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Induction Machine Fault Detection Enhancement 
Using a Stator Current High Resolution Spectrum 

El Houssin El Bouchikhi, Vincent Choqueuse, Mohamed Benbouzid and Jean Frederic Charpentier 

Abstract-Fault detection in squirrel cage induction machines 
based on stator current spectrum has been widely investi­
gated. Several high resolution spectral estimation techniques 

have been developed and used to detect induction machine 
abnormal operating conditions. In this paper, a modified version 
of MUSIC algorithm has been developed based on the faults 
characteristic frequencies. This method has been used to estimate 
the stator current spectrum. Then, an amplitude estimator has 
been proposed and a fault indicator has been derived for fault 
severity measurement. Simulated stator current data issued from 
a coupled electromagnetic circuits approach has been used to 
prove the appropriateness of the method for air gap eccentricity 
and broken rotor bars faults detection. 

Index Terms-Induction machine, fault detection, signal pro­
cessing, power spectral density estimation. 

I. INTRODUCTION 

In a wide variety of industrial applications, an increasing 
demand exists to improve reliability, availability, and safety 
of electrical systems. A sudden failure of a system may lead 
to cost expensive downtime, damage to surrounding equipment 
or even danger to humans. Induction machine is omnipresent 
in these electrical systems. Although it is robust and reliable, 
the induction machine is subjected to several faults. Common 
failures that may occur can be roughly classified into stator 
winding short circuit, broken rotor bar, broken end-ring, rotor 
eccentricity, bearing faults, shaft misalignment and load faults 
[1], [2]. In spite of the advances in failures detection, condition 
monitoring of induction machine is still a challenging task for 
engineers and researchers [3], [4] in order to emphasize the 
predictive maintenance. 

A common approach for faults monitoring is vibration 
monitoring [5]-[7]. However, this method is expensive since 
it requires costly additional transducers. A cost-effective alter­
native is stator current supervision since current measurement 
requires limited number of sensors and it is already available 
for control and protection purposes. A literature survey showed 
the interest of the approach for mechanical and electrical faults 
detection [8]-[ lO]. Most authors perform the fault detection by 
monitoring the additional frequency components introduced by 
the fault but no precise stator current model is given. In various 
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works, numerical machine models accounting for the fault are 
used without providing analytical stator current expressions 
[ 11]. 

Theoretical analysis has shown that faulty machine frequen­
cies of interest are given by [4] 

Ik = Is ± kIe, k = 0,1, . . .  ,L. (1) 

where Is is the the electrical supply frequency, Ie corresponds
to the fault characteristic frequency, and 2 x L is the sidebands 
number. These frequencies are associated to air gap eccentric­
ity, bearing failures or broken rotors bar faults. 

In steady-state condition, Is and Ie are constants and
techniques based on classical spectral estimators (Periodogram 
and its extensions) have been employed [3], [12]. In order 
to overcome the poor resolution of these techniques, high 
resolution techniques have been proposed which require an 
a priori knowledge about the signal such as MUSIC and 
ESPRIT [13]-[16]. In non stationary environment, more so­
phisticated techniques have been investigated such as time­
frequency representations [17], [18] and time-scale techniques 
[19]. However, despite the rich literature, none of them exploit 
the particular structure of the frequency content in (1). 

In this paper, we propose a stator signal analytical model 
that takes into account the particular structure of the fault 
sensitive frequencies given by (1). A stator signal model is of 
great interest since it helps to develop suitable post-processing 
tools and detection strategies. Then, a high resolution power 
spectral density (PSD) estimate is developed based on this 
signal model for fault detection. 

The fault detection technique proposed, herein, is based 
on three steps. First, the fundamental frequency, the fault 
characteristic frequency and the number of sidebands are 
estimated based on a modified version of MUSIC. Then, the 
maximum likelihood estimator, which is an optimal technique, 
is used to estimate the amplitude of the fault characteristic 
components. Finally, a fault detection criterion is computed 
from the estimated amplitudes. 

To illustrate the difference between the classical MUSIC 
algorithm [20] and the proposed technique, Fig. 1 presents 
the MUSIC pseudo-spectrum and our modified version for 
a supply frequency of Is = 50Hz, a fault characteristic
frequency of Ie = 10Hz, and with 50dB signal-to-noise ratio
(SNR). Figure l(a) shows that the MUSIC pseudo-spectrum 
exhibits spectral peaks at Is ± kie. In contrast to classical
MUSIC, the proposed technique tracks the supply frequency 
and the characteristic frequency in a two-dimensional space. 
Figure 1 (b) shows that the modified cost function exhibits a 
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Fig. 1: Cost function for classical MUSIC and customized 
MUSIC (cost function in the case of a synthetic signal with 

is = 50 Hz, ie = 10 Hz, L = 2 and SNR = 50dB).

single peak at is = 50Hz and ie = 10Hz. As compared to
MUSIC, the proposed technique makes the estimation of is 
and ie (and the subsequent processing) easier. Furthermore,
as it exploits more information about the signal, the proposed 
technique is expected to outperform the classical MUSIC 
algorithm. 

The remaining parts of the present work are organized 
as follows. Section II analyses the effects of machine fault 
on the stator current and presents a stator current signal 
analytical model. Section III describes the fault detection 
method proposed in this paper. Simulation results are presented 
in section IV for broken rotor bars and air gap eccentricity 
detection in induction machine and section V concludes the 
work. 

II. INDUCTION MACHINE STATOR CURRENT MODEL

In this section, we propose a stator current signal model for 
healthy and faulty machines. 

A. Fault Effect on Stator Current 

The following section presents the effects of broken rotor 
bar or air gap eccentricity on the stator current. A broken rotor 
bars and air gap eccentricity can be detected by monitoring 
the machine current spectral components produced by the 
magnetic field anomaly. This condition monitoring approach 
provides the advantage of not requiring any knowledge about 
the machine construction. 

The broken rotor bar and air gap eccentricity sensitive 
frequencies are given by (2) and (3), respectively [4]. 

where 

ibrb = is [k C ; s ) ± 
s
] 

ieee = is [1 ± m C ; s ) ] 

is is the electrical supply frequency;

p is the number of pole pairs;

s 
is the per-unit slip;

kip = 1,5,7,11, ... ;

m = 1,2,3, .... 

(2) 

(3) 

These faults characteristic frequencies can be expressed in 
the general form of (1) [21J. In the following, we propose 
a stator current signal model based on these characteristic 
frequencies. 

B. Signal Model 

In this paper, we consider a stator current signal model 
composed of 2 x L + 1 complex-valued sinusoids. The signal 
is assumed to be corrupted by an additive white noise. Using 
(1), the stator current can be expressed as: 

L 
x[n] = L akej((ws+kwc)nHk) + b[n] (4) 

k=-L 

where 

The normalised pulsations is and ie are defined as

where Fs corresponds to the sampling rate;

(5) 

(6) 

ak and 1Yk denote the amplitude and the phase of the
kth sinusoid;

b[n] rv Ne(O, (72 ) is a complex circular white Gaussian
noise i.e.: 

E[b(n)] 
E[b(n)b(n + T)] 

E[b(n)b*(n + T)] 

(7) 

(8) 

(9) 

where E { . } ,  ( .) * and 6" ( .) corresponds to the statistical
expectation, the complex conjugate and the Dirac delta, 
respectively. 



One can notice that if Is = OHz then the signal corresponds to
a periodic waveform. Furthermore, if Ie = OHz or L = 0 then
the model reduces to a single complex sine wave embedded 
in Gaussian noise. 

Let us construct the M x 1 column vector, x[n], which
contains M consecutive samples of the observed signal i.e. 

x[n] = [x[nJ,·· . ,x[n + M - l]]T (10) 

where (.)T denotes the matrix transpose. Using a matrix
notation, (4) can be expressed as 

A. Frequency Estimation 
Assuming that the phases of the complex sinusoids are 

independent and uniformly distributed on the interval [-Jr, Jr[, 
the covariance matrix is given by 

R =E{ x[n]xH[n] } (16) 

=E { (D(fs )A(fe)s[n] + b[n])

x (D(fs )A(fe)s[n] + b[n])H } (17) 

=(D(fs )A(fe)) P (D(fs )A(fe))H + a2 1M (18) 

x[n] = D(fs )A(fe)s[n] + b[n] 

where: 

(11) where E{.} denotes the statistical expectation, (. )H refers to
Hermitian matrix transpose, 1M is the M x M identity matrix
and 

b[n] is a M x 1 column vector containing the noise
samples. This vector is defined as: 

b[n] = [b[nJ,··· ,b[n + M - l]]T (12) 

s[n] is a (2 x L + 1) x 1 column vector containing the

P = E{ s[n]sH[n] }. (19)

The covariance matrix eigenvalues decomposition can be 
written as follows 

(20) 

complex sine waves parameters. This vector is defined where A is a diagonal matrix containing the eigenvalues
as: Al ?: . . .  ?: AM of Rand U is a unitary matrix containing

the associated eigenvectors. Under the assumption HI and
s[n] = [a_Lej«ws-Lwc)n+<p-d, ... ,aLej«ws+Lwc)n+<PL]T the fact that P is non-singular, the diagonal matrix A can be

(13) decomposed as 

D(fs ) is a M x M diagonal matrix whose elements are
given by 

1 0 0 

0 ejws
D(fs ) = (14) 

0 

0 0 ejws(M-I)

A(fe) is a M x (2L + 1) matrix whose elements are
given by 

1 1 

e-jLwc ejLwc
A(fe) = (15) 

e-jLwc(M-I) ejLwc(M-I)

Using the signal model in (11), we propose to estimate the 
model parameters from x(n) (n = 0" " ,N - 1), where N 
corresponds to the signal length. The proposed technique relies 
on the following assumption: 

HI: The matrix D(fs )A(fe) has rank 2L + 1 which
implies that M > 2L + 1 and Ie i=- OHz.

III. HIGH RESOLUTION FAULT SIGNATURE ANALY SIS

In this section, we describe our power spectrum density 
estimator based on a customized version of MUSIC. Then, we 
derive the maximum likelihood estimator of the amplitudes,. 
Finally, we describe the proposed criterion for fault detection. 

A= [ A 0 1 
o a2IM-2L-I

(21) 

where A is a diagonal matrix containing the 2 x L + 1 greatest 
eigenvalues of A. Figure 2 shows an ordered eigenvalues
distribution model for a simulated signal composed of 2L + 1 
complex sine waves embedded in a white noise. Let us 
decompose U as 

U = [Us G] (22) 

where: 

Us is a M x (2L + 1) matrix formed from the eigenvec­
tors associated with the 2 x L + 1 greatest eigenvalues, 
G is a M x (M - 2L - 1) matrix formed from the 
eigenvectors associated with the M - (2 x L + 1) least 
significant ones. 

Using (18), it can be shown that: 

As U is a unitary matrix (UH U = 1M), UH G = O.Then, using
(20) and (21) leads to 

RG = UAUHG (24) 

Substituting (25) in (23), we obtain the following result 

(D(fs )A(fe)) P (D(fs )A(fe))HG = 0 
which readily implies 

(25) 

(26) 

(27) 
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Fig. 2: Covariance matrix eigenvalues decomposition [20]. 

In practice, R is unknown, but it can be estimated from the 
available data. Let 

N-M 

R = N _ � 
+ 1 

L x[n] x[n] H (28) 
n=O 

be the estimator of the covariance matrix and U = [Us G] be
its corresponding eigenvectors, the frequencies fs and fe can 
be found as follows 

where 

tis, j,o} = arg max ..J(fo, h) 
{foJd 

(29) 
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Fig. 3: Modified MUSIC cost function for the estimation of L 
and fe. 

function for estimating the number of sidebands L, assuming 
that the fundamental frequency fs is known. The synthetic 
signal is the same as the one of Fig. 1 (L = 2, fe = 10Hz). 
The figure shows that the proposed method correctly estimates 
L and fe. For fault detection, the estimation of L is of great
interest since it carries out the information about the fault 
existence. For L = 0, the induction machine operate under 
healthy condition. When L i- 0, a fault occurs and a criterion
must be computed in order to determine the fault severity. 

B. Amplitude Estimation 

(30) The amplitudes of the frequency components convey the 

and where II· II} denotes the Frobenius norm. If G = G, 
(27) and (30) show that the cost function ..J(fo, fd lends to
infinity for fo = fs and h = fe . In practice, as G � G, 
..J(fs , fe) has a finite value. Figure l(b) displays the cost
function for a synthetic signal with fs = 50 Hz, fe = 10 Hz,
L = 2 and SN R = 50dB. One can note that the cost function
exhibits a well-defined peak at fo = 50Hz and h = 10Hz.

The proposed approach requires a priori knowledge about 
the number of sidebands L for the evaluation of the cost 
function. If the number of sidebands is unknown, the cost 
function can be modified to take into account the estimation of 
L. Indeed, by following the same approach as in [22], it can be 
shown that the fundamental frequency, the fault characteristic 
frequency, and the number of sidebands L can be estimated 
by maximizing the following three-dimensional cost function 

..Je(fs '!e, L ) = 
(2L + l)M(M - 2L � 1)

. 

II (D(fs )A(fe))HGIIF
(31) 

For a grid connected induction machine, the supply fre­
quency fs is assumed to be known. Thus, exploiting this 
assumption, the cost function reduces to a two-dimensional 
one and the optimization problem can be solved using a two­
dimensional grid search. Figure 3 displays the proposed cost 

information about the fault severity. These amplitudes are 
contained in the vector s[O] , which is equal to 

Using the model given in (11) and fixing M = N, it can be
shown that the maximum likelihood estimator (MLE) of s[O] , 
denoted 8[0] , is given by [23] 

8[0] = (D(fs )A(fe))tx[O] 

where (D(fs )A(fe))t is defined as

(D(fs )A(fe)) t (A H (fe)DH (fs )D(fs )A(fe)) -1 

(33) 

X A H (fe)DH (fs ) (34) 

and where ( . )
-

1 denotes the matrix inverse. Using (14), it can
be shown that D(fs )HD(fs ) = 1M. It follows that

8[0] (AH(fe)A(fe)) -l 
At(fe)DH(fs )x[O] . (35)

Let us decompose the (2L + 1) x 1 column vector 8[0] as

(36) 

Using the structure of s[O] in (32), the amplitude ak can be 
estimated by 

(37) 



The MLE of the amplitude of the complex sinusoids is 
efficient [23, Theorem 7.5]. Note that in practice Ie and Is 
are unknown and must be replaced by their estimates in (35) 
(see the previous subsection for details). 

C. Fault Detection Criterion 
In order to successfully perform fault detection, a fault 

criterion is required to measure the machine state and fault 
severity. Since the information about the fault is carried out 
by the sidebands amplitude ak(k =J 0), we propose to compute
the sidebands energy to fundamental frequency energy ratio as 
a fault indicator. This criterion is expressed mathematically as 

c = t (��). 
k=-L,k#O ao 

(38) 

This criterion allows to measure the fault severity. It can 
be used as an input for fault decision algorithm allowing 
to automatically take decision on the operating state and 
condition of the machine and detecting any abnormal operating 
conditions. 

The fault detection algorithm is summed up in Fig. 4. 

Stator current 
signal model 

x[n] 

Find (i�,!c, L} with (31) 

Estimate S with (35) 

Estimate ak with (37) 

Compute C with (38) 

Fault Criterion C 

Fig. 4: Flowchart of the fault detection algorithm. 

IV. ApPLICATION TO INDUCTION MACHINE FAULTS 

DETECTION 

This section presents the simulation results. The approach 
proposed has been used to detect broken rotor bars and air gap 
eccentricity whose characteristic frequencies match the analyt­
ical stator current model presented in (1). The simulated stator 
currents are issued from a 4 kW induction machine model, 
based on the coupled electromagnetic circuits approach [11]. 
The two faults have been implemented and stator currents have 
been retrieved at 10 kHz sampling rate for 2s. Then, one phase 
stator current has been processed for fault detection and the 

TABLE I: Modified MUSIC: results for simulated healthy and 
faulty machines for L = 2.

State Ie Is � C 

(Hz) (Hz) 
ak 

(x 10-4) 

a-2 = 0.0069 
a-I = 0.019 

Healthy 23.24 50 ao = 3.33 0.49 

al = 0.0076 
a2 = 0.0075 

a-2 = 0.0003 
Static a-I = 0.084 

24.44 50 ao = 3.27 7.85 

eccentricity al = 0.036 
a2 = 0.0107 

a-2 = 0.0021 
Dynamic a-I = 0.26 

24.44 50 ao = 3.31 63 

eccentricity al = 0.0114 
a2 = 0.0066 

a-2 = 0.0.039 
Mixed a-I = 0.27 

24.44 50 ao = 3.29 90 

eccentricity al = 0.074 
a2 = 0.0.13 

TABLE II: Modified MUSIC: results for simulated healthy and 
faulty machines with L estimation for air gap eccentricity. 

Ie � C 
State L 

(Hz) (x 10-4) 

Healthy -- 0 0 

Static eccentricity 24.96 3 6.17 

Dynamic eccentricity 24.66 3 21 

Mixed eccentricity 24.54 3 72 

fault criterion C has been computed in order to measure the
fault severity. 

A. Air Gap Eccentricity Detection 
Approximately 80% of the mechanical faults lead to non­

uniformity between rotor and stator [1], [2]. This uniformity 
leads to air gap eccentricity, which includes static, dynamic 
and mixed eccentricities. In the following, we present the per­
formance of the proposed approach for eccentricity detection. 
Table I gives the simulation results for healthy and faulty 
machines using the modified MUSIC by assuming that L is 
known and equals 2. 

These results demonstrate the appropriateness of the ap­
proach proposed. However underestimating or overestimating 
L may lead to false results and then to wrong conclusions on 
the machine operating state. Then, the modified MUSIC for L 
estimation has been used to enhance the detection procedure. 

The simulation results given in table II show that the 
estimation of L improves the frequency estimation and gives 
best performances. The same approach has been used for 
broken rotor bars detection. 






