Unlikely intersections and multiple roots of sparse polynomials

Abstract : We present a structure theorem for the multiple non-cyclotomic irre-ducible factors appearing in the family of all univariate polynomials with a given set of coefficients and varying exponents. Roughly speaking, this result shows that the multiple non-cyclotomic irreducible factors of a sparse polynomial, are also sparse. To prove this, we give a variant of a theorem of Bombieri and Zannier on the intersection of a fixed subvariety of codimension 2 of the multiplicative group with all the torsion curves, with bounds having an explicit dependence on the height of the subvariety. We also use this latter result to give some evidence on a conjecture of Bolognesi and Pirola.
Type de document :
Article dans une revue
Mathematische Zeitschrift, Springer, 2017, 〈10.1007/s00209-017-1860-9〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

Contributeur : Francesco Amoroso <>
Soumis le : lundi 21 août 2017 - 20:22:32
Dernière modification le : lundi 23 avril 2018 - 14:52:11
Document(s) archivé(s) le : mercredi 10 janvier 2018 - 10:40:41


Fichiers produits par l'(les) auteur(s)




Francesco Amoroso, Martín Sombra, Umberto Zannier. Unlikely intersections and multiple roots of sparse polynomials. Mathematische Zeitschrift, Springer, 2017, 〈10.1007/s00209-017-1860-9〉. 〈hal-01081416v4〉



Consultations de la notice


Téléchargements de fichiers