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Abstract

The deep-sea part of the "Papua Niugini Biodiversity Expedition” surveyed the deep-sea
environments along the coasts of New Guinea Island in the Bismarck Sea, from the Vitiaz
Strait to the border between Papua New Guinea (PNG) and Irian Jaya. This expedition was a
follow-up of the BIOPAPUA cruise (2010) that gave some of the first insights into the
diversity of the deep-sea fauna of the Bismarck and Solomon Seas for environments other
than deep-sea hydrothermal vents. The main targets of the cruise were to survey the diversity
of the fauna of (i) hard bottoms that are typically found on deep seamounts, (ii) Astrolabe Bay
from 200 m to about 1000 m, (iii) the chemosynthetic environments of the deep sea, including
cold-seep environments and plant debris. The Astrolabe Bay was one of our targets because
its topography allows sampling over the complete bathymetric gradient covered by our
sampling gears (down to 1000 m depth), and the recent start of nickel refining activities in the
bay is a potential threat to a marine fauna for which little reference data are available.
Sampling in the bay has revealed not only a diversified fauna associated with soft bottoms and
plant debris, but also a chemosynthetic fauna typical of cold-seep environments (e.g.
siboglinid worms and bathymodioline mussels) below the Ramu refinery. Although the
refinery activities had officially started just one week before our work in the area, an impact
of its activities is already observed. Our molecular work indicates that the siboglinid
tubeworm species and one of the two mussel species collected below the Ramu refinery have
so far only been documented from this location, despite an important sampling effort. This
illustrates the potential destructive effects of human activities in areas where the diversity and

uniqueness of deep-sea communities are poorly understood.
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INTRODUCTION

Despite some significant exploration efforts notably during the last decade (e.g.
Costello et al. 2010), the deep-sea realm remains among the least known biodiversity
compartments on Earth, even for macro-organisms. Because it is difficult to protect what we
do not know exists, this knowledge gap makes the deep sea particularly vulnerable to human
disturbances. Pioneering work in the 1960°s with the development of appropriate tools
revealed that deep-sea biodiversity was greatly underestimated and rivals that of shallow
tropical communities (e.g. Hessler and Sanders, 1967). Later studies also revealed that deep-
sea assemblages are far from homogenous, with strong between-site differences, and some
endemism (Brandt et al. 2007; Levin et al. 2001). Despite ongoing efforts to describe deep-sea
biodiversity, working in this environment is challenging and much remains to be learned.

As a result of this knowledge gap, many common assumptions on the structure of
deep-sea biodiversity, on which many environmental policies are based, are questionable.
Among them, the seemlingly uniform nature of the deep sea (‘everything is everywhere’) is
potentially one of the most damaging assumptions. This assumption is mainly based on the
observation that many deep-sea organisms have a cosmopolitan distribution. However, most
of these cosmopolitan species are patchily distributed over their wide geographic range
(McClain & Hardy, 2010 and references therein). More generally, recent studies revealed an
unexpected heterogeneity of deep-sea habitats linked to geomorphological, geochemical and
hydrographic features and stressed the resulting vulnerability of associated communities to
human activities (e.g. Levin & Dayton, 2009; Levin & Sibuet, 2012). Thus, considering that
‘everything is everywhere’ minimizes the potential effect of the destruction of discrete
habitats. In this communication we illustrate this problem by reporting the discovery of two
chemosynthetic sites in Papua New Guinea (PNG), one of them being impacted by the tailings

rejected by a nickel mine refinery.
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The first chemosynthetic site was discovered during the BIOPAPUA cruise off the
Sepik River (Pante et al. 2012). The discovery of the impacted site, in the Basamuk canyon
near the Astrolabe Bay, occurred during the deep-sea leg of the ‘Papua Niugini Biodiversity
Expedition,” (hereafter PAPUA NIUGINI) the latest expedition of Our planet reviewed’

programme (www.laplaneterevisitee.org). This programme is an international scientific

project whose goals are to provide better estimates of the magnitude of biodiversity
worldwide, to provide baseline data for several sites that are particularly rich or vulnerable on
our planet. The most recent expedition of the programme targeted PNG and the surrounding
Bismarck and Solomon Seas. PNG is located in the Coral Triangle, a region of exceptional
zooxanthellate coral diversity (Veron et al. 2009). Its forests count among the most important
in the world in terms of diversity of plant species (Joppa et al. 2011). The marine part of the
expedition included a shallow-water sampling workshop and a deep-sea cruise. Over 3
months, the marine expedition involved a total of 88 scientists from 18 countries, in addition
to 51 trainees, media, logistics coordinators and visitors. Prior to this expedition, exploration
of PNG’s marine biodiversity has been minimal, and has mostly focused on shallow-water
coral reefs (e.g. Drew et al. 2012) and hydrothermal vents in the Manus Basin (e.g. Levin et
al. 2009). Other deep-sea habitats of PNG waters were particularly poorly explored, including
during great historical expeditions (Pante et al. 2012)

The BIOPAPUA cruise and the deep-sea part of the 2012 marine expedition used the
RV Alis for deploying hauls from 100 to 1000 meters depth. The BIOPAPUA cruise covered
a wide area surrounding the Bismarck Sea and the Solomon Sea (Pante et al. 2012). The 2012
(PAPUA NIUGINI) cruise surveyed the deep-sea environments along the coasts of New
Guinea Island in the Bismarck Sea, from the Vitiaz Strait to the border between PNG and
Irian Jaya. Both expeditions aimed at covering at best the diversity of deep-sea habitats and

had three main targets. First, ssamounts were one of the targets because they generally offer
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hard bottoms with a fauna dominated in terms of biomass by suspension-feeding organisms
that shelter an important diversity of associated organisms. The second goal was to sample the
organisms associated with soft bottoms that can be found in accumulation basins separating
islands, or, when the topography allows the accumulation of sediments, on islands slopes.
Preliminary work during the BIOPAPUA cruise allowed us to focus in 2012 the sampling of
the fauna of soft bottoms in the Astrolabe Bay. Additionally, starting refinery activities had
already been identified as a potential threat to the marine fauna but little biological data were
available (e.g. Reichelt-Brushett, 2012). Finally, we targeted chemosynthetic habitats as they
are among the most productive environments in the deep sea. In PNG, hydrothermal vents are
easily accessible, and have been intensively studied for many years (e.g. Erickson at al. 2009,
Levin at al. 2009). For the same reason of accessibility, the hydrothermal deposits
characterized by a high grade of precious ore, in the Bismarck Sea represent a prime target for
deep-sea refinery activities (Van Dover at al. 2011). Other types of deep-sea chemosynthetic
environments (i.e. cold seeps and accumulations of decaying terrestrial plant debris) remain
poorly surveyed in PNG, even if geological surveys in this active area provided sporadic
records of cold-seep environments (e.g. Tappin at al. 2001). The BIOPAPUA cruise allowed
us to discover a site off the Sepik River (facing Broken Water Bay), at about 400 meters
depth, with fauna typically associated with cold-seep environments. This area, which we
revisited during the 2012 cruise, is close to the area detected by the JAMSTEC cruise (Tappin
et al. 2001), providing the only report of chemosynthetic organisms from cold-seep
environments in PNG waters (e.g. Kuyno at al. 2009 for bathymodiolinae, Kojima at al. 2003
for siboglinidae). Additionaly, the deeper operations off the Ramu refinery unexpectedly
brought back bathymodioline mussels and siboglinid tubeworms, revealing a new location of

chemosynthetic habitat.
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In these poorly-explored deep-sea regions, chemosynthetic organisms are perhaps the
best studied, especially at vents in the Manus Basin. The two seep sites sampled in 2012, in
combination with the data available from the Japanese geological surveys and the 2010 data
from BIOPAPUA cruise, offered the opportunity of comparing the specific diversity of
bathymodioline mussels and siboglinid tubeworms at a relatively small spatial scale (the
Astrolabe Bay and Broken Water Bay sites are separated by only about 250 km). Moreover,
operations off the Ramu refinery revealed the presence of a brick-red deposit. The activities of
the Ramu refinery started by the end of November 2012, and tailings were announced to be
released from the refinery at 200 meters depth. The deposits observed off the Ramu refinery
have been found nowhere else during either the BIOPAPUA cruise or the PAPUA NIUGINI
expedition. Dredging operations brought back a dark gray mud (as found in many other
locations) but overlaid by a brick-red deposit, consistent with the release of tailings from the
refinery, suggesting that the newly discovered site is potentially threatened by rapidly
accumulating tailings from the refinery.

The bathymodiolione mussels and siboglinid worms sampled in the two discovered
seep sites in PNG waters offer the opportunity of illustrating the patchiness of distribution of
organisms, even at small scales, and to question some common misconceptions about the

pattern of diversity in the deep sea that result from the paucity of available knowledge.

MATERIAL AND METHODS

Sampling
During the deep-sea leg of the 2012 expedition, 137 hauls (92 trawling and 45 dredging

operations) were conducted. These samples were added to the ones collected the during
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BIOPAPUA cruise (Pante et al. 2012). Out of all 2012 sampling operations (Fig 1), five
contained fauna typically found in cold-seep environments, and in particular representatives
of the Siboglinidae (Polychaeta) and Bathymodiolinae (Bivalvia). Three were conducted in
Broken Water Bay, off the Sepik River (stations CP4040, CP4042, CP4043, depth range 400-
800 meters), a site were cold seeps were discovered during a previous expedition in 2010
(BIOPAPUA, stations CP3703 and CP3704, depth range 400-800), and two in the Basamuk
canyon facing the Ramu refinery, near the Astrolabe Bay (stations CP4020 and CP4081,
depth range 400-860 meters). During the 2012 cruise, a total of 16 Lamellibrachia (siboglinid
tubeworms), and 52 bathymodioline mussels (Table 1), were preserved in 90% alcohol for
molecular analyses. Out of the 11 Siboglinidae in the small aggregation sampled in the
Basamuk Bay, however, only 4 provided DNA that could be amplified. These animals are
thought to have been dead, burried under an accumulation of tailings. To facilitate
preservation of tissues in alcohol, mussels were first microwaved following the procedure

described in Galindo at al. (2014).

DNA amplification and sequencing

DNA from mussel specimens was extracted using the QIAmp® DNA Micro Kit (Qiagen,
Valencia, CA). After removal of excess ethanol, total DNA from tubeworms was isolated
following a CTAB + PVPP extraction protocol (Doyle and Doyle 1987). For the Siboglinidae,
only the barcode fragment of the COI gene was amplified using the Folmer primers LCO1490
and HCO2198 (Folmer et al. 1994). For the Bathymodiolinae both the barcode fragment of
the COI gene and a fragment of the rDNA 28S gene were amplified using the Folmer primers
and the C1 and D2 primers (Jovelin & Justine, 2001), respectively. All PCR reactions were

performed in 20 ul, using 3 ng of DNA, 10X reaction buffer containing 15 mM MgClI2, 0.26
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mM dNTP, 0.3 puM of each primer, 5% DMSO, 1 mg/ml BSA, and 1 unit of QBiotaq (MP
Biomedicals, Illkirch Graffenstaden, France). Amplification consisted of an initial
denaturation step at 95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 1 min,
annealing at 48°C for the COI gene and 55°C for the 28S gene for 30 s, followed by extension
at 72°C for 30 s. The final extension was at 72°C for 5 min. PCR products were purified and
sequenced in both forward and reverse directions by the Genoscope or the Eurofins

sequencing facilities.

Phylogenetic analyses

Sequences were aligned automatically using Muscle 3.8.31 (Edgar 2004). Both maximum
likelihood (ML) and Bayesian analyses (BA) were performed for the inference of
phylogenetic relationships. ML analyses were performed using RAXML 7.0.4 (Stamatakis,
2006), with a GAMMAI model. Three partitions were defined for the COIl gene,

corresponding to each position of the codon. RaxML analyses were performed on the Cipres

Science Gateway (http://www.phylo.org/portal2/) using the RAXML-HPC2 on TG Tool
(Miller et al. 2010). Node support was estimated by bootstrapping (1000 replicates). For the
Bathymodiolinae, a concatenated dataset (COI+28S) was also analysed, with four partitions
defined (the three codon position of the COI, and one for the 28S). Bayesian Analyses (BA)
were performed running two parallel analyses in MrBayes (Huelsenbeck et al. 2001),
consisting each of four Markov chains of 30 million generations each with a sampling
frequency of one tree each thousand generations. The number of swaps was set to two, and
the chain temperature to 0.02. Similarly to the ML approach, unlinked models (each with six
substitution categories, a gamma-distributed rate variation across sites approximated in four
discrete categories and a proportion of invariable sites estimated during the analysis) were

applied for each partition. Convergence of each analysis was evaluated using Tracer 1.4.1
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(Rambaut and Drummond, 2007), and analyses were terminated when ESS values were all
superior to 200. A consensus tree was then calculated after omitting the first 25% trees as a

burn-in.

Additional sequences from GenBank and outgroups

Within the Siboglinidae, vestimentiferans constitute a monophyletic group (e.g. Eichinger at
al. 2013). We thus downloaded all the COI sequences of vestimentiferans from GenBank.
Four sequences (GU059239.1, GU059172.1, GU059250.1 and GUO059230.1), obviously
contaminated or misidentified (they clustered within groups of specimens with different
species and genus names) were removed from the dataset. To reduce computational times,
215 Ridgeia piscesae sequences (EU190494.1-EU190709.1, all highly similar) were removed
from the dataset (one sequence from the popset was kept). In total 283 COI sequences from
GenBank were included in the alignment (Table 1). COI sequences of Sclerolinum were used
as closely related outgroups, and a sequence of Osedax roseus was used to artificially root the
tree, following the results of Eichinger at al. (2013). Also, two sequences obtained from two
escarpiid collected in 2010 during the BIOPAPUA cruise, collected in the Broken Water Bay,
off the Sepik River (stations CP3703 and CP3704) were added to the dataset (Table 1).

For the Bathymodiolinae, we used the dataset from Thubaut at al. (2013), representative of the

known diversity the sub-familly (Table 1). Modiolus modiolus was used as an outgroup.

RESULTS AND DISCUSSION

New data and collections of deep-sea habitats in PNG
Due to a very active tectonic regime, the PNG bottom topography is very uneven.
Bathymetric datasets are also scarce. The 2012 deep-sea expedition largely took advantage of

the deep-sea results of the BIOPAPUA cruise that both allowed us to identify the most
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interesting spots and provided preliminary bathymetric maps that were added to during the
2012 expedition. During each cruise, when the topology of the bottom allowed, each selected
spot was explored over a depth range of 100 to 1000 meters. Depending of the topology and
the kind of substrates (i.e. hard or soft bottom), either a trawl or a dredge was used. Each
collection was sieved on board, using seawater to separate animals from the substrate in
different size classes. Specimens were then quickly sorted and preserved. All invertebrates
were then integrated into the collections of Muséum national d’histoire naturelle (MNHN) in
Paris and then distributed over an international network of taxonomists for study (Bouchet et
al. 2008; Richer de Forges et al. 2013).

Seamounts were particularly difficult to localize and to sample, but a diversified fauna
was obtained when operations were successful. On island slope, from the Sepik River to
Vanimo, collections were characterized by soft bottom associated with low diversity vastly
dominated in biomass by irregular sea-urchins (morphologically resembling Sarsiaster
greigii, SH pers. obs.), most of which contained an Amphinomidae (Annelida) in the terminal
portion of their digestive tube. Sunken plant remains associated with their typical fauna were
present in most of the operations. The typical fauna associated with cold-seep environments
was only found in a very restricted area off Broken Water Bay. From Manam Island to the
Vitiaz Strait, i.e. the limit between the Bismark and Solomon Seas, island slopes are very
steep. Consequently hauls mainly contained round stones suggesting that strong currents do
not allow settlement of sessile organisms or sediment accumulation. When terrestrial plant
remains were found, these were large pieces of wood, in early stages of decomposition but
greatly abraded. Accumulations of sediments and/or of terrestrial plant remains were mostly

found in small canyons and in large bays, notably in the Astrolabe Bay.

Fauna sampled off Broken Water Bay (Sepik River)
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In a very restricted area at the Sepik site, off Broken Water Bay, at stations dominated by
irregular sea urchins (cf. Sarsiaster greigii), a fauna typical of cold seeps was collected (figure
2), including Bathymodiolinae mussels and siboglinid tubeworms (sampled during both the
BIOPAPUA cruise (2010) and Niugini (2012) Expedition). Irregular sea urchins are often
found at seeps, although rarely properly identified (e.g. Cordes et al. 2009, Olu-Le Roy et al.
2004). The other bivalves sampled at this location were typical of seep environments. Among
these, Rudo Von Cosel (pers. com.) identified two species of Vesicomyidae, one species of
Thyasiridae attributed to the genus Conchocele, and one species of Nuculidae attributed to the
genus Acila. Among gastropods, predatory snails attributed to the genera Phymorhynchus
(Raphitomidae) and Manaria sp. (Buccinidae closely related to Eosipho) are also typical of
chemosynthetic environments (Warén 2011, at al. 2009, Kantor at al. 2013). Among the
Nassariidae, this location was the only one where a specimen attributed to the genus
Profundinassa was sampled. For the crustacean fauna, a hippolytid shrimp typical of deep-sea
reducing environments, attributed to the genus Lebbeus, was identified (Komai at al. 2012,
Nye at al. 2012), while other specimens were not typical of chemosynthetic environments.
The ethusid crab Ethusa curvipes, a species typical of muddy deep-sea bottoms (P. Castro,

pers. com.), was also found among the animals collected.

Fauna sampled below the Ramu refinery

Off the Ramu refinery, specimens were sampled from 200 to 1000 meters depth. The samples
contained fauna associated with both soft bottom and plant remains. Sampling off the Ramu
refinery showed a heavy release of tailings (figure 3) although refining activities had only
started 10 days prior to our sampling operations. These tailings formed a layer of color and
texture consistent with the known nickel refining protocols used at the Ramu refinery. The

tailings overlay the otherwise grey sediment, very similar to sediment sampled elsewhere
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during the expedition, including the Broken Water Bay cold-seep site. Shallower operations
(ca. 250-400 m) brought back sediments only slightly stained by the tailings (figure 3A),
while deeper collections (400-700 m), sediments were covered by a thick layer of red
sediment (figure 3B). In the impacted sediments, we notably sampled polychaete tubes that
had incorporated red particles over a few centimeters. The topography of the Basamuk
canyon, off the Ramu refinery rendered the operations difficult, with many instances of
damage to the trawls for the deeper sites (hard bottoms). Although the catch was not very
abundant in this canyon we unexpectedly captured organisms typical of cold-seep
environments (Bathymodiolinae mussels and Siboglinidae tubeworms; Figure 4). As for the
Broken Water Bay, other fauna typical of seep environments was identified, notably bivalves
of the families Thyasiridae and Nuculidae (genus Acila). The crustacean fauna was mostly
composed of species that were not specific to reducing environments (e.g. Ethusa curvipes as
in the Broken Water Bay), with the exception of the hippolytid shrimp Lebbeus sp. (also
found in the Broken Water Bay). The squat-lobster Munidopsis andamanica, largely
distributed in the Indo-Pacific and frequently found associated with sunken wood (Hoyoux et

al. 2009), was also found in these samples.

Bathymodioline mussel diversity

All phylogenetic trees (COI, 28S and COI+28S) are very congruent. Specimens collected in
the Broken Water Bay (Sepik) and in the Basamuk canyon (Astrolabe Bay) cluster into four
distinct groups (Figure 5), some of which also include sequences from GenBank. The
specimens from Broken Water Bay (Sepik station CP4042), are divided into three groups.
One well-supported clade (three specimens) is sister to Gigantidas taiwanensis. This new
clade is closely related but distinct from G. taiwanensis which is only known from a shallow

vent off Taiwan. The second group clusters 39 newly-collected specimens, including one
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collected during the BIOPAPUA cruise in the Broken Water Bay (labeled in Thubaut et al.
2013 as “Gigantidas sp 1 Broken Bay”). Finally, one specimen clustered with one specimen
collected in 2010 (labeled “Gigantidas sp. 2 Broken Bay” in Thubaut et al. 2013). Interstingly
this cluster also included one sequence from a specimen collected in the Basamuk canyon
(CP4042). Based on COI data, this species was also collected earlier in a site after the nearby
Aitape village, at 420 m depth (Kyuno at al. 2009). The 2012 expedition also explored the
Aitape area but did not bring back any catch of fauna typical of seep environments. In this
area, two additional undescribed Gigantidas species (assignation based on COI data) were
collected deeper during the Japanese cruise (1600-1900 m, Kyuno at al. 2009). These species
were not collected again during our expeditions, probably because they live deeper than the
explored bathymetric range. The eight other specimens from Basamuk canyon (CP4020)
cluster into a distinct group and form a well-supported group, sister to Nypamodiolus
longissimus. These specimens are thus attributed to a potential new species of the genus
Nypamodiolus.

If we consider the high genetic distances found within and among these clusters, and the fact
that the phylogenetic information from mitochondrial and nuclear genes is congruent, we can
conclude that four putative species were found at the Broken Water Bay site and in the
Basamuk canyon, and two of these were previously collected during the BIOPAPUA cruise.
Overall, the three explorations in this area (JAMSTEC cruise, BIOPAPUA cruise and
PAPUA NIUGINI expedition) identified five different Gigantidas species and one
Nypamodiolus species. Interestingly, only one of these species was found at all locations
(including at Aitape), the five others being each restricted to a single location. Similarly,
Nipponiomodiolus manusensis (new genus under description, Cosel & Thubaut) has only been
found at hydrothermal vent sites in the Manus Basin and was not found in our cold-seep

collections (Thubaut et al. 2013).
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The genus Nypamodiolus contains species that are very ecologically diverse (i.e. associated to
plant remains, whale bones or seep environements over a wide bathymetric range). For
example the geographic range N. longissimus coincides with that of the Nypa palm, even if it
is sometimes associated with other types of wood; N. simpsoni has been collected in both the
Mediterranean and in the Atlantic, over a wide range of depths, and associated with whale
carcasses, sunken wood, and cold seeps (Thubaut et al. 2013). The specimens attributed to
Nypamodiolus collected below the Ramu refinery, belong to an unknown species: they have
never been found elsewhere in our collections (neither in the Astrolabe Bay in general nor on

the abundant plant debris often collected at other sites during our expeditions).

Siboglinidae diversity

Siboglinid tubeworms were only found at two locations (Broken Water Bay and Astrolabe
Bay sites). In the Astrolabe Bay, tubeworms were only found in the Basamuk canyon off the
Ramu refinery. Part of COI was sequenced for a total of 11 siboglinid specimens collected
from these locations. Specimens fall into three distinct lineages (Figure 6) that are not shared
between locations: two of these clades are only found at the Sepik River site and the third has
only been collected at the Astrolabe site during our expeditions.

Two specimens from the BrokenWater Bay collections (BIOPAPUA cruise) cluster among
escarpiids, but clearly form a separate clade. Although clearly distinct, the sequences of the
Broken Water Bay escarpiid species most closely resembles that of a distinct isolate of an
animal identified as Paraescarpia cf. echinospica (isolate E1) collected near Japan (Andersen
at al. 2004). Sequences from two other specimens of Paraescarpia cf. echinospica, also
collected near Japan, however form a different clade. Closer examination of the morphology

of all these worms (if vouchers are available) will be necessary to determine species identities.
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The sequences for five specimens of Lamellibrachia from the Broken Water Bay site most
closely cluster with the sequence of a Lamellibrachia specimen collected about 325 km west
of the Broken Water Bay collection site (Aitape site Lamellibrachia L6 in Kojima et al.
2003). Although distinct in sequence, two other species of Lamellibrachia are closely related
to this group: L. sp. L4, from the PACMANUS vent site in the Manus Basin (about 650 km
east of the Broken Water Bay site), and L. sp. L5, from the cold-seep sites of Kuroshima
Knoll, about 3 000 km north-northwest of the Broken Water Bay site (Kojima et al. 2001).
Additional samples from the different locations will be necessary to futher study this lineage
and determine whether there is genetic continuity between the groups identified.

Sequences from Basamuk canyon specimens all cluster with different haplotypes of
Lamellibrachia juni, including four specimens collected from the DESMOS hydrothermal
vent site in the Manus Basin, about 770 km to the East. However, some genetic structure
exists in this clade, and the haplotype network produced for this lineage (Figure 7) revealed
some geographic patterns that could correspond to different species occupying different
locations. Basamuk canyon specimens (n=4) represent 3 distinct haplotypes differing by 2
mutations at the most. These differ from the DESMOS specimens (n=4) by at least 10 fixed
mutational steps. Sequences from specimens collected 1600 km to the North (TOTO Caldera,
South Mariana) differ from Basamuk canyon sequences by 6 fixed mutational steps. At the
Brothers Caldera (4600 km Southeast of the TOTO Caldera, and 3500 km Southeast of the
Astrolabe Bay), there are two haplotype groups, one of which only differs from the TOTO
haplotype by a single mutational step, possibly corresponding to a single species. The other
haplotypic group from Brothers Caldera differs from all the other haplotypes by at least 4
fixed mutational steps.

For at least two clades, even though sequence polymorphism does exist, interspecific

variation is no greater than intraspecific variation (Miglietta et al. 2010). This observation
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does not reflect within-species morphological variation but a reduced divergence of the
mitochondrial genome (Miglietta et al. 2010; Cowart et al. 2013). The COI marker thus offers
a very conservative estimation of specific diversity in Siboglinidae. Based solely on COI
sequence data, there is therefore little doubt that the species studied here represent new
species that have only been collected in the sampled area so far. The Lamellibrachia
specimens collected at Broken Water Bay probably correspond to the same species as the
specimen collected at the Aitape site, further west on the PNG coast (Kojima et al. 2001,
2003). A population genetics study including more variable markers (e.g. microsatellites)
could reveal whether these populations separated by 350 km are genetically connected. The
number of specimens collected in Basamuk canyon (Lamellibrachia juni clade), and other
specimens of the same clade from different locations was sufficient to initiate a study of
connectivity. The specimens from the Astolabe Bay were only found at the site below the
Ramu refinery. Although close to L. juni, there are some fixed differences in the COI
sequences that strongly suggest that this lineage should be separated into at least four species
(non-interbreeding populations), two of which are found in Papua-New Guinea. Except for
the Brothers Caldera site where two species co-occur, only a single haplotypic group
(=species) occurs at each site. Even within the Manus Basin, the sequences of the specimens
from the hydrothermal vent site DESMOS are 10 mutational steps distant from the sequences
of the specimens collected at the cold-seep site in the Astrolabe Bay, indicating that they

belong to reproductively isolated evolutionary units.

CONCLUDING REMARKS
Deep-sea chemosynthetic environments are rare and very patchy (Levin & Sibuet 2012, Van
Dover at al. 2012). Some organisms can live in several types of chemosynthetic environments

(e.g. Idas washingtonius is present at vents and on sunken wood or bones in the Eastern
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Pacific; Gigantidas platifrons is present both at vent and seep environments in the western
Pacific, Thubaut et al. 2013; Pyropelta musaica is found at cold seeps, hot vents and on
sunken whale carcasses, Smith & Baco, 2003), and some have a very wide distribution,
sometimes spanning thousands of kilometers (e.g. Rimicaris exoculata on the Mid-Atlantic
Ridge, Teixeira et al. 2013). In the Atlantic Ocean, the among-site faunal similarity is better
explained by depth than by geographic distances (Olu et al. 2010). The potential threat to the
fauna associated with deep-sea chemosynthetic habitats should therefore take into account a
complex pattern of patchiness and connectivity at small and large geographic scales.

Although intensive, our sampling in the area has probably missed some chemosynthetic sites.
For instance, we re-visited the Aitape site sampled earlier with a remotely operated vehicle
(Tappin et al. 2001), and did not find any fauna typical of cold seeps in our collections. The
area is characterized by very complex bottom structures that are difficult to sample using
dredges and trawls. In addition, the sampled animals formed very small clumps (Tappin et al.
2001) that are easily missed. It is therefore very likely that there are sites with chemosynthetic
fauna elsewhere in the sampled area.

However, the collections so far clearly reveal not only the great patchiness in the distribution
of different environments (cold-seeps, hydrothermal vents, sedimentary areas, rubble, plant
debris) that has a direct effect on the distribution of species, but also differences in the species
that occupy different sites of the same habitat type, in particular for the cold-seep sites studied
so far in PNG.

In other words, even if some species are shared between the two locations sampled, each
location is also characterized by unique assemblages. The Broken Water Bay site does share
some species with the Aitape site (Lamellibrachia L6 and Gigantidas sp. 2, this latter also
found in the Astrolabe Bay) but the Astrolabe Bay site is characterized by some species that

have so far only been found there. Interestingly, the Northern sites (Aitape and Broken Water
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Bay) receive currents from the Northwest (with occasional upwellings) while the Astrolabe
Bay receives currents coming from the Southeast through the Vitiaz Strait (Hasegawa et al.
2011), suggesting each location could receive larvae from different sources.

Our results however provide clear evidence of the patchiness of the cold-seep habitats in PNG
and of the limited connectivity between the two studied sites. Although more exploration
remains to be performed, it is clear that the assertions that impact of human activities on deep-
sea species is limited because the deep sea is uniform and that all species are present
everywhere, are inherently wrong. In case the of the Ramu refinery in the Astrolabe Bay, we
could not exclude that the major impact it has on the local deep-sea habitat in the Basamuk
Bay would actually correspond to local species extinction. These concerns call for major
exploration efforts and studies of connectivity in the hotspot of biodiversity that PNG

represents.
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FIGURE CAPTION

Figure 1: Map of Papua New Guinea with locations of stations sampled during the
BIOPAPUA (2010) cruise and PAPUA NIUGINI expedition (2012). Stations where cold seep

organisms were found are represented by white squares (left of arrows: station numbers).
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Other stations are represented by grey circles. The map was prepared based on NOAA's
ETOPOL1 data using the marmap package in R (Pante and Simon-Bouhet 2013). Stations
CP4020 and 4081: Basamuk canyon, canyon below the Ramu refinery. Stations CP3703,

3704, 4040, 4042, and 4043: Broken Water Bay, Sepik site.

Figure 2: Broken Water Bay fauna. Photos taken on board. A- Bathymodiolinae mussels,
PAPUA NIUGINI, CP4042; B-Gigantidas sp 2 Broken Bay BIOPAPUA, CP3703; C-
Gigantidas sp 1 Broken Bay, BIOPAPUA, CP3703; D-Lamellibrachia sp., BIOPAPUA,
CP3703; E- Acila sp., BIOPAPUA, CP3703; F- Conchocele sp., BIOPAPUA CP3703; G-

Buccinidae gastropod Manaria sp. , PAPUA NIUGINI, CP4042

Figure 3: Basamuk Canyon, below the Ramu refinery. A- Muddy sediment collected 50 m
below pipe opening (DW 4018) B- Red muddy sediment collected 200 m below pipe opening
(DW 4019). C- Goniopugettia sagamiensis. D- Ethusa curvipes. Illustrations of the red
mineral deposit covering animals. Specimens on the left collected outside the refinery area.

Specimens on the right collected at station CP4081.

Figure 4: Basamuk Canyon fauna (PAPUA NIUGINI, CP4081). A-B Siboglinidae
(Lamellibrachia sp.), C-Bathymodiolinae (Gigantidas sp.), D- Lebbeus sp.; E- Munidopsis

andamanica. The red coloration of the specimens is due to the Ramu refinery tailings.

Figure 5: COI (A), 28S (B) and COI+28S (C) Bayesian phylogenetic trees obtained from 105
Bathymodiolinae. Posterior Probabilities (> 0.90) and Bootstraps (> 75%) are shown for each

node. *: Posterior Probabilities > 0.98 and Bootstraps > 95%. For clarity purpose, supports for
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within species relationships are not shown. Specimens from the PAPUA NIUGINI are in

BOLD.

Figure 6: Bayesian phylogenetic tree obtained from 298 Vestimentifera COIl sequences.
Posterior Probabilities (> 0.85) and Bootstraps (> 75%) are shown for each node. *: Posterior
Probabilities > 0.98 and Bootstraps > 95%. For clarity purpose, supports for within species
relationships are not shown and clades that included sequences from the same species or the
same species complex were collapsed in triangles (as long as they did not include Papua
Niugini sequences). Specimens from the PAPUA NIUGINI are in BOLD. Specimens of the

species Gigantidas sp. 1 Broken Water Bay were collapsed into a triangle (details in table 1).

Figure 7: Sampling locations (left) and TCS haplotype network (Clement et al. 2000) of the
Lamellibrachia juni clade (right). Circles on the network represent unique mtCOI haplotypes,
circle diameter proportional to number of individuals (key: bottom right). Intermediate
mutations (i.e. unsampled haplotypes) are represented by small white circles. Site colors on
the map correspond to circle colors on the network. The map was prepared based on NOAA's

ETOPOL1 data using the marmap package in R (Pante and Simon-Bouhet, 2013).



Table 1: List of analyzed specimens.

MNHN #
IM_2013_17293
IM_2013_17294
IM_2013_17295
IM_2013_17296
IM_2013_18626
IM_2013_18628
IM_2013_18629
IM_2013_18630
IM_2013_18631
IM_2013_18632
IM_2013_18634
IM_2013_18656
IM_2013_18670
IM_2013_18674
IM_2013_18675
IM_2013_18717
IM_2013_18719
IM_2013_18722
IM_2013_18723
IM_2013_18724
IM_2013_18725
IM_2013_18726
IM_2013_18727
IM_2013_18728
IM_2013_18729
IM_2013_18730
IM_2013_18731
IM_2013_18732
IM_2013_18733
IM_2013_18734
IM_2013_18735
IM_2013_18736
IM_2013_18737

IM_2013_18738

Group

Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae
Bathymodiolinae

Bathymodiolinae

1D

Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 2 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
new species 2

Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay
Gigantidas sp. 1 Broken Bay

Gigantidas sp. 1 Broken Bay

Expedition

PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
PAPUA NIUGINI
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