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Abstract 

In this paper, we performed a strain localization analysis for single crystals and polycrystals, with 

the specific aim of establishing a link between the microstructure-related parameters and ductility. 

To this end, advanced large-strain elastic–plastic single crystal constitutive modeling is adopted, 

accounting for the key physical mechanisms that are relevant at the microscale, such as dislocation 

storage and annihilation. The self-consistent scale-transition scheme is then used to derive the 

overall constitutive response of polycrystalline aggregates, including the essential microstructural 

aspects (e.g., initial and induced textures, dislocation density evolution, and softening mechanisms). 

The resulting constitutive equations for single crystals and polycrystals are coupled with two strain 

localization criteria: bifurcation theory, which is also related to the loss of ellipticity in the 

associated boundary value problem, and the strong ellipticity condition, which is presented in full 

detail along with mathematical links allowing for hierarchical classification in terms of 

conservativeness. The application of the proposed coupling to single crystals and polycrystals 

allows the effect of physical microstructural parameters on material ductility to be investigated. 

Consistent results are found for both single crystals and polycrystals. In addition, forming limit 

diagrams (FLDs) are constructed for IF–Ti single-phase steels with comparison to the reference 

results, demonstrating the predictive capability of the proposed approach in investigations of sheet 

metal formability. The results of the self-consistent scheme are systematically compared to those of 

the more classical full-constraint Taylor model, both in terms of the impact of microstructural 

parameters on ductility and in terms of the predicted formability limits and the level of the 

associated limit strains. Finally, we investigated the impact of strain-path changes on formability 

through the analysis of the effect of prestrain on the FLDs. 

Keywords: Plastic instabilities; Rice’s bifurcation criterion; Loss of strong ellipticity; Crystal 

plasticity; Self-consistent scale transition; Microstructure–ductility relationships 
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1. Introduction 

In the literature dealing with plastic instabilities in general and more recent studies on the 

prediction of plastic instabilities in the sheet metal forming process, many instability criteria have 

been developed, and some of these criteria have been extensively applied to sheet metals to 

investigate their formability limits. Exhaustively reviewing these criteria is difficult, considering the 

multitude of variants deriving from some of these approaches. However, a review of the literature 

reveals that the criteria can be classified into at least four distinct categories depending on their 

fundamental basis and theoretical or physical background. 

For stretched sheet metals, two forms of necking, namely diffuse and localized necking, may 

occur. It has been shown that diffuse necking occurs prior to localized necking, and it is now well 

recognized that the maximum allowable straining in sheet metal forming is determined by localized 

necking. For this reason, forming limit diagrams (FLDs) are commonly determined at localization 

in most of the current formability approaches, and from an experimental perspective, the FLDs are 

obtained at localized necking for various loading paths (e.g., uniaxial tensile test, plane strain 

tension, biaxial tensile tests, etc.) by means of Marciniak’s or Nakazima’s punch with specimens of 

different widths. 

Early instability criteria were based on the maximum force principle (Considère, 1885), and its 

two-dimensional extension (Swift, 1952) was used for sheet metal applications. In their original 

form, these criteria were intended to allow for the prediction of diffuse necking. Later, these 

maximum-force-based criteria were extended to the prediction of localized necking, and some 

enhanced versions were developed to take certain effects, such as those related to thickness and the 

strain path, into account (Hora et al., 1996; Mattiason et al., 2006). Note also that Hill’s zero-

extension criterion (Hill, 1952), which predicts localized necking on the left-hand side of the FLD, 

was developed during the same time as Swift’s diffuse necking criterion. 

Another approach, which postulates a pre-existing defect in the material sheet, was proposed by 

Marciniak and Kuczynski (Marciniak and Kuczynski, 1967). In its original form, the M–K model 

can be regarded as a complementary approach to Hill’s zero-extension criterion, which is only 

applicable to the left-hand side of the FLD, as no zero-extension direction exists for positive biaxial 

stretching. However, because localized necking in biaxial stretching is observed in practice, a pre-

existing defect has to be introduced in the M–K model to capture this phenomenon, which may 

provide some justification for this imperfection theory. Subsequently, the M–K criterion has been 

extended to the left-hand side of the FLD by allowing the pre-existing geometrical defect, which is 
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represented by an oriented band of reduced thickness, to rotate in the sheet plane (Hutchinson and 

Neale, 1978). 

In addition to the aforementioned engineering approaches, another category of plastic instability 

criteria was developed based on a more fundamental background. Drucker and Hill’s theory 

(Drucker, 1950; Drucker, 1956; Hill, 1958), also referred to as the general bifurcation criterion, 

represents another class of approaches for necking prediction. This condition of positiveness of the 

second-order work provides a lower bound for all of the bifurcation-based criteria in this category. 

In the same class of criteria, Valanis (1989) suggested using a limit-point bifurcation criterion, 

which is less conservative than the general bifurcation criterion but coincides with it within the 

framework of associative plasticity and small strains. Note that a more conservative criterion will 

predict earlier plastic instability associated with lower critical strains. With regard to localized 

modes of deformation, Rudnicki and Rice (1975), Stören and Rice (1975), and Rice (1976) 

proposed a bifurcation criterion characterized by the singularity of the acoustic tensor, also known 

as discontinuous bifurcation. It has been shown that this criterion corresponds to the loss of 

ellipticity of the partial differential equations governing the associated boundary value problem. In 

the same manner, some authors (Bigoni and Hueckel, 1991; Neilsen and Schreyer, 1993) have 

suggested the use of the more conservative condition of strong ellipticity, which has been shown to 

coincide with Rice’s criterion within the framework of associative plasticity and small strains. This 

condition of loss of strong ellipticity is also a special case of Drucker’s general bifurcation criterion, 

in which the bifurcation mode is restricted to localized (compatible) deformation modes. 

Finally, a fourth noteworthy set of criteria pertains to the approaches based on stability theory. In 

these approaches, necking and localization phenomena are addressed within the framework of the 

stability analysis of local equilibrium equations for a material point. Starting from the general 

mathematical concept of stability, which was introduced by Lyapunov (1892) and commonly 

applied to structural instability problems (see, e.g., Abed-Meraim, 1999; Abed-Meraim and 

Nguyen, 2007), the associated linear perturbation method was extended to material instability 

problems by Molinari and co-workers (Molinari and Clifton, 1987; Dudzinski and Molinari, 1991). 

The analysis consists of linearizing the perturbation equations to investigate the growth rate, which 

is given by the associated eigenvalue problem and will ultimately characterize the stable and 

unstable modes. Toth et al. (1995) and Boudeau et al. (1998) applied this strategy to 

micromechanical models. More recently, Li and Karr (2009) adopted this approach to investigate 

ductile fracture in tension. For strain-rate-dependent materials, this methodology can be viewed as 

an interesting alternative to bifurcation approaches, which are no longer applicable. At the limit of 

vanishing rate sensitivity, it was shown that Rice’s bifurcation criterion is recovered with this 

approach (Barbier et al., 1998; Benallal, 2008). 
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From this overview of the various approaches pertaining to strain localization criteria and 

indicators, an interesting observation can be made. While M–K analysis has been widely used in the 

literature, few applications of Rice’s ellipticity loss theory, mainly restricted to plane-stress 

assumptions, particular loading paths, and simple behavior models, have been attempted in sheet 

metal forming for quantifying metals in terms of their formability. Thus, the main objective of this 

study is to model plastic instabilities in sheet metals by means of both Rice’s bifurcation criterion 

and the condition of loss of strong ellipticity. Their sound theoretical foundations and fully three-

dimensional formulation, which allows for the consideration of through-thickness effects (e.g., out-

of-plane orientation of localization bands), are additional motivations behind our choice of these 

criteria. Furthermore, in contrast to the M–K analysis, whose predictions are overly dependent on 

the arbitrary choice of the initial defect size, no additional user-defined parameters are required for 

either Rice’s bifurcation or the loss of strong ellipticity. Note that in a recent study by Yoshida and 

Kuroda (2012a), the bifurcation approach has been used along with the full-constraint Taylor model 

and the plane-stress assumptions. By contrast, two distinguishing features of the current 

contribution are: (i) the use of a self-consistent scale-transition scheme, and (ii) the consideration of 

a fully three-dimensional framework with no plane-stress assumptions. In what follows, strain 

localization analyses will be carried out on single crystals and polycrystalline aggregates. The 

micromechanical approach based on crystal plasticity is used to model single crystal behavior, 

while a self-consistent scale-transition scheme is adopted to derive the polycrystalline behavior. 

The remainder of the paper is organized into three main parts. 

In the first part, a micromechanical constitutive model based on crystal plasticity is presented. 

After a literature review of the main contributions devoted to the prediction of defects in sheet metal 

forming, the single crystal constitutive equations are discussed within the framework of large-strain 

elasto-plasticity. Then, Hill’s self-consistent scale-transition scheme (Hill, 1965a,b) is used to 

derive the macroscopic behavior of polycrystalline aggregates. In this averaging process, textural 

and morphological evolutions are taken into account. The internal variables adopted in this 

constitutive modeling are the dislocation densities per slip system, whose evolution laws account 

for the mechanisms of dislocation storage and annihilation. 

In the second part, the selected localization criteria, namely Rice’s bifurcation criterion and the 

condition of loss of strong ellipticity, are described in some detail. For the sake of clarity, the 

formulations of these criteria are developed both with respect to the initial undeformed reference 

configuration and relative to the current configuration. A theoretical relationship between the two 

criteria is also shown, revealing that one is always slightly more conservative than the other and 

providing the particular conditions where the two criteria lead to the same predictions. The 

theoretical classifications of these criteria must be verified through subsequent simulation results. 
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In the third part, the previously defined criteria are applied to single crystals with different initial 

crystallographic orientations and polycrystalline aggregates. More specifically, focus will be placed 

on the investigation of the effect of microstructural parameters on the ductility limit of metal sheets. 

Once established, the relationships between microstructure and material formability can be used 

advantageously to help design new materials with improved formability properties. Such a strategy 

may be adopted at an early stage of the design of new grades of steel. Finally, the main results are 

summarized, and some concluding remarks are drawn. 

2. Micromechanical approach based on crystal plasticity 

Sheet metal forming processes may result in various failure modes. For ductile materials, the 

most common failure modes that limit material formability are strain localization and necking. 

Localization by shear bands, referred to as material or plastic instability, occurs due to competing 

hardening and softening mechanisms, while necking may be attributed to the combination of 

material softening and geometric changes in the specimen. This study focuses on the onset of strain 

localization in the form of shear band. 

Previous investigations that introduced Rice’s bifurcation approach into the framework of single 

crystal plasticity have been presented in the pioneering works of Asaro and Rice (1977), Peirce 

(1983), and Peirce et al. (1982, 1983). To explicitly derive the expression of a critical hardening 

modulus, these contributions have simplified the analysis by assuming that only two slip systems 

can be active. Although this intrinsic criterion can be applied to determine FLDs, no scale-transition 

scheme has been used to derive the behavior of polycrystalline aggregates, and thus no FLD 

predictions have been attempted. In more recent studies, single crystal plasticity behavior models 

have been incorporated into finite element methods to numerically simulate localized necking 

(Viatkina et al., 2005; Wu et al., 2007; Sun et al., 2009; Zhang et al., 2009). However, mesh 

sensitivity is a well-known drawback of such FE-based formability analyses (Harewood and 

McHugh, 2006). It has been shown, nevertheless, that this mesh sensitivity can be removed when 

using non-local constitutive models, such as those considered in Borg (2007) within the framework 

of non-local crystal plasticity, in Lele and Anand (2009) within strain-gradient viscoplasticity, or in 

Mroginski et al. (2011) for porous media. 

Among the key factors that influence FLD predictions, the choice of the constitutive model has 

been shown to have a significant impact on the results (Horstemeyer, 2000). The effect of strain-

path changes is often not accounted for in phenomenological constitutive laws; thus, the use of 

advanced, more predictive behavior models seems to be an interesting way to enhance FLD 

predictions. An attempt to do this type of investigation can be found in the work of Hiwatashi et al. 
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(1998), who applied an advanced anisotropic constitutive model based on texture and dislocation 

structure to predict FLDs, thus allowing the effect of changes in the strain path to be investigated. 

In the last few decades, there has been a growing interest in the use of micromechanical models 

to predict the ductility limits of polycrystalline aggregates. Boudeau et al. (1998) coupled a 

micromechanical local law with the Taylor scale-transition scheme to predict FLDs with or without 

prestrain. In more recent works (Zhou and Neale, 1995; Inal et al., 2005; Wu et al., 2005), a visco-

plastic model using the Taylor scale-transition scheme was combined with the M–K analysis to 

determine FLDs with or without prestrain. Similar FLD analyses with Taylor-based 

micromechanical models coupled with the M–K approach can be found in Knockaert et al. (2002), 

Yoshida et al. (2007), and Yoshida and Kuroda (2012b). Recently (Signorelli et al., 2009), 

significant advances in the FLD analysis have been made by considering a rate-dependent 

polycrystalline self-consistent plasticity model in conjunction with the M–K approach, while 

previous M–K applications were restricted to the full-constraint Taylor model. 

In plastic instability predictions based on crystal plasticity, a key factor is related to the vertex 

formation on the yield surface. This phenomenon has been pointed out earlier by Hill (1967), and 

revealed by calculations based on crystal plasticity (Hutchinson, 1970; Kuroda and Tvergaard, 

1999). Moreover, experimental evidence of such a yield surface vertex has been shown through 

carefully designed experiments (Kuwabara et al., 2000). It has been shown that this vertex effect 

plays a major role both in predictions of material instabilities (Rice, 1976; Hutchinson and 

Tvergaard, 1981), and also for more realistic predictions of structural instabilities (e.g., plastic 

buckling; see, Hutchinson (1974), Sewell (1973, 1974)). In view of this, phenomenological 

constitutive theories have been developed to include vertex-type effects (Christoffersen and 

Hutchinson, 1979; Kuroda and Tvergaard, 2001a). In the same way, to overcome the limitations of 

the flow theory with associative plasticity and smooth yield surface in predicting plastic 

instabilities, the alternative deformation theory has been proposed in various investigations (see, 

e.g., Stören and Rice, 1975). The latter theory has been shown to introduce, in an approximate 

phenomenological way, the vertex effects inherent in physically based micromechanical 

descriptions. The common feature of these approaches is a reduction in the instantaneous shear 

moduli (see, e.g., Hutchinson, 1970; Yoshida et al., 2009), which correspondingly reduces the 

predicted bifurcation levels to realistic values, in the same manner as do deviations from normality 

in the plastic flow rule (see, e.g., Rudnicki and Rice, 1975; Kuroda and Tvergaard, 2001b). 

The main objective here is to predict the ductility limit of polycrystalline materials as accurately 

as possible by considering the effect of changing the loading paths along with microstructural 

aspects. Both criteria, namely Rice’s bifurcation and the loss of strong ellipticity, will be coupled 

with a constitutive model derived from a large-strain micromechanical approach and self-consistent 



  

 7

scale-transition scheme. The choice of such polycrystalline modeling is motivated by the fact that it 

is now well-known that strain localization predictions are highly sensitive to the formation of vertex 

effects on the current yield surface and other microstructural mechanisms, such as textural and 

microstructural anisotropy (see, e.g., Bassani et al., 1978; Neale and Chater, 1980; Barlat, 1987; 

Lian et al., 1989), which cannot be reproduced by standard phenomenological approaches (see, e.g., 

Kobayashi, 2010). Thus, because the mechanical characteristics of a material are determined by its 

microstructure and microscopic properties, a micromechanical model considering the effects of 

crystallographic texture and those relating to the microstructure and its evolution with changing 

loading paths would be a better candidate to develop a predictive tool for quantifying the 

formability of polycrystalline materials. This predictive tool, once validated, could serve in the 

design process of new grades of steel having improved ductility and in-use properties. 

2.1. Single crystal constitutive modeling 

Restricting our attention to rate-independent behavior with crystallographic slip as the only 

mechanism of irreversible deformation, the most important aspects of single crystal behavior are the 

elastic distortion of the lattice and the plastic flow due to slip on the crystallographic planes. The 

elastic–plastic, finite strain single crystal description adopted here is based on the constitutive 

theory first developed by Hill (1966) and its subsequent enhanced developments by Asaro (1979, 

1983), Nemat-Nasser et al. (1981), and Iwakuma and Nemat-Nasser (1984). A similar formulation 

has been adopted by Lipinski and Berveiller (1989) and Lipinski et al. (1995). Only the main lines 

are recalled, and for completeness, the equations that are essential for the subsequent analyses are 

provided. The starting point is the multiplicative decomposition of the deformation gradient F  as 

 = e p⋅F F F           (1) 

In this decomposition, the intermediate configuration pF  describes the material shear flow along 

the various slip systems of the crystal, while eF  represents the lattice elastic distortion along with 

the rigid rotation of the crystal, as illustrated in Fig. 1. The velocity gradient is then written as 

 ( )= = e e e p p e−1 −1 −1 −1+⋅ ⋅ ⋅ ⋅ ⋅g F F F F F F F F� � �       (2) 

in which 

 ( )  e p p e g gp p g

g
γ−1 −1 ⊗⋅ ⋅ ⋅ = + =∑F F F F d w m n

� �
� �      (3) 

where gm
�

 is the vector located in the slip direction of the slip plane g  with normal gn
�

, gγ�  is the 

associated slip rate, and pd  and pw  are the plastic strain rate and plastic spin, respectively. In the 

same way, e e−1⋅F F�  is split into its symmetric part ed  and its anti-symmetric part ew  as follows: 

 e e e e−1⋅ = +F F d w�          (4) 
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so that 

 = d + wg , e p= +d d d , e p= +w w w       (5) 

where d  and w  are the symmetric and anti-symmetric parts of g , respectively. From Eq. (3), the 

plastic strain rate pd  and plastic spin pw  can be written in terms of the Schmid tensors gR  and gS , 

defined as the symmetric and anti-symmetric parts, respectively, of the tensor product g g⊗m n
� �

. 

If σ  denotes the Cauchy stress tensor and J=τ σ  is the Kirchhoff stress tensor, with detJ = F , 

then, as observed by Hill (1966), it is natural to use stress rates that are co-rotational with the elastic 

distortion of lattice to describe the local elastic response. This particular objective derivative reads 

 e e∇ = − ⋅ + ⋅τ τ w τ τ w�         (6) 

The local stress variation can then be written as follows (see, e.g., Hill and Rice, 1972): 

 : e∇ =τ C d           (7) 

where C  is the fourth-order tensor of the elastic constants. Adopting in what follows the 

framework of an updated Lagrangian approach (i.e., =F 1 , 1J = ), the elasticity law (7) becomes 

 ( ) tr : e∇ + =σ σ d C d          (8) 

To determine the crystallographic slip rates gγ� , the Schmid law is used, leading to a normality 

rule (Hill, 1966). If the resolved shear stress gτ  acting on a given slip system g  is defined as the 

projection of the Cauchy stress on the Schmid tensor gR  associated with that slip system, such that 

 ( ): g gg gτ ⋅ ⋅= = n mσ R σ

� �

        (9) 

then this resolved shear stress appears as a thermodynamic driving force that must exceed a certain 

threshold of slip resistance so that the associated dislocation densities can move. The threshold for 

each slip system represents the current yield stress, denoted as the critical resolved shear stress g
cτ . 

For practical reasons and for handling only positive values of slip rates, the total number of slip 

systems is doubled by distinguishing between pairs ( gm
�

, gn
�

) and (  

g−m
�

, gn
�

). Consequently, the 

yield function, g g g
cf τ τ= − , for a given slip system, g , defines a plasticity criterion given by 

 ( ) 0 ,     0    and    0g g g gg g
cf γ γ fτ τ= − ≤ ≥ =� �      (10) 

These inequalities indicate that there is no plastic slip in this slip system (i.e., 0g
γ =� ) if the stress 

is located in the interior of the yield surface ( 0gf < ) or unloading occurs from the yield surface 

( 0gf =  and 0gf <� ). However, strict plastic flow (i.e., 0g
γ >� ) implies that 0gf =  and 0gf =� . 

To proceed further with the determination of the slip rates, we must use the consistency 

condition. The latter ( 0g g g
cf τ τ= − =�

� � ) involves the derivative of the Schmid tensors, which are 

embedded in the crystallographic lattice. Assuming that the elastic strains remain small compared to 
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unity, the evolution laws of Schmid’s vectors can be approximated as g ge= ⋅m mw
� ��  and g ge= ⋅n nw

� ��  

(Anand and Kothari, 1996), leading to the following relation for the resolved shear stress rate: 

 :g g g g g g g gg gτ ∇ ∇= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ =m n m n m n m nσ σ σ σ σ R
� � � � � � � �� �� �    (11) 

In summary, in our modeling, the orientation of the crystallographic frame is defined by the 

classical Euler angles and their evolution equations with the elastic lattice spin ew  (see, e.g., 

Bunge, 1982; Lipinski et al., 1995). These equations are detailed in Franz et al. (2009a) for the 

evolution of both crystallographic and morphological orientations. The latter is defined by the 

orientation of the principal frame of the ellipsoid representing the grain, whose shape evolution is 

also taken into account by the evolution equations of the ellipsoid half-axes. 

The last two points that complete the presentation of the elastic–plastic single crystal constitutive 

modeling are: (i) the evolution laws of hardening, and (ii) the procedure of active slip system 

selection. Before discussing the non-trivial issue of active slip system selection, we assume that 

these systems are known and first determine their slip rates and the single crystal tangent modulus. 

Assume that the evolution of the critical resolved shear stress is given by a law of the form 

 g gh h
c h

Hτ γ=∑ ��          (12) 

in which summation is over the active slip systems, and the hardening interaction matrix ghH  will 

be described later. Combining the consistency condition with Eqs. (3), (5), (8), (11), and (12) yields 

 ( ) ( ): : ::gh h

h

g h gH γ ⊗+ −∑ =R C R R C σ 1 d�      (13) 

This resulting linear system involves a square matrix whose size is equal to the current number 

of active slip systems, and whose ( ,g h )th component is ( : :gh g hH + R C R ). If ghM  stands for the 

( ,g h )th component of the inverse of this matrix, then the slip rates are obtained as 

 ( ) : :g gh

h

hMγ ⊗−∑= R C σ 1 d�        (14) 

Within the finite-strain framework, several tangent moduli can be chosen depending on the 

selected stress measure. The single crystal tangent modulus sought here takes the following form: 

 :=n l g�           (15) 

where n  is the nominal stress, which is related to the Cauchy stress by  

1J −= ⋅n F σ . 

Taking the current configuration as a reference configuration, one obtains 

 ( ) ( )
1 2

,
  : : :

: : :

     : gh

g h

g g g h hM ⊗

− −

⋅ − ⋅ −

=

− +∑
σ σ
L Ln C g g g

C R S σ σ S R C R σ 1 g

�

   (16) 

where the fourth-order tensors 1
σ
L  and 2

σ
L  contain the convective terms of the stress components, 

as explicitly shown by the expression of the tangent modulus l  of Eq. (15) in indicial notation 
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( ) ( )

( ) ( ),
  

1 1

2 2

       

ijkl ijkl ik jl il jk ik jl il jk

g g g gh h h
ijmn mn im mj im mj pq pqkl pq pq klg h

R S S M R R

l C

C C

σ δ σ δ δ σ δ σ

σ σ σ δ

− − − +

+ − −

=

−∑
  (17) 

in which it is clear that this tangent modulus does not have any of the minor or major symmetries. 

Returning to the active slip system selection, which has not been addressed thus far, it should be 

noted that there are two difficulties associated with this issue. The first concerns the evaluation of 

the ghM  components due to possible singularity of matrix ( ): :gh gh g hH= + R C RN . For instance, 

some simplified hardening rules proposed in the early approaches resulted in equality between two 

or several columns of matrix gh
N , making it non-invertible. This issue has been widely discussed 

in the literature, and several remedies have been proposed to circumvent this difficulty. With the 

hardening laws adopted in the current constitutive modeling, we have not encountered this problem; 

however, we did face the second difficulty inherent to rate-independent approaches. This issue is 

related to the non-uniqueness of the set of active slip systems. This difficulty can be understood by 

observing the nature of Eq. (13), in which one must solve a linear system in which the dimension of 

the matrix to be inverted is itself unknown. In other words, this difficulty is due to the fact that the 

consistency condition for a given slip system g , g g
cτ τ=� � , cannot be independently solved because 

the hardening interaction terms require coupling with other active slip systems. In the literature, the 

concept of potentially active ( g g
cτ τ= ) and effectively active ( g g

cτ τ=  and g g
cτ τ=� � ) slip systems 

was introduced, and it was shown that, within the potentially active systems, several subsets of 

active systems may exist. This issue has been discussed in several reports (Hill and Rice, 1972; 

Franciosi, 1984; Franciosi and Zaoui, 1991; Anand and Kothari, 1996; Busso and Cailletaud, 2005; 

Arul Kumar and Mahesh, 2012), and various methods have been proposed to address this 

indetermination issue. Franciosi and Zaoui (1991) suggested an energy-based criterion for the 

selection of active slip systems: within the potentially active systems, the combination of slip 

systems that is chosen to be active is the one that minimizes the deformation energy. From a 

computational point of view, this criterion requires a combinatory analysis to be performed for each 

time step, which is extremely time consuming. 

In our approach, a new method is proposed to determine the active slip systems and their slip 

rates within an elastic–plastic modeling framework. This method, inspired by viscoplastic 

formulations, allows the computing time to be considerably reduced while preserving the rate-

independent nature of the constitutive equations. The starting point consists of setting the plastic 

flow rule for a given slip system g  in the following equivalent form: 
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       (18) 

Then, regularization of these equations is proposed to model a threshold (or step function) with a 

smoother function, thus circumventing the computational issues inherent in the use of stiff 

functions. Several regularization techniques are possible; we adopt the following form: 

 ( ), ,g g g g g g
ckγ τ τ τ τ=� � �         (19) 

in which the regularization function gk  is chosen to have the following expression: 

0 1 2

1 1 1 1
1 tanh 1 tanh 1 1 tanh

2 2 2
g

gg
ref ref

g g g

g
c

k k k k
H

τ τ τ
τ τ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎧ ⎫
= + + − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎩ ⎭⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

�

�

 (20) 

where ‘ tanh ’ denotes the hyperbolic tangent function, and 0k , 1k , 2k , refτ , and refτ�  are numerical 

parameters associated with the regularization function (see Franz et al., 2009a). Combining this 

regular form of Schmid’s law (19) with Eqs. (11) and (8), and using Eqs. (3) and (5), one obtains 

 ( ) ( ): : ::gh h

h

g h gδ γ ⊗+ −′ ′∑ =R C R R C σ 1 d�      (21) 

where gg gk=′R R  (with no summation over g ), and ghδ  are the components of the identity 

matrix, whose size is the current number of active slip systems. The slip rates are then given by 

 ( ) : :g gh

h

hPγ ⊗−′∑= R C σ 1 d�        (22) 

where ghP  represents the ( ,g h )th component of the inverse of the matrix whose components are 

: :gh gh g hQ δ= + ′R C R . Note that Eqs. (21)-(22) are the counterparts of Eqs. (13)-(14) once 

regularization is applied. This regularization also affects the expression of the tangent modulus 

given in Eq. (17). Repeating the same steps as before, with the new expression of the slip rates 

given by Eq. (22), the expression of the tangent modulus in indicial notation becomes 

 
( ) ( )

( ) ( ),
  

1 1

2 2

       

ijkl ijkl ik jl il jk ik jl il jk

g g g gh h
ijmn mn im mj im mj pq pqkl pq klg h

R S S P R

l C

C C

σ δ σ δ δ σ δ σ

σ σ σ δ

− − − +

′+ − −

=

−∑
   (23) 

Note the similarity in the algebraic structure of the tangent moduli given by Eqs. (17) and (23), 

the latter being affected by regularization through the components ( ) 1
: :gh hg h h gP kδ

−
= + R C R  

and h h h
pq pqR k R′ = , in which the regularization function hk  is given by Eq. (20). Once again, the 

resulting tangent modulus (23) has none of the minor or major symmetries. 
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For validation purposes, it has been verified that the results obtained with this regularization 

procedure are quasi-identical to the reference results given by the conventional slip system selection 

methods (see Franz et al. (2009a,b) for more details). 

Note that other approaches in the literature round off the corners of the yield surface, which 

results in a regular form of Schmid’s law and eliminates the ambiguity in the determination of 

active slip systems (Arminjon 1991; Gambin, 1991, 1992). See also Peeters et al. (2001) for an 

anisotropy-based approach. Although these regularization methods result in a slight deviation from 

Schmid’s law, this deviation is outweighed by their benefits in terms of computational efficiency.  

Similarly to other approaches, the regularization method that we proposed also has parameters 

whose values need to be determined. To this end, a parametric study has been carried out to model a 

threshold (step function) while avoiding the numerical problems inherent to the use of sharp 

functions (Lorrain, 2005; Franz, 2008). Comparisons with reference results pertaining to active slip 

systems for single crystals with different initial orientations (Nesterova et al., 2001) have 

demonstrated the validity of the proposed methodology (Franz et al., 2009a). 

Finally, the single crystal hardening law allows the evolution of critical resolved shear stresses to 

be expressed in terms of slip rates of active slip systems by introducing the hardening matrix that 

defines self-hardening and latent hardening. The expression of such a law, already anticipated 

through Eq. (12), requires a description of hardening based on dislocation interactions in relation to 

their creation, storage and annihilation (Franciosi, 1984; Tabourot, 1992), as shown below: 

 0
1

gln
g g gh h
c

h

b aτ τ αμ ρ
=

= + ∑         (24) 

where 0
gτ  is the initial critical shear stress, α  is a constant related to the stability of the dislocation 

configurations, μ  is the shear modulus, b  is the magnitude of the Burgers vector, gha  is the 

anisotropy interaction matrix, and hρ  is the mean dislocation density for slip system h . The 

anisotropy interaction matrix introduced by Franciosi (1984) and expanded by Hoc (1999) will be 

used, in which the different components are defined by nine parameters depending on the nature of 

the dislocation interactions (e.g., coplanar or collinear systems…). 

The evolution of the dislocation densities without a specified annihilation mechanism has been 

modeled by Kocks (1976); the annihilation of close dislocations was first considered by Essmann 

and Mughrabi (1979), leading to a law of the following form: 

 
1 1

2g g g
cg

y
b L

ρ ρ γ⎛ ⎞= −⎜ ⎟
⎝ ⎠

� �         (25) 

where cy  is the critical annihilation distance of the dislocations and gL  is the mean free path of the 

dislocations on the slip system g  given by 
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ρ
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∑
        (26) 

where D  represents the average grain size and 0g  corresponds to a parameter related to the 

dislocation storage. Note that Eq. (26) suggests that the value to assign to parameter D  should 

depend, in the case of single crystals, on whether the specimen size is larger or smaller than the 

maximum mean free path of dislocations; while for polycrystalline aggregates, this should depend 

on whether the average grain size is larger or smaller than the maximum mean free path of 

dislocations. Accordingly, for single crystals, D  will be given the value of the specimen size if the 

latter is larger than the maximum mean free path of dislocations; otherwise, D  will be given the 

value of the maximum mean free path of dislocations. For polycrystalline aggregates, D  will be 

given the value of the average grain size if the latter is larger than the maximum mean free path of 

dislocations; otherwise, D  will be given the value of the maximum mean free path of dislocations. 

Differentiating Eq. (24) and using Eq. (25), the hardening matrix is expressed as 

 

1

1
2

2 gl

gh gh h
chn gk k

k

H a y
La

αμ ρ
ρ

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

      (27) 

For the time integration of the single crystal constitutive equations developed in this section, 

several explicit time integration schemes of different orders have been assessed. Based on this 

comparison, we have selected the fourth-order Runge–Kutta algorithm, which is more accurate than 

the other explicit schemes tested (i.e., forward Euler and second-order Runge–Kutta). Compared to 

iterative implicit schemes, this choice has been motivated by its straightforward implementation and 

the intended applications within the current study. Furthermore, this choice is particularly justified 

for the simulation of linear or sequential loading paths and for localization analyses along such 

simple loading paths. To preserve the accuracy of the simulation results, the loading increments are 

kept sufficiently small and an adaptive time step is used during abrupt stiffness changes, which 

correspond to the transition from an elastic regime to a plastic regime when changing loading paths. 

Note that the above model has been validated by comparison with results reported in the 

literature (Lorrain, 2005; Franz et al., 2009a). These results correspond to different Fe and Fe–Si 

single crystals with a cubic centered structure, various initial orientations, and undergoing linear 

strain paths (tensile test, shear test …) and sequential loading paths (Bauschinger test) (Rauch, 

1998; Keh and Nakada, 1967; Pollnow et al., 1972). For each material, the initial orientation given 

by the Euler angles is required, in addition to four material parameters, the average grain size D , 

parameter 0g , which is related to the mean free path of dislocations, the critical annihilation 

distance of dislocations cy , and the initial critical shear stress 0
gτ . For single crystals, comparisons 

between the simulation results and experiments have been found to have good agreement for a wide 

range of linear and sequential loading paths and various initial orientations (Lorrain, 2005). 
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2.2. Self-consistent scale transition and polycrystalline behavior 

The aim of the scale transition is to estimate the overall behavior of polycrystalline aggregates 

from knowledge of the behavior of their individual constituents. The scale transition is typically 

performed using mean field approaches to seek approximations for the instantaneous moduli of 

polycrystals as functions of their constituent grains moduli. These averaging processes also seek to 

account for interactions between the grain and its neighborhood within the polycrystal, which must 

result in a compatible overall deformation. 

A significant amount of work has been dedicated to this subject (Voigt, 1889; Sachs, 1928; 

Reuss, 1929; Boas and Schmid, 1934; Taylor, 1934, 1938). In Taylor (1938), a scheme for rigid–

plastic models was proposed, which was later generalized by Bishop and Hill (1951a,b). Lin’s 

approach (Lin, 1957, 1971) generalized Taylor’s scheme by including elasticity effects. The 

development of self-consistent schemes (Hershey, 1954; Kröner, 1958, 1961; Budiansky and Wu, 

1962) and the key contributions of Budiansky (1965) and Hill (1965a,b) were significant 

advancements in the field. A detailed presentation of three major averaging techniques, attributed to 

Lin, Budiansky–Kröner–Wu and Hill, was given by Hutchinson (1970), who showed that Hill’s 

self-consistent scheme yields a less stiff overall response. The development of this self-consistent 

scheme was pursued in more recent contributions by Berveiller and Zaoui (1979) and Weng (1980). 

All of the descriptions discussed above pertain to the small-strain framework. The case of 

polycrystals undergoing large strains was considered later with the fundamental work of Hill 

(1972), which established the adequate framework and proposed the pioneering directions. Within 

large-strain elasto-plasticity, the shape of individual grains changes with plastic flow, and the lattice 

orientation is affected by rotations resulting in texture development. Iwakuma and Nemat-Nasser 

(1984) proposed a general large-strain elastic–plastic formulation for polycrystalline aggregates 

composed of single crystals deforming by lattice distortion and crystallographic slip. This approach 

is based on the averaging theorems proposed by Hill and on the calculation of Green’s functions for 

incremental strains applied to a polycrystal. In this contribution, the rate problem is formulated in 

terms of the nominal stress rate, which allows for the estimation of the associated instantaneous 

moduli linking the overall nominal stress rate to the corresponding macroscopic velocity gradient. 

Note that the application of this description (Iwakuma and Nemat-Nasser, 1984) was restricted to 

the case of double slip (i.e., only two active slip systems are considered) for polycrystals under 

uniaxial loading. These approaches were further developed by Lipinski and Berveiller (1989), who 

did not place any restrictions on the number of active slip systems. In the current study, this well-

known scheme will be used to derive the macroscopic behavior from knowledge of the behavior at 

the microscale and the microstructure (including texture) of the representative volume element. 
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Only the main points are outlined below, and the detailed derivations can be found in earlier 

references (Lipinski and Berveiller, 1989; Lipinski et al., 1995; Franz et al., 2009a). 

As mentioned before, efforts to formulate the local behavior in terms of adequate work conjugate 

variables (nominal stress rate – velocity gradient) will simplify the scale transition. As suggested by 

Hill (1972), this choice reduces the homogenization procedures to simple volume average rules, 

similarly to the small-strain framework. In addition, due to the implicit and incremental nature of 

the integral equation resulting from this homogenization scheme, the hypoelastic form of the local 

constitutive law is particularly well adapted. By expressing the macroscopic behavior law, linking 

the macroscopic nominal stress rate N�  to the macroscopic velocity gradient G  via the macroscopic 

tangent modulus L , in the same incremental form as that of the single crystal (15), one obtains 

 :=N L G�           (28) 

where the macroscopic fields are defined as the volume averages of their microscopic counterparts: 
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Then, the following fourth-order concentration tensor must be introduced to obtain a systematic 

expression of the macroscopic tangent modulus: 

 ( ) ( ) :=g x A x G          (30) 

Under these conditions, it is easy to show that the macroscopic tangent modulus is given by 

 ( ) ( ) ( ) ( ) 1 : :
V

V dv= =∫L l x A x l x A x       (31) 

At this stage, it is commonly assumed that for each individual grain, the behavior and mechanical 

fields are homogeneous. For a given grain I  of volume IV , an indicator function Iθ  is defined by 
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leading to 
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where Ig  and Il  are the volume average for grain I  of the velocity gradient and the tangent 

modulus, respectively, and Ng  is the number of grains within the polycrystalline aggregate. 
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The derivation of the concentration tensor A  is not a trivial task and requires rather elaborate 

mathematical development. To this end, detailed formulations can be found in the literature 

(Berveiller and Zaoui, 1979; Fassi-Fehri, 1985; Berveiller et al., 1987; Lipinski et al., 1995), and 

only the main lines are summarized below. First, field equations (quasi-static equilibrium, 

compatibility and boundary conditions) are combined, making use of Green’s tensor techniques to 

transform the problem into an integral equation; see Dederichs and Zeller (1973) and Berveiller and 

Zaoui (1984) for the small-strain framework and Lipinski and Berveiller (1989) for finite 

deformations. In that process, a reference fictitious homogeneous medium is introduced. Note that 

within the large-strain framework, the Lamé operator involved in these derivations is not self-

adjoint due to the lack of symmetry of the local and overall tangent moduli. Nevertheless, the 

construction of the integral formulation is still possible using the adjoint operator of the Green 

tensor, as suggested by Willis (1988). From these formal developments, and to obtain expressions 

that are of practical use, the remaining derivations lie in the appropriate choice for the reference 

homogeneous medium and some simplifications for the integral equation, such as the so-called 

Born approximation. Finally, by decomposing the modified Green tensor into local and non-local 

parts and employing some convenient properties (Lipinski and Berveiller, 1989; Lipinski et al., 

1995), the concentration tensor IA  for grain I  can be written as 

 ( )( ) ( )( )
1

1 1
: : :I II I II I

−− −
= − − − −A I T l L I T l L      (34) 

where IIT  is the interaction tensor for grain I , which is related to Eshelby’s tensor (Eshelby, 1957) 

for an ellipsoidal inhomogeneity. Explicit expressions for tensor IIT  can only be found for isotropic 

media; for general anisotropy, such as in the proposed model, an integral over the ellipsoid is 

obtained using Fourier’s transforms (Fassi-Fehri, 1985; Berveiller et al., 1987), and its numerical 

evaluation is achieved by means of Gauss–Legendre quadrature. For a polycrystalline aggregate 

comprising Ng  grains with a respective volume fraction If , the one-site self-consistent expression 

corresponding to the self-consistent scheme in the sense of Hill (1965a) can be finally obtained as 

 
1

 :
Ng

I I I

I

f
=

=∑L l A          (35) 

The expression of this effective modulus as presented in Eqs. (34) and (35) reveals an implicit 

character because IIT , ( )I IΔ = −l l L  and thus IA  depend on the yet-unknown modulus L . An 

iterative procedure is required to conjointly solve Eqs. (34) and (35). In our computational 

procedure, we adopted an iterative scheme that converges within a few iterations. 

Note that the classical full-constraint Taylor model can be derived as a special case of the self-

consistent scheme by considering that the deformation within each grain is equal to the macroscopic 
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deformation. This amounts to taking a concentration tensor equal to the fourth-order identity tensor, 

which leads to an effective modulus simply given by the volume average of the microscopic moduli. 

In the same manner as for the time integration of the local constitutive law discussed in the 

previous section, much attention was paid to computational considerations to avoid affecting the 

accuracy of this advanced physically based model through its numerical implementation. The 

choice of the explicit fourth-order Runge–Kutta algorithm for the time integration of the local 

constitutive law was motivated by a compromise in terms of efficiency, accuracy, and convergence. 

These important considerations related to the time integration of constitutive equations have been 

widely investigated in the literature (Hughes, 1984; Simo and Taylor, 1985; Ortiz and Popov, 1985; 

Kim et al., 2008; Sánchez et al., 2008; Becker, 2011), and the respective benefits and drawbacks of 

various implicit and explicit time integration schemes in terms of accuracy, stability, robustness, 

and efficiency have been discussed. For constitutive equations with numerous internal variables, 

implicit integration procedures are often avoided, and explicit schemes are adopted instead. In such 

situations, implicit schemes require a large linear algebraic system to be solved by means of 

successive iterations involving the inversion of large matrices, which can substantially affect the 

efficiency and even the convergence. A previous study on the time integration of advanced elastic–

plastic constitutive models with large numbers of internal variables, yet phenomenological (Haddag 

et al., 2007), confirms that adequate alternatives would involve either reducing the size of the 

nonlinear system to be solved (whenever possible) or adopting an explicit time integration scheme. 

A last point in this section concerns the evaluation of the self-consistent scheme presented above 

and the validation of the developed polycrystalline model. This validation was conducted on a 

selection of single-phase ferritic and dual-phase ferritic–martensitic steels having significantly 

different microstructures and mechanical characteristics. The experimental results that served as 

references for comparison were provided by ArcelorMittal. The complete data (chemical 

compositions, mechanical characteristics, etc) for these steels can be found in Lorrain (2005) and 

Franz (2008). For representativeness, a few thousand grains are considered systematically, with 

their initial crystallographic orientations obtained by means of the orientation distribution function 

(ODF). As mentioned previously, the identification of four parameters relative to the single crystal 

modeling is required (the initial critical shear stress 0
gτ , parameter 0g , which is related to the mean 

free path of dislocations, the critical annihilation distance of dislocations cy , and the average grain 

size D ). The average grain size can be easily identified using optical micrography. To identify the 

three other parameters, two mechanical tests are used: a uniaxial tensile test or simple shear test and 

a reverse shear test. The validation campaign was carried out on a wide range of tests, including 

rheological stress–strain responses, yield surfaces, texture evolution, and Lankford coefficients. The 

available mechanical tests included direct strain paths (uniaxial tensile test, simple shear test, plane 
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strain tensile test, biaxial tensile test, and balanced biaxial tensile test) in different directions with 

respect to the rolling direction, as well as sequential strain paths (i.e., Bauschinger test, orthogonal 

test …). Comparisons in terms of the stress–strain responses, yield surfaces, texture evolution, and 

Lankford coefficients have shown good agreement between the experimental and modeling results. 

For conciseness, only some of the illustrative validation examples will be shown in the subsequent 

sections, which are dedicated to the application of the model and a discussion of the results. The 

complete validation can be found in Lorrain (2005) and Franz (2008). 

3. Rice’s bifurcation approach and the criterion of loss of strong ellipticity 

In this section, the Rice localization criterion is first developed based on the bifurcation approach 

by providing the main lines of its formulation, the underlying assumptions, and the various tangent 

moduli necessary for its application. Unlike most of the available reports, in this study, we choose 

to express this criterion with respect to a fixed reference configuration and only adopt the updated 

Lagrangian approach once the criterion is completely established. Such a presentation is believed to 

afford more clarity, and it allows more flexibility in terms of application, as the reference 

configuration can be chosen rather freely. This choice is also motivated by the adopted large-strain 

framework, for which the expression of equilibrium equations relative to a fixed configuration is 

more suitable to bifurcation analyses because the rate (incremental) form of the equilibrium 

equations can then be obtained in a more systematic manner. 

3.1. Rice’s localization criterion 

The theoretical foundations of this approach were established early on by Hadamard (1903) for 

elastic solids and then extended to elastic–plastic solids by Thomas (1961), Hill (1962) and Mandel 

(1966). In the approach adopted by Hill (1962), the conditions under which the equations governing 

the rate boundary value problem cease to be elliptic are sought (see also Hill and Hutchinson, 1975; 

Needleman and Tvergaard, 1977). Equivalently, we seek the possibility of bifurcation from a 

homogeneous deformation state towards a state that overlaps a localization band. As specified by 

Rudnicki and Rice (1975), this condition corresponds to the onset or incipience of bifurcation. 

Let us consider a solid subjected to a loading path corresponding to a homogeneous deformation 

state. The kinematics and equilibrium equations will be first described relative to a fixed reference 

configuration that may represent the initial state (see, e.g., Saje et al., 1982); the case where the 

reference configuration is taken to be equal to the current state will be discussed later (see, e.g., 

Yamamoto, 1978). The appropriate work conjugate variables are then the Lagrangian gradient of 

deformation F  and the first Piola–Kirchhoff stress tensor B  (defined here following Truesdell and 
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Noll (1965), i.e., T=B N ; while its definition in Malvern (1969) is the transpose of that adopted 

here). Assume that at a certain point along the loading path, the homogeneous fundamental path 

allows a bifurcation for the first time. At this incipient bifurcation state, the mechanical fields B  

and F  are still homogeneous, but their rates may reveal heterogeneity. The latter manifests itself as 

a jump or discontinuity across the surface delimiting the band, as illustrated in Fig. 2. 

Because compatibility requires the velocity field v  to remain continuous along the discontinuity 

surface, the jump of its gradient = ∇F v� , by virtue of Maxwell’s theorem, must take the form: 

 0 0b ⊗= − =F F F� �
� �� �

�� � � C N         (36) 

where 0
N  is the unit vector normal to the band in the reference configuration. Vector 

0 0= ⋅F� �
� �� �

� �C N  must be non-zero for effective bifurcation, and it defines the localization mode. 

The second required condition is that of the stress equilibrium along the discontinuity surface: 

 0 0 0    b ⇔⋅ = ⋅ ⋅ =B B B 0� �
� �� �

� � �N N N       (37) 

Assume now that the constitutive law is written as 

 :=B F� �L           (38) 

This form will be derived later from the expression :=N L G� , involving the nominal stress N  

and Eulerian velocity gradient G , given in Section 2.2, Eq. (28). Combining Eqs. (36–38) yields 

 { } ( ){ }0 0 0  0: :b b⊗ −⋅ = ⋅F� �L C N N L L N      (39) 

Considering that at the onset of bifurcation, the tangent modulus, which depends on the current 

state of stresses and internal variables, is continuous (i.e., � �  b= − = 0L L L ), then one obtains 

 { }0 0 0: ⊗ ⋅ = 0�L C N N         (40) 

If we denote by  T
L  as the fourth-order tensor obtained from L  by permutation of the two first 

indices i  and j  (i.e.,  T
ijkl jikl= LL ), then condition (40) can be expressed in indicial notation as 

 ( ) ( )  0 0 0 0 0 00    T T
i ijkl l k ⇔= ⋅ ⋅ ⋅ = 0� �N N CL N L N C     (41) 

and a necessary condition for a non-trivial solution (i.e., non-zero jump, 0 ≠ 0�C ) is 

 ( ) 0 0det 0T⋅ ⋅ =N L N         (42) 

Condition (42) corresponds to Rice’s bifurcation criterion, expressed relative to a fixed reference 

configuration, and it amounts to seeking the singularity of the acoustic tensor  0 0T= ⋅ ⋅Q N L N . 
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The expression of modulus  T
L , or similarly L , which has been left aside thus far, can be 

obtained from the relation :=N L G� . The latter was expressed in the previous section relative to the 

current configuration; with respect to the reference configuration, the expression can be written as 

( ) 

: :J J
Τ−1 −1 −1⋅ ⋅ ⋅= =N F L G F L F F� � . Comparing this last expression with Eq. (38), which can be 

rewritten as  :T=N F� �L , the relationship between the tangent moduli T
L  and L  can be deduced as 

 
 

 T J
Τ−1 −1⋅ ⋅= F L FL          (43) 

It is sometimes more convenient to take the current state as reference configuration. For 

computational considerations, it may be easier to check the localization criterion on the current 

state, which requires the expression of the criterion relative to that configuration. To do this, the 

easiest way is to reconsider Eq. (42) taking the current state as reference (i.e., updated Lagrangian 

approach). In this case, =F 1 , which yields  T = LL  from (43), and the criterion becomes 

 ( )det 0⋅ ⋅ =LN N          (44) 

In this last equation providing the Rice criterion with respect to the current configuration, N  

denotes the unit vector normal to the localization band in the current state. It is related to the normal 

in the undeformed configuration via Nanson’s relation ( )
0 0

0 0T

S S

dS dS
J J

d d
−1 −1⋅ ⋅= =F FN N N , in 

which 0dS  and Sd  are the area elements in the reference and current configurations, respectively. 

Another straightforward way to derive Eq. (44) is by substituting in Eq. (42) the tangent modulus 

 T
L  and the normal 0

N  by their expressions from Eq. (43) and Nanson’s relation, respectively. 

3.2. Strong ellipticity condition 

Another localization condition that was suggested and used by several authors is the loss of 

strong ellipticity (Bigoni and Hueckel, 1991; Neilsen and Schreyer, 1993). Because Rice’s 

bifurcation corresponds to a loss of ellipticity, this strong ellipticity condition is expected to be 

more conservative than Rice’s bifurcation exclusion. As discussed later, based on the analysis of 

eigenvalues of the tangent moduli that enter into play, the strong ellipticity condition is effectively 

more conservative than Rice’s bifurcation exclusion. In other words, the singularity of the acoustic 

tensor cannot occur before the loss of strong ellipticity, and as a consequence, the limit strains 

predicted by Rice’s criterion are always slightly higher than those determined by the loss of strong 

ellipticity (i.e., localization is slightly delayed with Rice’s discontinuous bifurcation criterion). 

A substantial amount of work has been conducted to investigate the localization predictions 

resulting from the condition of loss of strong ellipticity. Analytical formulas for the critical 
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hardening moduli associated with localization have been sought mainly within the small-strain 

framework. For the associative plastic flow rule, we can cite the work of Bigoni and Hueckel 

(1990). For non-associative plasticity, the developments of Bigoni and Zaccaria (1992a,b) are 

notable. Finally, interesting analyses and analytical derivations of the critical hardening moduli 

associated with the condition of loss of strong ellipticity have been carried out when anisotropy 

only originates from the fourth-order elasticity tensor (Rizzi and Loret, 1997; Loret and Rizzi, 

1997a) or when both elasticity and plasticity are anisotropic (Loret and Rizzi, 1997b). 

Justification for the use of the condition of loss of strong ellipticity as a bifurcation criterion is 

closely related to the sufficient condition for uniqueness given by Hill (1958). This necessary 

condition for the loss of uniqueness was subsequently referred to as the general bifurcation criterion 

or more commonly as the loss of positiveness of the second-order work. Note that the satisfaction of 

this version of Hill’s condition for uniqueness excludes the possibility of any type of bifurcation 

(diffuse or localized) and thus appears as a lower bound for all of the bifurcation criteria discussed 

in this study. It can be written locally as 

 : 0>B F � �           (45) 

The designation ‘general bifurcation’ for Hill’s criterion, as opposed to the discontinuous 

bifurcation described by Rice, is explained by the fact that the loss of positiveness of the second-

order work, by violation of condition (45), mainly predicts diffuse bifurcation modes, while 

discontinuous (localized) modes are predicted in Rice’s approach. Eq. (45) clearly shows that there 

is no restriction on the velocity gradient F�  and thus the associated deformation mode. Thus, 

condition (45) will detect diffuse localization modes unless constraints related to the applied 

loading and prescribed boundary conditions prevent any diffuse bifurcation mode. When diffuse 

necking is excluded by applied loading or prescribed boundary conditions (see, e.g., Rice, 1976), 

Hill’s criterion will primarily detect localized modes in the same manner as Rice’s bifurcation 

criterion or the condition of loss of strong ellipticity. Using the elastic–plastic behavior law 

expressed by relation (38), Eq. (45) can be equivalently rewritten as 

 : : 0,     > ∀ ≠F F F 0� � �L         (46) 

which amounts to the condition of positive-definiteness of the elastic–plastic constitutive modulus 

L ; the latter condition being classically equivalent to the condition of positive eigenvalues for the 

symmetric part  s
L  of L , defined as ( ) s 2ijkl ijkl klij= +L L L . 

If we restrict the condition of positive-definiteness (46) to the localized deformation modes (i.e., 

those satisfying the compatibility condition 0 0⊗=F� M N ), then the strong ellipticity condition is 

recovered as follows: 
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 0 0 0 0 0 0,: : 0,     ⊗ ⊗ > ∀ ≠  0M N L M N M N      (47) 

It is then clear that the general bifurcation exclusion (Eq. (46)) is more conservative than the 

strong ellipticity condition (Eq. (47)) because in the former, the condition of positive-definiteness 

for the constitutive tensor is required on a larger vector space. This provides a mathematical 

interpretation of what is commonly observed experimentally, namely that diffuse necking occurs 

prior to localized necking. Other interpretations that present localized and diffuse modes in terms of 

bifurcations associated with compatible and incompatible deformation, respectively, can also be 

found in the literature (Neilsen and Schreyer, 1993). It has been shown that a bifurcation mode 

associated with incompatible deformation may only appear in a zone of measure zero of the solid 

(i.e., at the boundary), while a localized mode occurs in the interior of the solid. 

It is also important to compare the strong ellipticity condition with Rice’s criterion for exclusion 

of discontinuous bifurcation. To this end, Eq. (47) can be conveniently rewritten using modulus 

 T
L , which was previously defined as  T

ijkl jikl=L L ; one obtains 

 ( ) 0 0 0 0 0 0,0,     T⋅ ⋅ ⋅ ⋅ > ∀ ≠  0M N L N M M N     (48) 

The acoustic tensor, denoted  0 0T= ⋅ ⋅Q N L N , as discussed previously, is then revealed by 

Eq. (48). In other words, the strong ellipticity condition is equivalent to the positive-definiteness of 

the acoustic tensor (or more precisely of its symmetric part), which equivalently amounts to 

verifying the positiveness of the eigenvalues of the second-order tensor s
Q , which is defined as 

( ) 2s T= +Q Q Q . Because it is mathematically shown that the real parts of the eigenvalues for a 

given tensor are bounded by the smallest and largest eigenvalues of its symmetric part, it is clear 

that the strong ellipticity condition is more conservative than Rice’s criterion for exclusion of 

discontinuous bifurcation. In other words, the singularity of the acoustic tensor cannot occur before 

the loss of strong ellipticity, and thus, localization predictions based on the loss of strong ellipticity 

are generally more conservative than those associated with Rice’s criterion (i.e., loss of strong 

ellipticity predicts earlier localization as compared to Rice’s bifurcation criterion). 

However, it is interesting to note that in the framework of small strains and associative plasticity, 

the tangent modulus that enters the expression of the acoustic tensor has the major symmetry. This 

implies that the acoustic tensor is symmetric and thus only has real eigenvalues. In such conditions, 

the strong ellipticity condition (positive-definiteness of the symmetric part of the acoustic tensor) 

and Rice’s bifurcation exclusion (non-singularity of the acoustic tensor) are equivalent. 

In the same manner as before, the above derivations for the general bifurcation criterion and 

strong ellipticity condition have been expressed relative to the initial undeformed configuration. 
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Their expressions with respect to the current deformed configuration are easily obtained using the 

updated Lagrangian concept. In the latter approach, the strong ellipticity condition can be written as 

 ( ) ,0,     ⋅ ⋅ ⋅ ⋅ > ∀ ≠L   0N NM M M N       (49) 

where L  is the tangent modulus relating the nominal stress rate N�  to the velocity gradient G  (see 

Eqs. (15) and (28)). We thus recognize the condition of positive-definiteness of the symmetric part 

of the acoustic tensor, which can be compared in the same manner to the condition of singularity of 

the acoustic tensor (see Eq. (44)). 

Summarizing the comparison of the three above-discussed criteria, it has been shown that the 

general bifurcation criterion (Eqs. (45) or (46)), which primarily predicts diffuse modes, is the most 

conservative of the three criteria, and the second most conservative criterion is associated with the 

strong ellipticity condition (Eqs. (47), (48) or (49)), which predicts localized modes. Finally, the 

least conservative criterion appears to be Rice’s bifurcation criterion, which is associated with the 

loss of ellipticity and predicts shear band localization (see Eqs. (42) or (44)). Considering that a 

more conservative criterion predicts earlier plastic instability, the critical strains predicted by Rice’s 

bifurcation criterion represent an upper bound for the three above-discussed criteria. Because it is 

now widely recognized that the critical strains limiting sheet metal formability are those associated 

with plastic strain localization, our focus in the following sections will be confined to the two 

localization criteria given by the loss of strong ellipticity and Rice’s discontinuous bifurcation. 

4. Prediction of ductility limits for single crystals and polycrystals 

In this section, the previous developments will be applied to the investigation of ductility limits 

for single crystals and then polycrystalline aggregates. As reported by Iwakuma and Nemat-Nasser 

(1984), during plastic flow in polycrystals undergoing large deformations, individual grains may 

reach various geometries and orientations resulting in the local loss of stability within some grains 

well before the attainment of the overall instability condition characterized by strain localization. 

Although the instability condition may be reached in some grains, the stresses imposed by other 

neighboring grains maintain the overall response stable up to a higher level in the loading process. 

During this process, an increasing number of grains will become locally unstable until the overall 

localization of the plastic flow manifests itself. 

Because the main objective of this study is to predict the loss of strong ellipticity and loss of 

ellipticity for the overall response with maximum accuracy, considerable attention has been paid to 

the most important softening effects within the proposed modeling. Several possible sources of 

softening are effectively included in the constitutive modeling. For instance, considering the 

crystallographic lattice rotation for each grain in the course of the macroscopic loading applied to 
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the polycrystal may contribute to promoting overall instability. Moreover, the adopted hardening, 

which accounts for dislocation annihilation, introduces another softening effect that should be 

favorable to localization. Likewise, the possibility of multi-slip, which is a characteristic of crystal 

plasticity in relation to the yield surface vertex formation, is another key parameter in the prediction 

of localization. The convective terms of stresses, which are induced by the large-strain framework, 

may also have a non-negligible effect. Finally, textural softening and induced anisotropy (both 

crystallographic and morphological) are also taken into account and should play an important role 

in the analysis (see, e.g., Zhao et al., 2008; Kobayashi, 2010; Shanthraj and Zikry, 2012). 

Note that the application of Rice’s localization analysis to the prediction of forming limit 

diagrams for polycrystalline steels has already been carried out in some of our earlier works (see, 

e.g., Franz et al., 2009a,b). The aim of this study is to disclose the impact of microstructural 

parameters on the ductility limit of such materials. Because the developed predictive tool is partly 

intended to help design steels with improved ductility properties, the analysis of the effect of certain 

physical material parameters may prove to be particularly informative. 

4.1. Prediction of strain localization for single crystals 

In this section, we reconsider the single crystal constitutive equations developed in Section 2 by 

coupling them with the bifurcation analysis detailed in Section 3. Although the prediction tool 

developed here is primarily intended for polycrystalline materials, its preliminary application to the 

localization analysis of single crystals aims to verify the expected general trends and validate the 

approach with regard to the main expected effects. Thus, we start by investigating the effect of 

certain physical mechanisms on the ductility limit of single crystals with parameters 0
gτ , cy , and 

0g , which denote, the initial critical shear stress, critical annihilation distance of dislocations, and 

parameter related to the mean free path of dislocations, respectively. Because some effects may 

have been inhibited or considerably reduced through the scale-transition scheme, analyzing them 

before and after this averaging process was perceived to be important. Moreover, to confirm the 

general trends regarding the effect of these physical parameters, two different scale-transition 

schemes will be applied and compared, namely the self-consistent approach and the full-constraint 

Taylor model. To begin with, the condition of singularity of the acoustic tensor and that relating to 

the loss of positive-definiteness of its symmetric part are analyzed for the single crystal. The 

acoustic tensor associated with the single crystal is written as 

 = ⋅ ⋅lQ N N           (50) 

where l  is the single crystal tangent modulus given in Eqs. (15) and (23), relating the nominal 

stress rate n�  to the velocity gradient g . 
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The theoretical application of Rice’s bifurcation criterion and the condition of loss of strong 

ellipticity should be undertaken in the following manner: at every point of a given loading path, one 

checks the condition of the singularity of the acoustic tensor and the condition of the loss of 

positive-definiteness of the symmetric part of the acoustic tensor for all possible unit normal 

vectors. In practice, this normal N  is defined using two angles 1θ  and 2θ  in three-dimensional 

space, both angles are discretized here with an angular increment size of 1°, and a systematic search 

is performed over all of the corresponding orientations in the discretized space. When one or the 

other of these criteria is satisfied at a given point of the considered loading path, the corresponding 

state of deformation is recorded, which provides the limit strains, while the associated normal 

vector provides the three-dimensional orientation of the localization band. 

Note that in these theoretical localization criteria, diffuse necking, which may occur in 

experiments before localized necking, is not taken into account. Accordingly, the boundary value 

problem is set in such a way that diffuse necking does not arise. In other words, the conditions of 

homogeneous deformation until localization are imposed (i.e., no structural/geometric effects are 

considered). In the literature (see, e.g., Saje et al., 1982), this can be obtained by prescribing all-

around displacement boundary conditions, so that necking modes are ruled out. In our approach, 

which is commonly followed in FLD analyses, we only consider a single material point to which 

various loading paths are applied in order to reproduce the traditional loading paths that are required 

to determine FLDs. This also amounts to considering a single finite element, with a single 

integration point, which guaranties a uniform state of deformation until localization is detected. The 

motivation behind these conditions of uniform pre-localization state is to allow consistency with the 

bifurcation criteria, in which bifurcation is assumed to initiate from a uniform deformation state. 

For a single crystal with the initial crystallographic orientation (ND)[RD]=(5 -12 -10)[2 0 1], as 

given in Table 1 and illustrated in Fig. 3, and with the material parameters listed in Table 1, in 

which parameter D  is taken to be equal to the smallest dimension of the sample, uniaxial tensile 

loading paths will be applied in different directions with respect to the rolling direction (RD), and 

the effect of certain physical parameters on the ductility limit will be investigated. It is worth noting 

that the complete validation of the proposed single crystal constitutive modeling was achieved 

through a comparison with experimental results for linear and sequential loading paths for single 

crystals with various initial crystallographic orientations (Lorrain, 2005). However, the current 

investigation of the impact of certain physical parameters on the ductility limit of single crystals 

should be viewed as a qualitative analysis, as no comparison data are available for such an analysis. 

In the process of searching for the minimal value of the determinant of the acoustic tensor, it was 

observed that this function had abrupt variations with respect to the normal direction and revealed 

several local minima. The same observations apply to the minimal eigenvalue of the symmetric part 



  

 26

of the acoustic tensor. Thus, in this minimization process, we have chosen to discretize the entire 

space of orientations for the normal to the localization band, which, although time consuming, 

appears to be a secure way to determine the global minimum. For single crystals with special initial 

orientations, the well-known results regarding the orientation of the localization band in the uniaxial 

tensile test are recovered (Lorrain, 2005). However, the orientation of the normal defining this 

localization band as well as the corresponding limit strains are found to be strongly dependent on 

the initial orientation of the single crystal, whose behavior is highly anisotropic due to its initial 

crystallographic orientation and its evolution. 

The effect of the initial critical shear stress is illustrated in Figs. 4 and 5. In this preliminary 

analysis, all of the parameters in Table 1 are held constant except the initial critical shear stress 0
gτ , 

which is varied to investigate its impact on localization. At the top of Figs. 4 and 5, the stress–strain 

responses for uniaxial tensile tests performed parallel to the rolling direction are given for different 

values of the initial critical shear stress. The end of each stress–strain curve (marked by a cross) 

corresponds to the limit strain associated with localization as predicted by one or the other criterion. 

At the bottom of Fig. 4, the minimal value of the cubic root of the determinant of the acoustic tensor 

over all of the orientations for the normal to the localization band is plotted as a function of the 

strain for different values of the initial critical shear stress. Likewise, at the bottom of Fig. 5, the 

minimal value of the smallest eigenvalue of the symmetric part of the acoustic tensor over all of the 

orientations for the normal to the localization band is plotted as a function of the strain for different 

values of the initial critical shear stress. One can observe that the minimal determinant initially 

exhibits rapid variation at the elastic–plastic transition and subsequently when localization is 

approached (i.e., when the value of the determinant tends to zero). The same observation applies to 

the minimal eigenvalue of the symmetric part of the acoustic tensor. Larger values for the initial 

critical shear stress (elastic limit) result in reduced ductility for the material. These results 

correspond well with those reported by Luft (1991), who carried out uniaxial tensile experiments on 

single crystals of molybdenum with the same physics for plastic flow as steels. 

Another observation is that the limit strains given by the bifurcation analysis (see Fig. 4) are very 

close to the limit strains obtained from the criterion of loss of strong ellipticity (see Fig. 5). This 

result, which will be further interpreted later, has been observed in all of the parametric studies 

conducted in this section for single crystals with varying parameters. Consequently, for the sake of 

conciseness, only one pair of results yielded by the two criteria are provided here (see Figs. 4 and 

5), while in the remaining of the analysis, the results correspond to those obtained with the 

bifurcation criterion. Note, however, that although the resulting limit strains for the two criteria are 

nearly identical, the evolution of the determinant of the acoustic tensor until the loss of ellipticity 
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differs significantly from the evolution of the smallest eigenvalue of its symmetric part until the loss 

of strong ellipticity (see, e.g., the corresponding evolutions in Figs. 4 and 5). 

Fig. 6 illustrates the effect of the critical annihilation distance of dislocations cy  on the ductility 

limit of single crystals. Materials with low values of critical annihilation distance can store more 

dislocations, thus improving their ductility. Another way to interpret this effect is to examine the 

evolution equations of dislocation densities (Eqs. (25) and (26) in Section 2.1). The mathematical 

structure of these ordinary differential equations suggests that they can be integrated in the form of 

a saturating response when the annihilation term cy  is present. The latter parameter quantifies the 

importance of annihilation and acts as a saturation rate in the same manner as in the Voce isotropic 

hardening law. Thus, larger values of this parameter lead to faster saturation, which has a 

destabilizing effect. In other words, this softening effect, due to dislocation annihilation, contributes 

to the overall softening of the material, thus promoting early plastic strain localization. 

Finally, the effect of a last parameter, 0g , which is related to the mean free path of the 

dislocations, on the ductility limit of single crystals is studied. Fig. 7 reflects this effect and shows 

that larger values of this parameter imply larger values for the mean free path of the dislocations, 

thus reducing the dislocation storage in the material and hence its work-hardening capability, which 

ultimately leads to decreased ductility. Examination of the evolution equations of the dislocation 

densities (Eqs. (25) and (26) in Section 2.1) allows us to interpret this effect again. Parameter 0g  

affects the first term of the right-hand side of Eq. (25), which corresponds to the dislocation storage 

term, whose effect is the opposite of that of the dislocation annihilation term. Thus, an increase in 

parameter 0g  will reduce the dislocation storage term, thus promoting early localization. These 

results indicate that this parameter is a limiting factor for ductility, as shown in Fig. 7. 

To investigate the dependence of strain localization on the single crystal orientation, the analysis 

is repeated with different orientations for the tensile direction. The impact on the predicted limit 

strains of varying the loading direction is analyzed for two other tensile axis orientations: at 45° and 

90° with respect to the rolling direction. Is has been found that the effects of the previously 

investigated physical parameters are consistently reproduced; however, for both loading directions, 

the predicted limit strains have increased. The results are shown in Figs. 8 to 10 for the loading 

direction corresponding to the largest increase in the limit strains (i.e., parallel to the transverse 

direction (TD)), while the 45° direction (not shown here) corresponds to the intermediate values for 

the predicted limit strains. Note that for the tensile test performed parallel to the transverse 

direction, the evolution of the minimal determinant of the acoustic tensor features an intermediate 

increase around a tensile strain value of 0.05 before decreasing again towards zero (see Figs. 8 to 

10). This has also been observed for the loading direction at 45° with respect to RD, yet with a less 
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pronounced peak, which may be attributable to the rotation of the single crystal towards a preferred 

more stable orientation, before experiencing strain localization at a higher strain level. 

As already observed above, in all of these investigations reported in Figs. 4 to 10, the limit 

strains obtained by Rice’s criterion (i.e., singularity of the acoustic tensor) are found to be close to 

those yielded by the loss of strong ellipticity (i.e., the loss of positive-definiteness of the symmetric 

part of the acoustic tensor). This result is understandable when examining the algebraic structure of 

the single crystal tangent modulus (see, e.g., Eq. (23)), revealing that although this tangent modulus 

has none of the minor or major symmetries, the convective stress components responsible for this 

loss of symmetry are small compared to the elasticity tensor. Under these conditions, the resulting 

acoustic tensor and its symmetric part, although distinct, will only differ by components that are 

small compared to the principal part of the acoustic tensor. Whenever this situation is encountered, 

the two criteria, although mathematically different, would provide eigenvalues of the same order of 

magnitude, thus resulting in comparable limit strains. 

Note also that other investigations involving various single crystals with different initial 

orientations have confirmed that the same qualitative effects concerning the above-discussed 

physical parameters are consistently demonstrated (Lorrain, 2005). These aspects, which are closely 

related to microstructure, could be taken advantage of in the design of new steels and particularly in 

the optimization of their properties in terms of formability. 

4.2. Application to the prediction of the ductility limits of polycrystals 

We now consider the case of a polycrystalline material, and we will similarly investigate the 

effect of the same physical and microstructural parameters on the ductility limit. As described 

previously, an initial set of parameters, which is given in Table 2, is selected, and then one 

parameter is varied at a time to investigate each parameter respective impact on ductility. For 

comparison purposes, the two scale-transition schemes discussed in Section 2.2, namely the self-

consistent averaging rule and the full-constraint Taylor model, will be successively applied. 

For this qualitative study, an initial texture defined by 1,000 crystallographic orientations, as 

illustrated by the associated pole figures given in Fig. (11), is selected to reproduce the ferritic 

single-phase steel, denoted IF–Ti, which was previously studied in the validation process of the 

proposed constitutive modeling. Accordingly, the initial set of parameters in Table 2, before any 

variation, corresponds to the material parameters identified for the IF–Ti single-phase steel, which 

will be studied later and include a comparison of its stress–strain responses with experimental tests. 

Applying Rice’s criterion (i.e., singularity of the acoustic tensor associated with the effective 

tangent modulus of the polycrystal) and the condition of loss of strong ellipticity (i.e., the loss of 

positive-definiteness of the symmetric part of the acoustic tensor) reveals the same observations as 
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in the case of single crystals. The determinant of the acoustic tensor and the smallest eigenvalue of 

its symmetric part show strong variations with the normal orientation, although this result is less 

marked than in the case of single crystals, most likely due to the averaging effect, and reveal several 

local minima. Once again, this behavior does not allow the use of conventional efficient 

minimization procedures, and the recourse to the systematic discretization of the orientation space 

for the normal to the localization band appears to be a secure way to detect the global minimum. 

Another noteworthy observation is that, as found in the case of single crystals, the limit strains 

predicted by the two criteria are close due to the small effect of the stress components responsible 

for the loss of symmetry in the single crystal tangent modulus and, by way of the averaging rule, in 

the polycrystal effective tangent modulus. 

Figs. 12 to 15 illustrate the effects of parameters 0
gτ , cy , and 0g  on the ductility limit of the 

polycrystal when applying the self-consistent scale-transition scheme, while Figs. 16 and 17 reflect 

the same parametric study using the full-constraint Taylor model. The same effects are found for the 

uniaxial tensile test and the plane strain tensile test, both having been performed parallel to the 

rolling direction. Consequently, the results will be shown for the plane strain tensile test because the 

associated limit strain corresponds to the lowest point of the FLD, which gives a good indication of 

the overall forming limit and thus the material ductility. It is worth noting that in all of the 

localization analyses reported in Figs. 4 to 10 and Figs. 12 to 17, the bifurcation instability is 

predicted in the positive hardening regime (i.e., before the peak in the true stress–strain curve), in 

contrast to phenomenological flow theories with associative plasticity and smooth yield surface. 

This is made possible here thanks to the yield surface vertex structure inherent in crystal plasticity, 

which arises from the discrete nature of crystalline slip. 

The same trends observed for single crystals are found for polycrystals. An increase in the initial 

critical shear stress (elasticity limit) results in decreased ductility. Figs. 12 and 13 reveal this effect 

with the self-consistent scheme, while Fig. 16 confirms the same trend using the full-constraint 

Taylor model. Note that in the latter case of the Taylor model, the predicted limit strains are 

significantly higher when compared to those predicted by the self-consistent scheme. Also, as 

observed for single crystals, the limit strains predicted by bifurcation analysis in Fig. 12 are very 

close to those given by the criterion of loss of strong ellipticity in Fig. 13. The top of Figs. 12 and 

13 are very similar, while their bottoms display different evolutions of the localization indicators. 

The same applies to Fig. 16, in which Taylor’s averaging rule has been adopted. Because the two 

localization criteria provide almost the same limit strains, only the results of the Rice bifurcation 

analysis will be shown in the remaining of the parametric study. 

For the effect of the critical annihilation distance of dislocations, similar to single crystals, Fig. 

14, corresponding to the self-consistent scale-transition scheme, and Fig. 17 (top), associated with 
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the Taylor model, reflect the same trends. Analogously, larger values for the critical annihilation 

distance of dislocations cy  tend to reduce the overall ductility of the polycrystalline aggregate. A 

noteworthy observation is that, once again, the limit strains predicted by the Taylor model are much 

larger than those provided by the self-consistent scheme. 

Finally, the effect of parameter 0g , which is related to the mean free path of the dislocations, on 

the ductility limit of polycrystals is illustrated in Fig. 15, using the self-consistent scheme, and in 

Fig. 17 (bottom), with the Taylor model. These findings suggest conclusions quite similar to those 

for single crystals, namely an increase in the mean free path of the dislocations reduces the overall 

ductility of the polycrystalline aggregate. Consistent with the previous analyses, the Taylor model 

predicts limit strain levels sensibly higher compared with those given by the self-consistent scheme. 

Another observation from the above parametric studies is that the strain spacing between 

consecutive curves at the point of localization seems to be more regular in the case of single crystals 

(see Figs. 4 to 10) than for polycrystals (see Figs. 12 to 17). This is likely attributable to the fact that 

only one single local tangent modulus is involved in the acoustic tensor associated with a single 

crystal, while some thousand microscopic tangent moduli enter into play in the case of 

polycrystalline aggregates. The latter tangent moduli may differ significantly from grain to grain, 

exhibiting high contrast in their components due to texture evolution, which results in a rather 

complex evolution for the minimal value of the determinant of the polycrystal acoustic tensor over 

all orientations for the normal to the localization band. It is also found that this evolution is less 

regular in the case of the Taylor model than for the self-consistent scheme, most likely due to the 

corresponding averaging rule (i.e., simple volume average of the microscopic tangent moduli). 

To summarize, it is shown that the localization analyses conducted for single crystals in the 

previous section can be extended in the same way to polycrystals. It follows that the investigation of 

the impact of physical material parameters yields consistent results for polycrystalline aggregates 

because the same trends as those found for single crystals are revealed. Note that although the same 

trends are reflected by the Taylor model, the corresponding limit strain levels appear to be 

unusually high as compared to those yielded by the self-consistent scale-transition scheme. 

Moreover, this methodology and the associated localization criteria can be applied to determine 

FLDs for polycrystalline steels. It has been shown in previous investigations that the FLDs resulting 

from application of the self-consistent scheme for single-phase ferritic or dual-phase ferritic–

martensitic steels correspond well with the results available in the literature (see Franz et al., 

2009a,b). To illustrate the similarity of the results, we will show an example of an FLD determined 

for a single-phase steel (IF–Ti) compared to the reference results. 

It is important to note that before evaluating the proposed modeling in terms of its capability to 

predict FLDs, we have first validated the polycrystalline constitutive modeling through comparison 
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with experimental tests for linear and sequential loading paths. For the numerical simulations, 

various calculations have been performed by varying the number of grains, and an initial texture 

composed of 1,000 crystallographic orientations yielded by the orientation distribution function has 

been ultimately selected, based on a compromise in terms of accuracy and calculation time. The 

four material parameters must be identified; to this end, two mechanical tests have been 

systematically used for each material. Generally, a uniaxial tensile test and reverse (Bauschinger) 

shear test are used to identify parameters cy  and 0g . The average grain size D  is obtained from the 

steel micrography, while the initial critical shear stress, which is assumed to be the same for all slip 

systems, is determined based on the elastic limit (approximately half of the elastic limit in the 

uniaxial tensile test). The latter is justified by the fact that the overall material response corresponds 

to an averaging rule over a large number of grains with different orientations, and accordingly, it is 

reasonable to assume that the loading orientation has little effect on the elastic limit. 

For the selected single-phase steel, denoted as IF–Ti, the identified parameters are reported in 

Table 2. Note that in this validation process of the polycrystalline constitutive modeling, only one 

or two mechanical tests have been used for identification, whereas the remaining tests provided by 

ArcelorMittal have been used for validation purposes. Fig. 18 shows a comparison example 

between the simulation results and experimental tests. By convention, for uniaxial and plane strain 

tensile tests, the Cauchy stress component 11σ  is plotted as a function of the logarithmic strain 

component 11ε ; for simple and reverse (Bauschinger) shear tests, the Cauchy stress component 12σ  

is expressed as a function of the shear strain component 122γ ε= ; for cross (orthogonal) tests, the 

Cauchy stress component 11σ  is plotted as a function of the logarithmic strain component 11ε , 

during the prestrain (i.e., the plane strain tensile test), and then the Cauchy stress component 12σ  is 

represented as a function of the shear strain component 122γ ε= , augmented by the amount of 

prestrain, for the subsequent loading path (i.e., the simple shear test). 

Overall, the obtained results correspond reasonably well with the experimental findings, 

considering the wide range of steels tested, which have different microstructures and mechanical 

characteristics (Franz, 2008; Franz et al., 2009a,b). The discrepancies observed during the reverse 

(Bauschinger) shear tests and cross (orthogonal) tests are attributable to the spatial rearrangement of 

the dislocation cells that are not properly taken into account in the proposed constitutive modeling. 

Experimental evidence for the formation of such intragranular dislocation substructures has been 

shown for ferritic steels (Nesterova et al., 2001). These intragranular microstructures, which are 

produced along the first strain path, will disintegrate in favor of the creation of a new dislocation 

substructure, which depends on the second loading path. It can also be observed that these transient 

effects (e.g., work-hardening stagnation for the Bauschinger shear tests and the softening regime for 
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the cross tests), which occur after the strain-path changes, are increasingly pronounced as the 

amount of prestrain increases. In this case, the prestrain-induced intragranular microstructure will 

be more persistent and difficult to disintegrate during subsequent paths. To account for these 

effects, advanced constitutive models have been recently developed to reproduce these 

softening/hardening transient phenomena, which are characteristic of strain-path changes. Examples 

include the Teodosiu–Hu model (Teodosiu and Hu, 1998), which although phenomenological, is 

based on dislocation microstructures, and the Peeters model (Peeters, 2002), which is 

micromechanical but appears to be restricted to small strains. 

Examples in terms of FLD results are presented here for the selected IF–Ti steel compared to 

reference linear FLDs. Because Rice’s localization criterion and the condition of loss of strong 

ellipticity predict almost identical limit strains, only the FLDs corresponding to Rice’s bifurcation 

criterion are shown. To illustrate the effect of strain-path changes, sequential two-stage FLDs are 

also determined. Fig. 19 shows FLDs with linear strain paths obtained with the proposed 

polycrystal self-consistent modeling compared to available reference FLDs. The latter, which is 

referred to as the ArcelorMittal FLD model, is obtained based on the approach proposed by 

Cayssials (Cayssials, 1998; Cayssials and Lemoine, 2005). This approach has been validated by 

ArcelorMittal over a wide range of sheet metal grades with systematic comparison to experimental 

FLDs. Despite the good prediction capability of ArcelorMittal’s FLD model, its limitation lies 

primarily in its restriction to linear strain-path FLDs together with its phenomenological basis, 

which cannot take microstructural effects into account. This deficiency is the main motivation 

behind the development of the proposed modeling, which seeks to provide a predictive tool that can 

be used in the design of new grades of steels. Recall that the experimental measurement of limit 

strains is a difficult, time-consuming, and expensive task. 

Inspection of Fig. 19 reveals some differences between the two FLDs. It should first be noted 

that, while the proposed FLD model makes use of bifurcation theory, the ArcelorMittal FLD model 

is based on a quite different approach. In the latter, the effect of diffuse necking, which inherently 

develops in sheet metals before localization, is taken into account in an approximate 

phenomenological way, whereas in the former, localization bifurcation stems from an assumed 

uniform deformation state. The fact that consideration of diffuse necking in the analysis is known to 

reduce the predicted limit strains may explain the overall lower level of ArcelorMittal’s FLD. The 

two FLDs are closer in the neighborhood of the plane strain tension point, which may be explained 

by the fact that the amount of deformation taking place from diffuse necking to localization is much 

smaller for this loading path. Other sources that are likely to explain the observed differences 

include: the structural effects that are unavoidably present in the experimental determination of 

FLDs and not considered in the bifurcation approach, the limitations in the material parameter 
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identification procedure and the associated issue of the proper stress–strain curve extrapolation at 

large strains, the regularization method adopted for slip system selection, which has been shown to 

result in relatively stiffer overall moduli, which in turn would increase the predicted limit strain 

levels. In view of the above issues, the comparison between theoretical and experimental FLDs 

should only be considered qualitatively (i.e., with respect to the overall strain levels predicted at 

localization). In the same way, we would suggest a more intrinsic use of the ductility limits afforded 

by bifurcation theory, which is to compare and classify materials in terms of their formability, and 

to serve in the design process of new grades of steel having improved ductility properties. 

Another observation from Fig. 19 concerns the non-smoothness of the path followed by the 

predicted FLD points. In contrast to the smooth nature of FLDs obtained with phenomenological 

constitutive models, FLDs determined either experimentally (see, e.g., Knockaert et al., 2002; 

Kuwabara, 2007; Signorelli et al., 2012) or using crystal plasticity models (see, e.g., Barlat, 1987; 

Wu et al., 1997; Yoshida et al., 2007) generally exhibit some scatter. This is very likely attributable 

to the texture development and its evolution in crystal plasticity descriptions. In such models, the 

homogeneous deformation imposed macroscopically will result in deformation states quite different 

from grain to grain, leading to a rather complex texture evolution. In other words, micromechanics-

based descriptions should be viewed as macroscopically homogeneous, while heterogeneous at the 

microscale. Because such descriptions are more representative of the actual material behavior, this 

common feature may contribute to justify the non-smoothness of FLDs obtained either from crystal 

plasticity modeling or from experimental measurement. In Barlat (1987), where the M–K approach 

was used with yield surfaces obtained by crystal plasticity calculations following the Taylor–

Bishop–Hill procedure, the observed scatter was explained by the fact that the resulting yield loci 

are smooth for the first order but not for the second order. Because the M–K method involves 

derivatives of these yield loci, this leads to non-smooth predicted FLDs. In crystal plasticity 

modeling, sharp vertices form on the current yield surface thus reducing its smoothness, which in 

turn affects the smoothness of the resulting tangent moduli. The latter are the key elements in the 

localization criteria (see, e.g., the construction of the acoustic tensor), and therefore responsible, to 

some extent, for the final form of the predicted FLDs and the degree of their smoothness. 

A noteworthy discussion is also related to the difference in the limit strains predicted by the two 

averaging schemes (i.e., the self-consistent and Taylor’s model). As revealed from the parametric 

study corresponding to the plane strain tensile test, the limit strains predicted by the full-constraint 

Taylor model are found to be much larger (see Figs. 16 and 17 compared to Figs. 12 to 15). This 

has also been observed for other loading paths and, notably, in the balanced biaxial tensile test 

where the Taylor predicted limit strains seem to be particularly overestimated. Recent investigations 

using rate-sensitive crystal plasticity models in conjunction with the M–K approach also suggested 
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significant discrepancies depending on the adopted homogenization scheme (see, e.g., Signorelli et 

al., 2012). Several causes are likely to explain such observed differences. For example, the self-

consistent model, which accounts for grain interaction effects and local non-uniform deformations 

that occur in real polycrystals, has been shown to estimate a softer overall response for rate-

independent polycrystals as compared to the full-constraint Taylor model (Hutchinson, 1970; 

Takahashi, 1988; Harren and Asaro, 1989). The stiffer overall response of the Taylor model (see 

Figs. 16 and 17 as compared to Figs. 12 to 15), which has been often considered as an upper bound 

for the stresses, may contribute to explain the associated higher predicted limit strains. Recent re-

examination of the Taylor model (Tadano et al., 2012) also revealed that its predictions tend to 

underestimate the lattice rotations. Because the latter play a major role in inducing textural 

(geometrical) softening that is favorable to localization, this may bring some support to the above-

observed differences. While one effect, such as texture development, could be the dominant cause, 

the combined contribution of different interacting effects, as discussed above, seems to be a more 

plausible explanation of these results. 

Finally, to emphasize the impact of strain-path changes, which are inherent to most sheet metal 

forming processes, sequential FLDs obtained after prestrain consisting of either uniaxial tension or 

balanced biaxial tension are given in Fig. 20 for the IF–Ti single-phase steel. These results are 

qualitative, as no reference sequential FLDs are available, and ArcelorMittal’s FLD model is not 

designed to predict formability when considering two-stage or more complex loading paths. 

Nonetheless, the available literature results for other materials reveal that FLDs obtained after 

prestrain tend to shift along the prestrain-path direction (Haddad, 1997; Stoughton and Zhu, 2004; 

Haddag et al., 2009). For instance, for uniaxial tensile prestrain, the FLD is shifted to the top and 

left, whereas the FLD is shifted to the bottom and right for balanced biaxial tensile prestrain. These 

qualitative results are consistently reproduced by the current modeling (see Fig. 20). 

5. Conclusions 

As described previously, the main objective of the proposed methodology is to establish a link 

between microstructure-related parameters and material ductility. This effort is part of a larger 

project in which a general multi-purpose predictive tool is intended to be advantageously used in 

the design of new and advanced steels with improved formability and in-use properties. The starting 

point of this approach is an advanced constitutive framework for single crystals, which is applicable 

in large-strain elasto-plasticity. Throughout this constitutive modeling, substantial effort has been 

devoted to the consideration of most key physical mechanisms that are relevant at the microscale, 

such as creation, storage, and annihilation of dislocations. It is believed that the accurate description 
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of these microstructural mechanisms would play a crucial role in the prediction of plastic strain 

localization and the corresponding formability limits. In the same manner, the overall response of 

polycrystalline aggregates is derived based on the self-consistent scale-transition scheme, with the 

same attempt to account for the essential microstructural features and deformation mechanisms 

(e.g., initial and induced textures, dislocation density evolution, and softening mechanisms). 

The resulting micromechanical constitutive modeling, both for single crystals and polycrystals, is 

then coupled with two strain localization criteria: Rice’s bifurcation criterion, which is based on the 

loss of ellipticity of the associated boundary value problem, and the condition of loss of strong 

ellipticity. Mathematical consideration of these criteria, based on the analysis of the associated 

eigenvalues, allowed us to classify them in terms of conservativeness. More specifically, it has been 

shown that Rice’s bifurcation criterion is less conservative, in the general case, than the condition of 

loss of strong ellipticity, thus leading to a higher level in terms of the predicted limit strains. 

However, it is shown that the two criteria coincide in the framework of small strains and associative 

plasticity. Likewise, in other specific cases, the two criteria may result in comparable predictions of 

the limit strains. This is the case when the structure of the relevant tangent moduli consists of a 

main part, which is identical and possesses all minor and major symmetries, and an additional part 

of stress components that is small compared to the main part. 

Application of the proposed coupling to the prediction of the ductility limit for single crystals 

provided consistent results when compared to the predictions for polycrystals. The effect of 

physical microstructural parameters on material ductility has been systematically analyzed, with an 

attempt to provide some physical or mathematical interpretation. Because the convective stress 

components responsible for the loss of symmetry of the tangent modulus and thus the loss of 

symmetry of the acoustic tensor are small compared to the elasticity tensor, the predictions of the 

two criteria are found to be comparable. This result also provides some justification for the use of 

Rice’s bifurcation theory as a strain localization criterion, which is also designated as plastic 

instability in the context of sheet metal formability. The predictive capability of the proposed 

approach has been shown through the determination of forming limit diagrams. Examples of FLDs 

for IF–Ti single-phase steels compared to reference results revealed consistent results. The 

simulations using the self-consistent scheme have been systematically compared to those of the 

Taylor model, and the latter have been found to predict higher limit strains, especially in balanced 

biaxial tension where the formability level seems to be particularly overestimated. The effect of 

strain-path changes has also been investigated by analyzing the impact of prestrain on the FLDs. 

It is worth mentioning that this micromechanics-based methodology is related to the vertex effect 

induced by crystal plasticity, which was pointed out earlier by Hill (1967). This vertex formation on 

the current points of the yield surface is a key factor in flow localization analysis based on bifurcation 
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theory or the loss of ellipticity, thanks to the associated reduction in the instantaneous shear moduli 

(see, e.g., Hutchinson, 1970; Yoshida et al., 2009). Such an analysis using phenomenological flow 

theories with associative plasticity and smooth yield surface requires softening effects (Needleman 

and Tvergaard, 1992), which could be introduced by coupling with damage. Another possibility for 

triggering bifurcation in the hardening regime within phenomenological modeling is the use of the 

deformation theory of plasticity rather than flow theory (see, e.g., Stören and Rice, 1975), which 

artificially induces a vertex-like effect. However, with physically motivated micromechanical 

models, this destabilizing vertex effect is a natural outcome of crystal plasticity, which allows the 

occurrence of bifurcation without the need for enforcing any additional softening effects. 
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Table 1. Material parameters and initial crystallographic orientation used for the investigation of the 

effect of certain physical parameters on the ductility limit of single crystals 

 

Parameters { }0 110cτ  { }0 112cτ  0ρ  
01ϕ  0φ  

02ϕ  0g  cy  D  

Values 55 MPa 50 MPa 109 m-2 148° 128° 156° 80 2 nm 1 mm 
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Table 2. Material parameters used for the investigation of the effect of certain physical parameters 

on the ductility limit of polycrystals 

 

Parameters { }0 110cτ { }0 112cτ 0g  cy  D  

Values 55 MPa 55 MPa 90 3.25 nm 20 μ m 
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Fig. 1. Schematic representation of the multiplicative decomposition of the deformation gradient: 

plastic slip and rigid rotation along with elastic distortion of the crystallographic lattice 
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Fig. 2. Illustration of the velocity jump of certain mechanical fields across the band 

plane with respect to a fixed reference configuration (left) and relative to the current 

reference configuration (right) 
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Fig. 3. Inverse pole figure of the studied single crystal: Orientation of the RD (a), TD 

(b) and ND (c) relative to the crystal axes 

 
                      (a)                                          (b)                                             (c) 
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Fig. 4. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a single crystal: Responses for uniaxial tensile tests performed 

parallel to the rolling direction until the loss of ellipticity (top) and the minimal 

determinant of the acoustic tensor over all orientations of the normal to the localization 

band (bottom) 
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Fig. 5. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a single crystal: Responses for uniaxial tensile tests performed 

parallel to the rolling direction until the loss of strong ellipticity (top) and the minimal 

eigenvalue of the symmetric part of the acoustic tensor over all orientations of the 

normal to the localization band (bottom) 
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Fig. 6. Effect of the critical annihilation distance of dislocations on the ductility limit of 

a single crystal: Responses for uniaxial tensile tests performed parallel to the rolling 

direction until the loss of ellipticity (top) and the minimal determinant of the acoustic 

tensor over all orientations of the normal to the localization band (bottom) 
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Fig. 7. Effect of the mean free path parameter on the ductility limit of a single crystal: 

Responses for uniaxial tensile tests performed parallel to the rolling direction until the 

loss of ellipticity (top) and the minimal determinant of the acoustic tensor over all 

orientations of the normal to the localization band (bottom) 
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Fig. 8. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a single crystal: Responses for uniaxial tensile tests performed 

parallel to the transverse direction until the loss of ellipticity (top) and the minimal 

determinant of the acoustic tensor over all orientations of the normal to the localization 

band (bottom) 
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Fig. 9. Effect of the critical annihilation distance of dislocations on the ductility limit of 

a single crystal: Responses for uniaxial tensile tests performed parallel to the transverse 

direction until the loss of ellipticity (top) and the minimal determinant of the acoustic 

tensor over all orientations of the normal to the localization band (bottom) 
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Fig. 10. Effect of the mean free path parameter on the ductility limit of a single crystal: 

Responses for uniaxial tensile tests performed parallel to the transverse direction until 

the loss of ellipticity (top) and the minimal determinant of the acoustic tensor over all 

orientations of the normal to the localization band (bottom) 
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Fig. 11. Initial random texture (1000 grains) of the studied IF–Ti single-phase steel: (a) 

{100}-pole figure, (b) {110}-pole figure 

(a) (b) 
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Fig. 12. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a polycrystal (self-consistent scheme): Responses for plane 

strain tensile tests performed parallel to the rolling direction until the loss of ellipticity 

(top) and the minimal determinant of the acoustic tensor over all orientations of the 

normal to the localization band (bottom) 
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Fig. 13. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a polycrystal (self-consistent scheme): Responses for plane 

strain tensile tests performed parallel to the rolling direction until the loss of strong 

ellipticity (top) and the minimal eigenvalue of the symmetric part of the acoustic tensor 

over all orientations of the normal to the localization band (bottom) 
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Fig. 14. Effect of the critical annihilation distance of dislocations on the ductility limit 

of a polycrystal (self-consistent scheme): Responses for plane strain tensile tests 

performed parallel to the rolling direction until the loss of ellipticity (top) and the 

minimal determinant of the acoustic tensor over all orientations of the normal to the 

localization band (bottom) 
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Fig. 15. Effect of the mean free path parameter on the ductility limit of a polycrystal 

(self-consistent scheme): Responses for plane strain tensile tests performed parallel to 

the rolling direction until the loss of ellipticity (top) and the minimal determinant of the 

acoustic tensor over all orientations of the normal to the localization band (bottom) 
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Fig. 16. Effect of the initial critical shear stress (of {110} and {112} slip plane families) 

on the ductility limit of a polycrystal (Taylor model): Responses for plane strain tensile 

tests performed parallel to the rolling direction until the loss of ellipticity (top) and until 

the loss of strong ellipticity (bottom) 
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Fig. 17. Effect of the critical annihilation distance of dislocations (top) and of the mean 

free path parameter (bottom) on the ductility limit of a polycrystal (Taylor model): 

Responses for plane strain tensile tests performed parallel to the rolling direction until 

the loss of ellipticity 
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Fig. 18. Comparison between the proposed model and the experiments for the studied 

IF–Ti single-phase steel for different linear and sequential loading paths performed 

perpendicular to the rolling direction (PST 10% SSh refers to a cross test consisting of 

10% Plane Strain Tension followed by Simple Shear, while BT refers to reverse shear 

tests at 10%, 20%, and 30% of shear prestrain) 
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Fig. 19. FLDs associated with linear loading paths for the IF–Ti single-phase steel 

obtained with the proposed polycrystal self-consistent model (coupled with Rice’s 

bifurcation criterion), and ArceloMittal’s model 
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Fig. 20. FLDs associated with linear and sequential loading paths for the IF–Ti single-

phase steel obtained with the proposed polycrystal self-consistent model coupled with 

Rice’s bifurcation criterion: the sequential FLDs correspond to 5% Uniaxial Tension 

(UT) prestrain and 5% Balanced Biaxial Tension (BBT) prestrain, respectively 
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Research highlights 

 
• Strain localization analysis is performed for single crystals and polycrystals. 
• Relationships between microstructure-related parameters and ductility are 

disclosed. 
• Large-strain elastic–plastic modeling based on self-consistent scale transition is 

used. 
• FLDs are constructed based on bifurcation theory and loss of strong ellipticity. 
• Results of the self-consistent scheme and the full-constraint Taylor model are 

compared. 

 


