoning (this is related to the MAUP issues) and lastly (5)

3Other developments may be cited as the one explained by Dubé and
Brunelle (2014).

it gives an indication of the significance of the results. There
are several ways to control for the overall agglomeration. Du-
ranton and Overman’s widely used Kd function ignores it (this
is why it is classified as an absolute measure) but its value
is compared to a confidence interval of its possible values
under a counterfactual null hypothesis: establishments are
redistributed across the actual set of locations chosen. The
m function relies on the local share of employment (or what-
ever measure of size, including the number of establishments)
of the sector under study to directly control for the distribu-
tion of the whole activity: it is a relative measure. As Kd ,
it considers neighbors at a given distance rather than up to
it: both are density functions. No relative density function
has yet been proposed to gauge the spatial concentration in
continuous space, as Marcon and Puech (2012) pointed out.

We provide various simulated and real examples to
show that the results provided by the m function are com-
plementary to those of Kd : because the m and the Kd func-
tions do not evaluate the notion of spatial concentration their
results may be different. So we recommend that the nature
of the spatial concentration analyzed should be studied care-
fully to avoid any erroneous conclusions. Moreover, one
important feature of the m function is that its values are in-
terpretable. Relative measures of concentration are formally
location quotients: the m function can be interpreted as the
location quotient of a sector of activity in the neighborhood
of a reference sector. The possibility to interpret the results
can be very appreciable for whom the objective is not only to
detect spatial concentration or dispersion but also quantify it.
This property opens the way for the development of locational
choice models following Guimarães et al. (2009) where the
strength of externalities or natural advantages can be directly
linked to the value of the function. As a result, we believe
the m function is an appropriate statistical tool for detecting
spatial structures in economics.

In the following sections, first of all, we explain precisely
our motivation. Then, the m function is presented and some
simple illustrative examples are given. In the last section of
the paper, we propose some comparisons with the Kd function.
We also provide a simple simulated example and an analysis
of the spatial distribution of pharmacies in the Lyon area
(France) to illustrate the advantages and limits of the use of
the m function in our field.

2. Approach

2.1 Basic framework
As we have already mentioned, distance-based methods are
particularly attractive for economists because they provide a
complete analysis of the location patterns of industries with-
out a loss of information or modification of the raw dataset.
The analysis is based on the spatial distribution of establish-
ments (plants or shops). For each establishment of the sample
analyzed, its characteristics are preserved: its exact location,
its industry or any other individual characteristics (number of
employees...). The idea of distance-based methods is to detect
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if there is an attraction or a repulsion between plants, based on
an analysis on the bilateral distance between establishments.
In order to understand the basic ideas of distance-based meth-
ods, let us consider for more clarity the case of the textile
industry.

We first need to choose a null model for the density of
textile plants everywhere in the area under investigation: the
choice of the model will be detailed below. It defines the type
of spatial concentration that is investigated: any departure
from this null model is assumed to be due to interactions
between plants. If there are locally more textile plants around
textile plants than expected under the null model, distance-
based methods will detect spatial concentration (“textile
plants attract textile plants”).4 On the other hand, if there are
fewer textile plants in the surroundings of the textile plants
than expected, we identify a phenomenon of dispersion (in
which case “textile plants repel textile plants”).5 Alternatively,
if there is no relationship between the entities, independence
is accepted (“textile plants are randomly and independently
distributed”).

The significance of the results is provided by the con-
struction of the confidence interval of the null hypothesis.
The latest is the null model of density in the absence of in-
teractions between plants. For almost all empirical studies,
this benchmark (also called counterfactual) is constructed by
Monte-Carlo simulations to obtain a confidence interval of
the results.

Finally note that the mathematical framework of distance-
based methods is the one of point processes (Møller and
Waagepetersen, 2004). Point processes are stochastic configu-
rations. Loosely speaking they can be understood as random
variables that generate realizations of spatial distributions of
points (also known as point patterns). The first-order prop-
erty of a point process is its intensity, i.e. the probability to
observe a point at a given location, estimated by smoothing its
observed number of points per unit area around this location.
Its second-order property is the joint probability to find a cou-
ple of points at two locations, normalized by the probabilities
to find each of them independently, i.e. without attraction or
repulsion between pairs of points. Distance-based measures
of spatial structures are designed to detect attraction or repul-
sion while controlling for intensity, according to an assumed
null model.

2.2 Motivation
Two concepts require additional explanations for evaluating
the spatial distribution of establishments: the definition of the
surroundings of establishments and the nature of the spatial
concentration (topographic, relative or absolute). Let us now
examine these two important factors in depth.

Firstly, the notion of the surroundings of plants is central
because it defines the type of function applied i.e. a cumula-

4The following terms: spatial concentration, concentration, agglomeration
or aggregation are used as synonyms in this article.

5In the same way, dispersion or repulsion are synonyms.

tive or a density function. In practice, the evaluation of the
neighboring plants is done for all distances, for example every
100 meters up to the median distance between all pairs of
plants. The spatial distribution can be estimated up to a given
distance or at a given distance. If the first option is chosen,
it calls for a cumulative function. If the second option is se-
lected, a density function is appropriate. The choice between
one type of function and the other depends on the issue under
study (Marcon and Puech, 2010).

The second clarification concerns the nature of the spa-
tial concentration. In order to evaluate the spatial concentra-
tion of economic activities, it is necessary to choose a refer-
ence system in order to compare the observed distribution of
activities (see Brülhart and Traeger, 2005, among others):

• The first possibility is to use a topographic reference.
In this case, physical space is chosen as the benchmark.
One possible example is the number of neighboring
plants per unit of space (that is on a disk of radius r
for a cumulative function or on the ring at distance r
for a density function). Space may be homogeneous
or not. The homogeneity of space implies a constant
density all over the study area (in our previous case this
means that all the plants in the distribution have the
same probability of being located anywhere in the study
area). Some authors (Duranton and Overman, 2005;
Marcon and Puech, 2003) consider this hypothesis to be
generally irrelevant in the field of spatial economics and
that a non-homogeneous space framework is needed.

• The second possibility is a relative reference. In this
case, another variable is taken as a benchmark. Any
variable can be used except space (if it is, the concen-
tration is topographic). For instance, if we evaluate the
spatial distribution of textile plants, we can detect in the
plant’s near environment the deviations of this distribu-
tion of plants from another distribution. The benchmark
plants can be all plants at the aggregate industrial level
to fulfill Duranton and Overman’s second criterion.

• The last possibility is to have no reference. In this
case, an absolute measure is defined. For example, the
number of neighboring textile plants located at a given
distance from a textile plant.
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Table 1. Choice of the appropriate function to describe a point pattern structure

Function choice Topographic,
homogeneous

Topographic,
inhomogeneous

Absolute Relative

Probability density
functions

g ginhom Kd

Kemp

Cumulative functions
K Kinhom Cumulative of Kd M

Kmm Di Cumulative of Kemp Case-control Kinhom
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The growing number of measures in continuous space re-
cently prompted Marcon and Puech (2017) to provide a typol-
ogy of such functions. A classification of statistical measures
can be drawn up by considering the nature of the geographic
concentration and the definition of the type of function. Ta-
ble 1 gives an overview of all the distance-based measures that
have been used to evaluate the spatial distribution of economic
activities (Marcon and Puech, 2012):

• the K function of Ripley (1976, 1977),

• the g function of Ripley (1976, 1977),

• the Kmm function introduced by Penttinen (2006) and
Penttinen et al. (1992),

• the D function of Diggle and Chetwynd (1991),

• the Kinhom function of Baddeley et al. (2000),

• the ginhom function of Baddeley et al. (2000),

• the Kd function and the Kemp function of Duranton and
Overman (2005),

• the M function of Marcon and Puech (2010),

• the (unnamed) cumulative function of Kd proposed by
Behrens and Bougna (2015).

One cell in the table is empty: no relative density function
has yet been proposed for the field of spatial economics (the
Kd function does not control explicitly for the distribution of
the economic activity). The present paper fills this gap. In
the next section we shall complete Table 1 by proposing a
new density function, named the m function, which expresses
relative spatial concentration.

The observed point pattern is always tested against the null
hypothesis of independence between the location of points.
If topographic concentration is studied, the intensity of the
point process is estimated from the data (by simply dividing
the number of points by the area if space is homogeneous, by
kernel density estimation else for example) and an appropriate
statistic (a topographic distance-based measure) is calculated
from the data. The statistical significance of its departure
from the expected value under the null hypothesis is tested by
Monte-Carlo simulations of independent point patterns (i.e.
Poisson point patterns) with the same intensity.

Relative measures assume that the intensity of the point
process of interest (the sector under study) is proportional to
its benchmark. Usually, the benchmark is the whole economic
activity and the only available information is the observed
location of all plants. Then, the null hypothesis is tested by
randomly shuffling the marks of the points (types and weights
together) among the observed points Duranton and Overman
(2005).

Last, absolute measures do not have a predictable value
under the null hypothesis. Instead, their observed value at
each distance r is compared to the quantiles of the same

measure applied to point patterns simulated according to the
null hypothesis. The Kd function estimates the probability to
find a neighbor of an arbitrary point, r apart. This probability
density is then compared to its quantiles in simulated point
patterns obtained by shuffling the marks of the points.

Finally, it should be noted that the application of distance-
based methods is not confined to spatial economics. They
were first developed and applied in other disciplines. Much
empirical research has thus been conducted in the fields of
ecology (Law et al., 2009) and epidemiology (Waller, 2010),
for example.

3. Definition of the m function
3.1 An intuitive presentation
The idea of the m function is as follows. Consider an area in
which various plants belonging to several industrial sectors are
located. The m function is a relative measure that compares
the proportion of plants of interest in the neighborhood of the
reference plants to the proportion of neighbors of interest in
the area as a whole. If plants are agglomerated, the proportion
of neighbors of interest in the neighborhood of reference
plants is greater than in the area as a whole. On the contrary,
if plants are dispersed then the proportion of plants of interest
in the neighborhood of the reference plants is lower than in
the area as a whole. These proportions (ratios) are estimated
from observed data. If the neighbors of interest belong to the
same sector as the reference plants, the m function helps to
detect agglomeration phenomena. If the neighbors of interest
do not belong to the same sector as the reference plants, the
m function identifies co-agglomeration.

3.2 Mathematical definition
Let us now turn to the mathematical definition of the m func-
tion. Plants are defined as points. All points belong to a point
pattern denoted by X which is a realization of a marked point
process. In this framework, plants have a random location, a
random sector of activity and a random size. Two subsets are
considered: that of the reference points R (e.g. a given sector
of activity) and that of the neighboring points of interest N
(another sector, possibly the same).

The m function of distance r is the average ratio of the
density of neighbors of interest (at distance r from each refer-
ence point) to the density of all neighbors, normalized by the
global proportion of points of interest.

Define λ (x,r) the density of neighbors of an arbitrary
point x at distance r, i.e. the expected number of neigh-
bors in a ring of width dr and radius r around point x is
2πrλ (x,r)dr. λN (x,r) is the density of neighbors of interest.
Note that neighbors can be plants or employees: in the first
case, employees are represented by superimposed points at
the same location or, equivalently, points representing plants
are weighted by the number of employees. To fulfill Duranton
and Overman’s third criterion, neighbors must be weighted
plants.
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WN is the total weight of the neighboring points of interest
and W is the total weight of all the points.

The m function is defined as an expectation:

m(r) = E
(

λN (x,r)/λ (x,r)
WN /W

)
(1)

One natural estimator is:

m̂(r) =
∑xi∈R

∑x j 6=xi ,x j∈N k(‖xi−x j‖,r)w(x j)

∑x j 6=xi ,x j∈X k(‖xi−x j‖,r)w(x j)

∑xi∈R
WN −w(xi)
W−w(xi)

(2)

where xi denotes the reference points, and x j the neighbors.
w(xi) is the weight of point xi. If points represent industrial
establishments or shops, the weight can be the number of
employees working in those entities. k(·) is a kernel estimator
whose sum can be used to estimate the number of neighbors
of point xi at distance r. We have followed Duranton and
Overman (2005) and used a Gaussian kernel with an optimal
bandwidth proposed by Silverman (1986) as a rule of thumb.
The kernel estimator considers the neighbors of the reference
point and gives them a maximum weighting if they are ex-
actly r apart. Their weighting decreases according to the tail
thickness of a Gaussian distribution with standard deviation
h. The choice of the bandwidth h is arbitrary but important
(Illian et al., 2008). The wider it is, the smoother the estimator.
In this article, we shall only analyze the spatial distribution of
one sector, so we shall focus on the intratype (or univariate)
m function taking R = N . But we can extend the m func-
tion for the analysis of inter-industrial spatial distributions
(co-agglomeration): the intertype (or bivariate) function can
be defined in the same way, choosing different point types as
the reference and neighbors.6

The equation of the m function reads as follows. The
numerator is the sum of the local ratios i.e. the relative weight
of the neighbors of interest at distance r from all the reference
points. This is averaged over all the reference points (actually,
it is simply summed because the number of reference points
is simplified with the denominator). The denominator is the
same ratio over the whole data set, i.e. the global ratio. It is
obtained when r is great enough for all points to be neighbors.
It is not just WN /W because the reference points are never
counted as neighbors: their weight must be subtracted from
the total weights. The denominator is slightly different in the
intertype function: ∑xi∈R

WN
W−w(xi)

because reference points
are not counted in WN /W .

The benchmark value of the m function is 1 for any dis-
tance r. This value is obtained when the types of points (and
the size of points) are uniformly distributed random among all

6 To give an example, if the aim is to evaluate the spatial distribution of
the textile industry, the analysis of the distribution of textile plants around
textile plants is relevant. In that case of intra-industrial analysis, the intratype
function should be used. If the focus is now on the co-agglomeration of
the textile and clothing sectors, the intertype functions will deal with the
distribution of textile plants around clothing plants or the distribution of
clothing plants around textile plants.

the considered points. m values greater than 1 indicate the rel-
ative spatial concentration of points while m values lower than
1 express relative dispersion. m values can be interpreted. For
example, if the m function is 1.5, at distance r, the proportion
of the neighbor points of interest at this distance is 50% higher
than in the area as a whole. As one can note, the interpretation
of m values is possible and is very easy. This property can
be very appreciable if the aim is not only to detect spatial
concentration or dispersion but to evaluate them. This can be
useful for example for the comparison of the importance of
the agglomeration across industries, for the explanation of the
determinants of agglomeration (in the spirit of the study of
Rosenthal and Strange (2001) with the Ellison and Glaeser
index for example) etc.

The significance of the estimates of m is given by the
confidence interval of the null hypothesis (Monte-Carlo sim-
ulations). This technique is widely employed in the case
of distance-based methods. In practice, random patterns of
points are generated by permuting the marks (type and weight-
ing pairs) of the actual points on the actual spatial positions
of points (coordinates). We generate only a global confidence
interval, following Duranton and Overman (2005).

3.3 Properties
The m function fulfills all of Duranton and Overman’s cri-
teria mentioned in the introduction Duranton and Overman
(2005): (i) it compares the geographic concentration results
across industries, (ii) it controls for industrial concentration
(indirectly, comparing its values to the confidence envelope
of the appropriate null hypothesis), (iii) it controls for the
overall aggregation patterns of industries, (iv) it enables the
significance of the results to be tested (using the confidence
interval) and, (v) data are analyzed without loss of information
or modification of the raw dataset. Only a few continuous-
space based methods respect all of these criteria (Marcon and
Puech, 2017).

In continuous space, the definition of m is similar to that of
the cumulative M function (Marcon and Puech, 2010) except
that the local ratio is defined at distance r and not up to it. In
contrast with the topographic functions g and K, the cumula-
tive function is not the integral of the density function over r
(Ripley, 1977) because relative functions are not derived from
a measure of space. The m function can be interpreted as an
extension to continuous space of the location quotient (Flo-
rence, 1972). It is not a smoothed Ellison and Glaeser’s index:
the latter relies on the squared difference between the local
share of the sector of interest and that of the whole activity,
not on their ratio.

3.4 Inhomogeneity or interactions
To conclude this section, we would like to pay a particular
attention on the distinction between inhomogeneity and at-
traction or repulsion that are responsible for apparent spatial
structure of real data.

Aggregates of plants on a map may be obtained according
to completely different models: let’s consider clothing shops
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in a given city and coal mines located in a given area. In the
first case, the pattern of clothing shops should be compared to
that of all (non-food) retail shops of the city. Clothing shops
settle close to each other to increase their attractiveness for
consumers and both m and Kd are able to detect aggregation
properly.

Agglomeration may also be caused by inhomogeneity. In
the second case, the benchmark pattern may be that of all
industrial plants but the pattern of mines is actually driven by
resources: they do not aggregate because of mutual attraction
but because of the presence of coal, i.e. inhomogeneity of
the underlying point process. There is no way to disentangle
inhomogeneity and attraction from a single point pattern: sev-
eral realizations of the process would be necessary to know
whether the clusters always occur at the same place (coal
resources) or not (clothing shops may aggregate anywhere).

Distance-based functions rely on the assumption that the
excess or lack of neighbors is due to attraction or repulsion be-
tween points (Marcon and Puech, 2012). In other words, using
a distance-based function to detect aggregation or repulsion
implies assuming that the intensity of the point process that
generated the observed point pattern is correctly controlled for.
More specifically, relative functions such as m assume that
the sector under investigation has an intensity proportional to
that of the whole economic activity it is compared to. We may
call this property relative homogeneity.

4. Application
We shall now provide simple examples for three simulated
cases. In every example we have considered a 1-by-1 window
and a maximum distance for the m function equal to one-third
of the diagonal of the window (≈ 0.471). We have systemati-
cally used 512 regular intervals to calculate the m function. In
all simulated examples, we generate two point patterns: the
cases and the controls.7 The cases are the points of interest.
The controls are the points that constitute the benchmark. For
simplicity, all points have a weighting of 1. A global confi-
dence interval (CI) at the 1% risk level was generated after
10,000 simulations. All simulations are made with the help
of the R software (R Development Core Team, 2018). The
package spatstat (Baddeley and Turner, 2005) was used to
simulate the point processes and the dbmss package (Marcon
et al., 2015) was employed to compute the m function.

In these examples, the cases represent plants of the sector
under investigation and the controls the plants of other sectors.
For simplicity, both are drawn in homogeneous processes, so
that aggregates are visible on maps and the main features of
the function appear clearly. Relative functions are designed
to deal with non constant intensity of the controls, introduced
in the next section where more complex situations will be
studied.

7 The vocabulary “cases” and “controls” is well established in the litera-
ture of point processes (Diggle, 1983; Arbia et al., 2012) but some authors as
Billings and Johnson (2012) prefer employing respectively “samples” and
“counterfactuals”.

4.1 Independent cases
Figure 1a shows two spatial point patterns: one for the cases
(diamonds) and the other for the controls (crosses). The cases
and controls were simulated under the hypothesis of complete
spatial randomness (CSR), under which points are distributed
randomly and independently from each other. To achieve
this, we generated two patterns from a homogeneous Poisson
process with a parameter respectively equal to 25 and 100.
The parameter of the Poisson process is the expectation of the
number of points per unit area. This parameter is called the
intensity of the process and it is constant in a homogeneous
framework8. In figure 1a, 29 points were simulated for the
cases and 103 for the controls.

Cases are distributed with an intensity proportional to that
of the control, thus analyzing them with a relative function
is appropriate, and independently from each other, thus we
expect m(r) equal to 1 at all distances.

Figure 1b depicts the m function results for this case. No
significant departure from the null hypothesis is observed:
m fluctuates for all distance ranges but stays inside the confi-
dence interval of the null hypothesis. As expected for random
distributions of cases and controls, figure 1b provides no evi-
dence of any concentration or dispersion between cases. Two
additional minor comments should be made. First, the global
confidence interval is quite large at small radii: there is a small
number of neighbors at very small radii. Second, the m func-
tion is not defined for very small distances: this indicates that
cases are separated by gaps of more than 0.01.

4.2 Aggregated cases
Figure 2a shows a multiple pattern: an aggregate pattern of
cases (diamonds) and a completely random distribution of
controls (crosses). For the clusters of cases, we generated sim-
ulations from a Matérn process with the following parameters:
2 for the intensity of the Poisson process that generates cluster
centers, 0.05 for the radius of clusters and 50 for the average
number of points per cluster. Controls were simulated from
a homogeneous Poisson process with a density of 100. 185
points were plotted on figure 2a: 83 cases shared between two
clusters and 102 controls were randomly distributed over the
entire domain. Figure 2b shows the results for the m function.

On figure 2b, two significant concentration zones appear.
They occur at distances for which the relative local density of
cases is the greatest. The first distance at which a maximum
is observed corresponds approximately to the radius of the
clusters (around 0.05). The second zone identifies the distance
between clusters (approximately 0.35) and has a lower value.
The local relative density of cases over controls is greater for
the first peak because the presence of controls in the cluster is
possible but rare.

8 The Poisson process is commonly used for simulating CSR patterns. As
Diggle (1983) wrote the Poisson process “is the cornerstone on which the
theory of spatial point processes is built. It represents the simplest possible
stochastic mechanism for the generation of spatial point patterns, and in
applications is used as an idealized standard of complete spatial randomness
(. . . )” (p.50).
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Figure 1. Random point pattern
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Figure 2. Aggregate point pattern
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Three additional comments on this case have to be made.
First, by construction there are no cases between the ag-

gregates. For these distances, the maximum dispersion is
detected: between the clusters the m function attains its low-
est possible value (zero). The rapid decrease in the gradient of
m is a feature of density functions. In contrast to cumulative
functions, the values are very sensitive and large ranges of
results may be observed over small intervals of distance.

Second, one can observe that the m plot takes its highest
values in the case of small distances (first concentration peak)
and then decreases. The explanation for this is simple. In the
first radii, the local relative density is the greatest because the
maximum number of cases is observed around these distances.
Around a distance of 0.2, the m function detects the first cases
located at the periphery of the (other) cluster: as a result, the
m function raises. Then the local relative density continues to
increase rapidly because of the large number of cases inside
the cluster, but the presence of controls in the ring lowers the
value of the m plot at a distance of 0.35. After this distance,
the m plot decreases rapidly because of the absence of cases
and goes to its lowest possible value (zero).

4.3 Regular cases
Figure 3a shows another multiple pattern. A regular pattern
of cases (diamonds) is clearly visible. 100 cases are posi-
tioned on a square grid with cells measuring 0.1 × 0.1. The
completely random distribution of controls (crosses) is a real-
ization of a homogeneous Poisson process whose parameter
is equal to 200. Figure 3a shows 209 controls. The m function
estimates are given in figure 3b.

Up to the size of the square grid (0.1), the cases have
no case neighbor: for small distances there is a significant
amount of dispersion. Then, a large number of peaks can
be observed but results are not significant. The reason is
simple. In this example as we previously said we retained
the optimal bandwidth as described by Silverman (1986). A
thinner bandwidth would have shown significant positive and
negative peaks. The choice of the bandwidth is important,
unfortunately “in general, however, no simple recipe for the
choice of the bandwidth exists” (Illian et al., 2008, p.115).
Let us take half of the previous bandwidth to better explain
the spatial structure under study. Results of the m function
are given in figure 3c. Up to the size of the square grid (0.1),
m plots are the same whatever the definition of the bandwidth.
At a distance equal to the size of the grid, the cases have four
neighbors: a significant positive peak is observed in figure 3c,
indicating the spatial concentration of cases at this distance.
At this distance, a positive peak is also detected in figure 3b
but the m plot stays within the confidence interval. Due to
smoothing, significant values of m can also be observed just
below the grid size (0.1). The m plot then plummets when
the radius increases: no cases are located in the close envi-
ronment of cases, the m value returns rapidly to below the
confidence interval, indicating dispersion. On figure 3c, the
irregularity in the gradient of m between a distance of 0.10

and 0.15 is interesting. At a distance equal to the diagonal
of the grid (around 0.141) new neighbors are present. The
irregularity in the gradient of m shows the existence of these
new neighboring points. However, there is no positive peak
because the smoothing we applied was too strong, but weaker
smoothing would have generated positive m values. The origi-
nal bandwidth appears too large in that case: the irregularity
in the gradient of m is not visible between a distance of 0.10
and 0.15 in figure 3b. Note at larger distances, the observed
positive peaks appear at around twice the grid size (0.2), three
times the grid size (0.3) etc. Between these peaks, m indicates
the absence of neighboring cases: depending on the distance,
significant dispersion may (as in the case for a distance of
0.25) or may not (as in the case for a distance around 0.35) be
observed.

5. Discussion
This section provides some comparisons with the most used
density function in spatial economics, Duranton and Over-
man’s Kd function (Duranton and Overman, 2005). Keeping
the notations previously used in equation 1 and using n to
denote the total number of points, the Kd function is defined
by:

K̂d (r) =
1

n(n−1) ∑
xi∈R

∑
x j 6=xi,x j∈N

k
(∥∥xi− x j

∥∥ ,r) (3)

The weighted version of the Kd function, called the Kemp

function (Duranton and Overman, 2005), is given by:

K̂emp (r) =
∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)k

(∥∥xi− x j
∥∥ ,r)

∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)

(4)

The Kd function is very popular in spatial economics
(Chain et al. (2019) or see Marcon and Puech (2017) for
a review). It is therefore interesting to compare their proper-
ties in order to understand the main differences between the
two statistical measures. In what follows, we have used the
R package dbmss to estimate the Kd and m functions. As sug-
gested by Duranton and Overman (2005), we use the reflection
technique9 to estimate density close to the lowest distance for
the Kd function. As a result, Kd plots start systematically for
r = 0.

5.1 Comparisons of Kd and m results on the three
previous simulated cases

The Kd function was estimated for the three simulated cases
considered above. Kd plots are shown on figure 4a for the

9 In a few words, densities are underestimated around the limits of the
interval. This is due to the fact that outside the interval, densities are not
equal to zero as they should be. This border effect problem is known (Sil-
verman, 1986) and can be easily corrected in practice by using for example
the GoFKernel package (Pavia, 2015) for the R software. The idea is to use
the reflection at the borders to correct the underestimated densities inside the
interval but around the limits of the interval.
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(b) m function results, original bandwidth of Silverman (1986)
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(c) m function results, half of the original bandwidth of Silverman (1986)

Figure 3. Regular point pattern
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(a) Kd results for completely random patterns of cases and controls (map
on figure 1a)
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(c) Kd results for regular pattern of cases (map on figure 3a) with the
original Duranton and Overman’s smoothing
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(d) Kd results for regular pattern of cases (map on figure 3a) with a more
detailed smoothing

Figure 4. Kd results for the three simulated cases
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random pattern of cases, on figure 4b for the aggregate pattern
and on figures 4c and 4d for the regular pattern. For all the
cases, we have used the same maximum distance, i.e. one-
third of the diagonal of the window (≈ 0.471).

For the random patterns of cases and controls (figure 4a),
m and Kd give identical results. No significant level of disper-
sion or concentration was detected. The value of m is 1 for
all distances, subject only to stochastic fluctuations. Relative
distance-based measures do not suffer edge-effects: points
close to the domain borders have less neighbors but this issue
cancels out when the ratio of their numbers is calculated. In
contrast, Kd increases with distance for geometrical reasons.
Kd evaluates the probability of finding a case neighbor at a
given distance, i.e. on the circle of radius r around each point
of interest: it first increases linearly with respect to r, then
increases less because of edge effects (parts of the circles lay
outside the domain when r is large enough) and finally drops
to 0 when r gets larger than the diameter of the domain (not
shown on the figure). Finally note a very minor difference in
the results provided by Kd and m: the Kd plot is defined for
r = 0 contrarily to the m plot (figure 1b). This is due to the
reflection method used for the Kd function as we previously
explained. No case-neighbor is located at a distance less than
0.01 thus m is not defined.

For the aggregate pattern (figure 4b), like the m function,
Kd detects the first peak of concentration occurring at a dis-
tance of approximately 0.05. The main difference relates to
the shape of the concentration peak. At very small distances
the Kd values increase up to a distance of 0.05 which corre-
sponds to the radius of the cluster. After this, the value of Kd
starts to fall. The increase in Kd contrasts with the shape of the
m function at short distances. The explanation is geometric
again: at short distances this probability increases proportion-
ally to the perimeter of the circle around reference points until
r is too large and the circle partly leaves the cluster. Then, it
progressively decreases.

Let us now turn to the regular simulated example. With
the same original smoothing of Silverman (1986) also chosen
by Duranton and Overman (2005), the results for this spatial
pattern with the m (figure 3b) or the Kd (figure 4c) function
are totally in accordance. If we modify the smoothing by
choosing a narrower bandwidth, that is half of the original
bandwidth of Silverman (1986), the results for the Kd function
are given in figure 4d and should be compared with the m
results given in figure 3c. As one would expect, there are
a large number of positive and negative significant peaks of
the Kd plot in comparison to weaker smoothing of the results.
The m results and the Kd results are, again in that example,
totally in accordance.

5.2 Comparisons between the results from the Kd
and m functions on a more complex example

In the three above simulated cases, there is not a great deal
of difference between the results with the Kd and m functions.
However, this is not always the case. In the real world, the

distribution of activities is more complex. In this sub-section,
we shall draw attention to the type of concentration that the
m function can identify. To make things clearer, if we re-
turn to table 1 we can see that the m function evaluates the
relative concentration while Kd appraises the absolute concen-
tration. This distinction may be crucial for a comprehensive
understanding of spatial structures.

5.2.1 Divergence in the Kd and m results on a simulated
case

Consider the following simulated example. A city is delim-
ited by a 1-by-1 window. For the sake of simplicity “cases”
and “controls” are the only two types of shops located in the
city. Figure 5 shows the distribution of cases (diamonds) and
controls (crosses). A multiple pattern is observed: a com-
pletely random distribution of controls (crosses) and cases
(diamonds) and also an aggregate distribution of controls
(crosses). More technically, for the cluster of controls we
generated simulations from a Matérn process with the follow-
ing parameters: 1 for the density of the Poisson process that
generates cluster centers, 0.1 for the radius of clusters and 75
for the average number of points per cluster. Controls were
also simulated from a homogeneous Poisson process with a
density of 50. Cases were simulated from a homogeneous
Poisson process with a density of 25. 134 points were plot-
ted on figure 5. The cluster is composed of 66 controls, 42
controls are randomly distributed on the area and 26 cases are
randomly distributed over the entire domain.

Figures 6a and 6b show the results for the Kd function
and the m function. In line with our previous examples, all
points have a weighting of 1. The maximum distance for
the m function equals one-third of the diagonal of the win-
dow (≈ 0.471). A global confidence interval (CI) at the 1%
risk level was generated after 10,000 simulations. All simu-
lations were conducted with the help of the dbmss package
for computing the Kd and m functions. The divergence in the
results between Kd and m plots show all the importance of the
definition of the nature of the spatial concentration studied.

As we underlined, the m function detects the relative spa-
tial concentration. Cases are more regularly distributed than
the controls in the example. As a consequence, around the
cases the presence of cases is relatively more important than
the one of controls: relative concentration is detected by the
m function up to a distance approximately equal to 0.23 (fig-
ure 6b). Now, consider the Kd results (figure 6a): dispersion
of cases is detected. By construction of the example, cases
do not take place in the clusters. Under the null hypothesis
of random location of cases among all observed points, some
cases will be located in the cluster: the probability to find
neighbors at short distances is thus higher than in the real
data set; in other words, the points of the dataset are less con-
centrated than under the null hypothesis. The concentration
characterized by Kd is called absolute because it just counts
neighbors without comparing their number to a benchmark.
In the dataset, cases are located in low-density areas so they
are far from each other: a dispersion of cases is detected by
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(a) Kd function results
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Figure 6. Kd and m results for a more complex simulated case
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Kd . However, they are relatively abundant and close to each
other (in comparison with controls), cases are agglomerated
in relative terms, as detected by the m function.

5.2.2 Confirmation of the previous results for a retail sec-
tor in the city of Lyon (France)

To give a concrete example of the previous simulated case, we
shall consider the spatial distribution of the non-food retail
stores in the Lyon area (France). We have exploited a database
provided by the Chamber of Commerce and Industry of Lyon.
This contains the exact geographic position of 3,124 non-food
stores in April 2012. The different types of store have been
classified into 26 sectors from 47.30Z to 47.79Z of the French
NAF rev. 2 classification of activities. We shall focus on
“dispensing chemists in specialized stores” (47.73Z), of which
there are 156 in the Lyon area. We shall refer to these stores
as pharmacies in what follows.

First of all, a comparison of the density of all non-food
stores in Lyon (figure 7a) and the spatial distribution of the
pharmacies over the same area (green crosses on figure 7b) is
worthwhile. We can see that many of the city’s non-food stores
are located in central Lyon and the left bank of Rhône river (to
the east of central Lyon, figure 7a). However, pharmacies are
undoubtedly more regularly distributed than non-food stores
as a whole. One can easily observe the presence of these
activities over the entire Lyon area (black points on figure 7b).

The impacts on the results for m and Kd will be of interest.
These results are given on figures 8a for Kd and 8b for m
(distances are reported in meters on the horizontal axis). Their
respective global confidence intervals (CI) were computed at
the 1% risk level after 10,000 simulations. All the pharma-
cies were assigned a weight of 1 and the maximum distance
analyzed was around 2,500 meters. The spatial structures de-
tected by Kd and m differ. Up to a distance of approximately
2 kilometers, the plot of Kd indicates that pharmacies are
dispersed while that of m indicates a degree of spatial concen-
tration up to 1.5 kilometers. The peak of spatial concentration
appears around 750 meters and is nearly equal to 1.5 which
means that the density of pharmacies at this radius is 50%
higher than in the Lyon area as a whole. How can we explain
this difference in the results of Kd and m? As we underlined,
pharmacies are more regularly distributed than non-food retail
activities as a whole. As a result, pharmacies are more concen-
trated under the null hypothesis than in the real distribution: a
dispersion of pharmacies is detected by Kd . Moreover, even
though there are pharmacies in high density business areas
(central Lyon, the left bank of the River Rhône. . . ), they are
over-represented in low-density business areas, relatively to
other shops. When we simulate distributions, pharmacies
are located in areas where the number of non-retail stores is
greater so the relative concentration of these stores will be
lower under the null hypothesis. As a result, the observed
m plot is over the confidence interval of the null hypothesis
and indicates a relative spatial concentration of pharmacies
between approximately 250 meters and 1,500 meters.

5.2.3 Synthesis
The purpose of both Kd and m functions is to compare the dis-
tribution of a specific sector of activity to that of the economic
activity a whole, to control for its obvious spatial heterogene-
ity. Explicitation of the null hypotheses allows understanding
why their results may detect spatial concentration or disper-
sion.

The m function estimates the relative concentration (or
dispersion, omitted in the rest of the discussion for readability)
of the sector of interest, i.e. it compares the average propor-
tion of neighbors of this sector around all plants or shops of
this sector to its global proportion. Significant values of m(r)
detect relative concentration. The Kd function compares the
probability to find a neighbor of this sector around the same
points to the probability that would be under the null hypothe-
sis of random location of plants. Significant departures of Kd
from the null hypothesis show that the topographic concentra-
tion of the sector is higher than that of the the benchmark. It
focuses on topographic, not relative concentration.

This comparison of the m and Kd functions emphasizes
that the nature of the spatial concentration should be studied
with care to avoid any misinterpretation.

6. Conclusion
In this article, we introduced a new distance-based function
called m. The m function is the first relative density function
to be proposed in the field of spatial economics. It respects
all of the good criteria of Duranton and Overman (2005)
for evaluating the spatial distribution of economic activities.
So, m will certainly be useful for economists for detecting
the relative spatial concentration or dispersion of activities.
Density functions detect local patterns more precisely than
cumulative functions so m can be preferred in that case to
relative cumulative distance-based measures. Moreover, we
showed on simulated and real data that m and the leading
density function Kd of Duranton and Overman (2005) may
be used conjointly for having a comprehensive approach of
the distribution of activities. The main reason is that Kd
compares the topographic concentration of a sector to that
of the whole activity while m actually evaluates the relative
concentration of the sector. At the end of the article, the
analysis of the distribution of the pharmacies in Lyon provides
a good example of the complementary of the results of Kd and
m.
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(a) Density of the non-food retail stores. The blue line represents the
position of the Rhône River.

(b) Spatial distribution of pharmacies in Lyon

Figure 7. Non-food retail stores in the area of Lyon (France)
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(a) Kd results for pharmacies in Lyon
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(b) m results for pharmacies in Lyon

Figure 8. Spatial structure of the pharmacies
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