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ABSTRACT
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This article describes a new method for simulating unsteady hydrodynamics forces and moments on the
blades of a crossflow ‘Darrieus’ turbine with active pitch variation. This method is based on the ONERA-
EDLIN dynamic stall model, coupled with a momentum streamtube model to take into account the
turbine interference on the flow. Both models are presented, and compared separately with experimental
results for a pitching airfoil for the ONERA-EDLIN model; and for Darrieus turbine for the momentum
theory. The model coupling is then detailed and compared with experimental data taken from the open
literature [1] The turbine has 2 straight blades with a NACA 0012 section operating in water at a mean
chord Reynolds number of 4 x 10* for tip speed ratio A = 2.5, 5 and 7.5. Good agreement was found for
average A = 5, and qualitative agreement could be obtained at low and high A, where dynamic stall effects
and interference effects respectively are predominant. This is positive because A = 5 is the closest value
from the optimal power production point. Variable pitch is finally introduced in the model and several
functions are tested in order to increase efficiency. A maximum increase of 53% on the power coefficient

was found to occur with a sinusoidal law.

1. Introduction

Tidal turbines are currently the power source that shows the
most advantages [2]. No land occupation like a dam, steady
predictable power input and output unlike wind turbines, no waste
or side effects like fossil or nuclear power plants. These devices can
consist of a classic horizontal axis screw-like systems, or crossflow
turbines which have many advantages in water [3], such as being
independent of the tide direction. Variable pitch crossflow turbines
enable a Darrieus system to improve its performance and decrease
parasitic forces, mainly responsible for fatigue and system failure [4].
They have been studied at IRENAV since 2007 as the SHIVA project.
This project of novel tidal turbines deals with three topics, which will
be introduced here. Darrieus turbines have been studied extensively
during the 70s and 80s, especially by SANDIA organization [5—8]. A
reference publication on this topic can be found in [9]. Though
almost no Darrieus turbine produced electrical power from wind
since early 90s, a renewed interest arose from the development of
water turbines because most drawbacks which prevented this
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system from becoming a major wind turbine system do not exist in
water, as for instance major difficulties in protecting the Darrieus
turbine from extreme wind conditions that are not encountered in
tidal flows. Moreover the centrifugal forces are not as severe as they
are in air [10]. For this reason many publications tackling various
issues in water crossflow turbines were written in the past few years
[11—13]. The first fluid model that was used for simulating the flow
around a crossflow turbine range from simple momentum theory,
where the turbine is divided in several streamtubes in which an
actuator disk model is applied [14]. This model has been improved
with the addition of many secondary effects. However it could never
accurately simulate local forces on blades, only global performance
through efficiency curves which was used as a first approach for
design. The second method is a vortex theory [7] which could reach
better local simulation, but remained limited as well because accu-
rate stalled situation cannot be modeled, dynamic or static. Finally
RANS, LES and DES methods were tried and gave better local results
[15], but at the cost of a much longer solving time. Compared with
the two first methods, for which CPU time is of the magnitude of
a minute, these simulations give a complete solution for a CPU time
ranging from a week to several months.

Dynamic and static stall characteristics of an airfoil have a very
strong influence on the turbine performance. Considering how the
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Nomenclature

a induction factor, a = vj, — v4/Vin, |

b half-chord, m

c chord, m

Cy,Cr  tangential and normal coefficients
Cnyr = Fnyr/(1/2)pcl?, |

G power coefficient, C, = Tw,/(1/2)p2rlv3,, |

k reduced frequency, k = wc/va, |

l blade span, m

N number of blades, |

r turbine radius, m

Re chord Reynolds number, Re = rwc/v, |

Splade  blade surface, S = Ic, m?

Swurbine  turbine surface, S = 2rl, m?

Ur relative flow velocity vy = v \/cos(0)2 + [sin(f) + A%,
m/s

Voo upwind flow velocity, m/s

o incidence, rad

I’} pitch angle for variable pitch Darrieus turbine
(see Fig. 4), rad

A tip speed ratio A = rw/ve, |

v kinematic viscosity, m?/s

p fluid density kg/m3

1 system solidity, ¢ = Nc/2r, |

0 main angular position, rad

T reduced time, T = v« /c/2t, |

X arithmetic mean of variable x

X temporal derivative of variable x

Xinjour  Variable x at in/outlet of a streamtube

XA variable x at center A of a streamtube

vortex method could not predict it accurately, and the complexity
of a CFD simulation in an optimization process, the ONERA-EDLIN
model is a very interesting compromise. On top of that, it has the
ability to model any special kinematics and not just only pitch; it
can predict unstalled dynamic behavior based on a potential
formulation; and it can calculate aerodynamic moment when
dynamic stall exist, which is interesting in the case of variable pitch.

Variable pitch crossflow turbines have mainly been developed as
propellers. Their ability to create a thrust force in any direction
enables a better control of ships. Nowadays the Voith-Schneider
system [16] is often used when maneuverability is needed. All
these devices can be classified according to their tip speed ratio A. For
wind/water turbines application, the 1 < 1 devices were tested and
showed poor performances [17], thus only A > 1 devices are studied
in this paper.

This paper focuses on the study of active control devices, for
which each azimuthal position gives one pitch position. Passive
devices on the other hand use springs and masses, taking advan-
tage of centrifugal forces throughout turbine acceleration [13,18].
Recent research on active pitch control devices can be found.
Ref. [19] used a modified CAARDAV code, the best double multiple
streamtube model currently available. They simulated three kinds
of pitch laws. The first one was the ideal one, which kept the
incidence at a constant ideal value throughout the revolution,
which resulted in a very steep pitch function. The second one just
limited the angle of incidence to this ideal value to avoid any stall,
resulting in a smoother curve. Finally the third law was a sine
function which made the angle of attack continuously change from
0 to this ideal value, resulting in the smoothest curve. The perfor-
mance was improved, and the final conclusion was that though
a sine function delivers less power, it is much more desirable as far
as fatigue and parasitic forces are concerned. An optimal sine
amplitude had yet to be found since with the complex Darrieus
kinematics the geometric incidence is not an explicit value, and it is
thus difficult to choose an ideal angle of attack.

A Korean project [20] performed RANS simulation on a device
with individual pitch control obtained by a servo motor on each
blade. They obtained an ideal pitch function and a sinusoidal

do, da d%a
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attached flow dt + AQl Aleealr + ( S + (T) dr +S gltZ
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approximation of it. The system is currently under experimental
test. In Scotland a project involving hydraulic variable pitch of the
blades is being carried out [21]. Its main originality is to have
a common pressure tank that would refill when the blade’s hydro-
dynamic moment is oriented the same way as the blade rotational
velocity, so that the actual energy cost of the pitch variation would
be almost zero. A British project [22] is also under development,
featuring hydraulic pitch control in a sine manner. It is however
focused more on self-start than actual power improvement.

2. Theoretical backgrounds

The model studied here relies on two theories: the actuator disk,
and the ONERA-EDLIN dynamic stall. Their basic concept will be
introduced here.

2.1. ONERA-EDLIN model

For complete reference please refer to [23], as this is only
a general introduction. This model is based on the idea that non
linear systems, such as the aerodynamic coefficients, can be line-
arized for small amplitudes. Extending this idea to large amplitudes
of variation around a steady value of the coefficient Cgys yields the
Equation (1).

a
de2

2
a(@Cq +b(@) S+ eSS = a@Coste@ S f@ TS (1)
where a, b, ¢, d, e and f are explicit functions of «; Cg is any of the
three aerodynamic coefficients and Cg its steady state value.

The strong differences between attached and detached flow
required the use of two separate equations defined in Equations (3)
and (4). The global force or moment is eventually obtained through
summation of attached and detached components as defined in
Equation (2).

global force or moment Q = Q; +Qy (2)

lift
(3)

drag and moment
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The variables A, s, g, a, r and E are extracted from the thin foil
theory or from experimental data. The term Q, which manages the
stalled behavior is 0 before stall, and then increase at stall. This is
controlled with the right hand term of Equation (4) which is
0 before stall. AQ is the difference between the extrapolated
unstalled behavior into the stalled region (linear for lift, quadratic
for drag, constant for moment). In order to account for a stall delay
[24] this value is kept at zero for a constant reduced time Atg after
stall (8 for lift, O for drag and 2 for moment). This behavior is
described in Fig. 1 for the lift coefficient.

After testing and modifying the base equations described above,
Petot [23] introduced three formulations for lift, drag and moment
unsteady prediction. They are described respectively in Equations
(5)—(7) in the coefficient form.

non circulatory term  added mass term

—_—— circulatory term  stall term
1 dW, dw —
L =jp5 sb dto + K Tt1 + velqe  +velsjif
(5)
dw,

2)05 V2 % Cdjin + 0b—— dr D 4 ve I, drag (6)

1 dW, dw

M = 5pSc {vz Conlin + de— +0ve Wy +sb dtl
+ Voo I—‘Z,moment] (7)

I'y and I'; are obtained from differential Equations (8) and (9)
respectively. I'; is only required for lift calculation.
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The variables Wy and W; are of prime concern since they
describe the kinematics of the foil. They are respectively the
induced velocity at quarter chord, and the derivative of this induced
velocity relatively to the half-chord variable. This is written in
Equations (10) and (11).

Wy = %(XM/C = 025) (10)
od
W = ai (11)
17 d(xm/b)

The zero normal velocity condition at wall enables the calcula-
tion of these variables as a function of the kinematics encountered.
In our cases they are written in Equations (12) and (13).

WO = Voo &
pitching airfoilq ,,_ €, (12)
2

Wy = —vecos(f + ) + rfsin(B)

Darrieus with variable pitch c,,
P { Wy =3 (0+6)

(13)

The differential systems are solved with the software Scilab
using a 4th order Runge Kutta scheme.

Experimental data were used to validate this model [25] for
lightly stalled and deeply stalled state. The experimental variables
are gathered in Table 1. Agreement is good with max deviation
below 50% at peaks during stall and below 10% elsewhere. Results
are shown in Fig. 2.

2.2. Streamtube model

This model is derived from the momentum “actuator disk”
model. It equates the lift and drag projection on the undisturbed
flow axis with the fluid momentum decrease when going through
the turbine. The main output of this model is the interference
parameter defined by Equations (14) and (15), where v is the
velocity of the fluid in the tube of fluid considered, vjj, is the velocity
of the fluid upwind from this tube, and v,y is the velocity of the
fluid downwind from this tube

va = (1 -y (14)
Vout = (l — 2a)vin (]5)
[|--- Static, Re=2.10°
2| — Static with delay i
—_— Linear
1501 7 AC) =
—— AC; modified
G 1 7Cl,maz e i |
I
|
I
0.5 ! |
. ATy
0 1 o= .
0 5 10 15 20

Fig. 1. A variable evolution as a function of « including stall delay.



Table 1
Experimental data used for ONERA-EDLIN model validation using a pitching airfoil.

Frame 7108 7110 7111 9210 9213 9214 9217
Fluid Air at 20°

Reynolds number 3.90 x 108 | 3.5 x 10°

Kinematics Sinusoidal

Mean angle 8° ‘ 15°

Amplitude 10° 20°

Frequency 1.35Hz 5.40 Hz 10.80 Hz 0.53 Hz 131 Hz 2.62 Hz 5.24 Hz
Reduced frequency 0.0250 0.0997 0.1992 0.0098 0.0243 0.0489 0.0983
Foil section NACA0012

Chord 0.61 m

Rotation axis

Quarter chord

The turbine is divided in several tubes defined by the azimuthal
step chosen. The turbine is also divided into an upstream and an
downstream part, and voy from upstream computation becomes
vip for downstream section. A typical tubes number for the cases
considered is 20. The final formulation for computing the

interference parameter a is written in Equation (16), where N is the
number of blades, C is the chord, v, is the relative fluid velocity in
the foil frame of reference, r is the turbine’s radius, 6 is the
azimuthal position, § is the blade pitch, Cy and Cr are the hydro-
dynamic coefficients, normal and tangential respectively.

7108 S 11

7110

7111

9210 ~ 1|

9213

9214

2
9217 1.5

1

5

incidence (°)

--- static
——  experiment
—— ONERA-EDLIN

incidence (°)

—— increasing pitch
.......... decreasing pitch

Fig. 2. Validation of ONERA-EDLIN model for various amplitude and frequency on a pitching airfoil.
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The hydrodynamic coefficients need to be interpolated from
data and modified to account for the dynamic effects due to blade
motion. That is what is done with the ONERA-EDLIN model.

Solving Equation (16) is done with an iterative process, in our
case a Newton's method, with an accuracy of 10~3. Convergence
is usually obtained in less than 10 loops. This model has been
improved through the years to account for several secondary effects
such as tower interference or fluid expansion [26], resulting in the
CARDAAV code. In our study though most of these effects were not
taken into account because they did not provide much improve-
ment, and involved a heavier calculation.

The main limitation of this model is the approximation of
a laminar, steady flow. In the cases of heavy loadings or large
solidities experiments show recirculation, vortices generation and
other energy losses. In these cases the streamtube theories often
cannot converge, or exhibit unphysical behavior such as diverging
loads or interference factor. One must hence be very careful while
using this model to avoid unphysical solutions.

Coupling the models requires considering several strategies.
Whereas using a full Double Multiple Streamtube model is
supposed to be more precise, it requires much more CPU power,
because at every iteration loop in the evaluation of the interference
parameter a an ONERA-EDLIN simulation must be ran. Another
option is the use of a Double Single Streamtube model, which
divides the turbine in just two areas, one upstream and one
downstream. Both models were compared as far as CPU perfor-
mance, convergence and experimental agreement are concerned.
Fig. 3 shows that the difference is minimal, for a CPU time multi-
plied by approximately 10. Thus it was decided to use a double
single streamtube rather that a double multiple.

3. Comparison with experiment
3.1. Experimental data

The experimental data are taken from [1]. Even though they
were made at a relatively low Reynolds number they are relevant
since they cover a wide range of tip speed ratios including an
operational one. No experimental data could be found at a higher
Reynolds number at the time the article was written. It will be

Table 2
Experimental cases taken from [1] used in this article.
Case 1 Case 2 Case 3
Fluid Water
Undisturbed fluid velocity 0.183 m/s 0.091 m/s 0.061 m/s
Number of blades 2
Diameter 122 m
Span 1.1 m
Chord 0.0914 m
Total solidity 0.3
Blade section NACA0012
Rotational speed 43 rpm = 0.75 rad/s
Tip speed ratio A 2.5 5 7.5
Chord Reynolds number 4 % 104

needed however since full scale turbines will run at a higher Rey-
nolds number. The data are gathered in Table 2.

The measured values in this study are the normal and tangential
force coefficients defined by Equations (17) and (18). They are
relevant in the study of crossflow turbines since they are respec-
tively parasitic and useful forces. The coefficient of performance is
proportional to the coefficient of tangential force as described by
Equation (19) [27]. This makes Cr a relevant parameter for perfor-
mance evaluation. In the present study performance increase will
be directly associated with Cr increase.
Fn

Cn = SO (17)
il)sbladevw
F
S (18)
zpsbladevw
Gy = oiCr (19)

The coordinate system used in this study is illustrated in Fig. 4.

3.2. Results and discussion

Comparison of the results given by the ONERA-EDLIN simula-
tion and experiment is shown in Fig. 5. On this figure is also dis-
played a classical DMST with Gormont dynamic stall from [17]. The
agreement exhibits better general prediction for tangential coeffi-
cient Cr, especially for the upstream section. For case 2 (4 = 5) the

--- Double Multiple Streamtube

Single Streamtube
Experiment

l l l
0 45 90 135 180 225 270 315 360

0(°)

0 45 90 135 180 225 270 315 360
0(°)

Fig. 3. Single streamtube versus double streamtube method for case 2 (4 = 5).
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Fig. 4. Coordinate system used in this study.

prediction is good, general behavior is correctly simulated and most
extremums are predicted well. The only issue is the downstream
part for which the model predicts a high torque whereas experi-
mental data show a steep decrease around 340°. This is due to the
energetic model and shows that it might be unable to predict
a correct interference. For case 1 (A = 2.5) and 3 (A = 7.5) agreement
is not qualitatively as good. The same over-prediction occurs at the
downstream part, and normal forces are under-predicted. The

T T [
/"\\ ------- Onera-Edlin
/| |—— Experiment
2L ! +\ |--- Gormont
i
0 | -
(A= 2.5)
2 |-
1 |-
9
0 |-
(A=5)
1k
2 |-
9
0 |-
(A=17.5)
_oL

[
360

worst case is case 1 for which 2 is the lowest. This was predictable
since it is the case where the incidence is highest, where the stall is
deepest. Even though the tangential force is predicted better with
the ONERA-EDLIN that with DMST, a difference still exists, which
would require improving the stall model further (Fig. 5).

Case 2 (A = 5) being the case which is the closest from an
operational point, its agreement with experimental results is
positive regarding the use of ONERA-EDLIN model coupled with

10 F T =

Fig. 5. Comparison of ONERA-EDLIN model with experiment and DMST-Gormont.
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Fig. 6. Pitch and incidence angles considered in constant pitch function predicted by
DMST method.

single streamtube model. We will now use this case as a test case
for variable pitch.

4. Variable pitch

Two strategies were used in this study to find an appropriate
pitch law. First the constant incidence law as described by [19] was
tried. It aims at maintaining the local incidence at a constant angle
slightly below the stall angle. The foil has to undergo a pressure/
suction side shift during upstream/downstream transitions.
Considering a goal incidence ago,), the actual incidence would then
be —ago, 0N the upstream part and +ago, 0N the downstream part
(or vice versa). This is going to require a very high angular accel-
eration though, which might not be desirable. This is why a sinu-
soidal law is then tried. ago, is used as maximum and minimum
values, with a sinusoidal variation between them. Such a pitch
variation will be more easily implemented, and will be preferable if
performance increase remains high enough compared with the
constant incidence law.

It is important to note that no experimental data could be found
for variable pitch devices, which means that the ONERA-EDLIN
model could not be validated in this case. However the kinematic
of a crossflow Darrieus turbine simulated by the present model has
been validated, and the only difference for variable pitch modeli-
zation is a small change in pitch. Several tip speed ratio, hence

several incidence functions, have been validated, and this was
considered satisfactory to start exploring the behavior of variable
pitch crossflow turbines. It is however clear that experimental data
are required, which is why a variable pitch Darrieus experimental
device is under construction at IRENAV.

4.1. Constant incidence function

Constant incidence is obtained with a ¢ function drawn as
a function of the azimuthal position in Fig. 6. On this figure is also
drawn the incidence found without any pitch variation, and the
final incidence is then § — a0n modified- The 6 curve shown in Fig. 4
was found through a tangential force optimization reported in [17],
which suggested that ago, should be set to 8°. This value was found
to be above optimal lift-to-drag ratio, but below stall angle. The
same kind of optimized pitch was reported in [21] and [28]. On top
of that a smoother linear variation was used at upstream/down-
stream transition to ensure convergence of the differential equa-
tions solver as a part of the ONERA-EDLIN model.

Fig. 7 shows the results obtained with the present model with
fixed and constant pitch function, compared with Gormont model
with constant incidence function as used by [28], and experimental
results. A 33% Cr increase is simulated by ONERA-EDLIN model,
which is much lower than DMST prediction. The latter predicts
a steep change and a plateau in Cy right after upstream/down-
stream part which looks similar to a static model; whereas ONERA-
EDLIN model predicts a smooth increase toward its maximal value.
This seems much more physical considering the added mass effects
involved, and the time needed for a steady state to develop fully
around the foil.

In order to set the blades in pitch motion around their quarter
chord, and since some hydrodynamic moment exist, some power
source is required. The ONERA-EDLIN model is able to accurately
predict unsteady hydrodynamic moment of a blade Muydro, a vari-
able known to be highly influenced by dynamic stall. When
multiplying this moment with the rotational velocity , one can
calculate how much power goes into changing pitch. The pitch
variation power is a dimensionalized so that it can be compared
with the power coefficient of the turbine C,. The non dimensional
pitch motion power, namely Cppitch variation, 1S Obtained through
Equation (20). The hydrodynamic moment coefficient Cphydro
during revolution and Cppitch variation are shown in Fig. 8.

-~ constant incidence function ONERA-EDLIN
------- fixed pitch ONERA-EDLIN

--- constant incidence function DMS/Gormont
fixed pitch Experiment

| | |
0 45 90 135 180 225 270 315 360
0(°)

\ \ \ \ \ \ \ \
90 135 180 225 270 315 360

0(°)

Fig. 7. Results of constant incidence function applied to case 2 (4 = 5).
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Fig. 9. Sine pitch functions simulated by ONERA-EDLIN model, case 2 (1 = 5).
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In Fig. 8, CPpitch variation 1S POsitive when power is required to set
the blade in rotation around its quarter chord; oppositely Cppitch
variation 1S Negative if the moment is in the appropriate direction to
change the foil pitch according to the pitch function chosen. We
can see immediately that steps in pitch produce strong effects on
the power associated with pitch change. For the moment coeffi-
cient a peak only appears during the transition upstream —

107°
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Cppitch variation
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amplitude

downstream part, which is explained by the fact that the stall
model is triggered there, due to the lower local velocity. The Cppitch
variation vValue remains low at all time however, always lower than
1%, which is insignificant compared to a device for which the
mean power coefficient is around 30%. The mean value of Cppitch
variation 1S 0.00767%. With a system that can actually use power
when this coefficient is negative, we realize that a variable pitch
would have no effect on the performances. A mechanical system
(gears, rods...) or a hydraulic system with pressure tank is one of
these systems. On the other hand a hydraulic system without
pressure tank, or a electrical servo motor device will not be able to
take advantage of these negative values; in this case the mean
absolute value needs to be considered: 0.23% here, which remains
insignificant.

Cppitf:h variation
o
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Fig. 10. Hydrodynamic moment of blades during sine pitch function simulated by ONERA-EDLIN model.



4.2. Sinusoidal pitch function

As described in [19] the steep variation in pitch angle makes it
difficult to implement. Hence we will use sine functions to try and
come as close as possible to the performance increase obtained
with a constant incidence function. This sine function will have the
same frequency as the turbine frequency. It will be positive when
the leading edge pitches inward in upstream section and outward
in downstream section, resulting in incidence increase in both
areas. A loop was used to run simulation for several amplitudes.
Fig. 9 shows performances obtained with these sine pitch function,
and Fig. 10 shows the influence on the moment coefficient. The
performance is indeed increased with a sine pitch law. However the
ideal function introduced by [19] and confirmed by [17] is in strong
disagreement with what is obtained here. The ONERA-EDLIN model
predicts a maximum power production point for an amplitude
of +5°, which would result in an incidence of 13°, far above the stall
angle of 9° at this Reynolds number. Compared with the fixed pitch
device for which amplitude is 0, the +5° amplitude gives a Cr
increase of 51%, raising from 0.8 to 1.21. Dynamic stall is known to
produce lift overshoots which in this case enable the system to
reach a higher level of performance. The stalled state observed after
dynamic stall phenomenon is not observed here due to the tran-
sition upstream — downstream part. The pressure/suction side
shift seems to dampen the dynamic stall negative consequences
according to ONERA-EDLIN model. An amplitude of 10° gives an
even bigger peak, but at a cost of a largest decrease due to a deeper
stall, and a disturbed downstream area which results in lower
performance. On Fig. 10 the moment is shown. It is once more
insignificant as far as performance is concerned, except for a 10°
amplitude for which it reaches 1% during peaks. The moment
coefficient seems to be a decreasing function of the sine amplitude.

5. Conclusion

A coupling method between the ONERA-EDLIN model and
a streamtube model has been implemented successfully to model
the performance of a Darrieus-like turbine with active pitch vari-
ation. Good agreement is found with experimental results obtained
from the open literature for force coefficients at the operational tip
speed ratio of about 5 for a zero fixed pitch. It is not fully satisfac-
tory for lower and higher tip speed ratios, even though an
improvement compared with DMST/Gormont dynamic stall model
was found. This deviation requires further investigation of the
coupling method. Stall model improvement through model
constants tends to improve agreement with experimental results at
low tip speed ratio. At high tip speed ratio the energetic model is
likely to be the origin of discrepancy. Concerning pitch variation,
two scenarios were implemented. Sinusoidal functions exhibited
a performance increase associated with dynamic stall phenom-
enon, for which maximum rise was found to be +51%. On the other
hand power consumption required for blade pitch variation was
shown to be non significant. This justifies further studies on vari-
able pitch devices. A CFD model is currently being studied for
further flow understanding, and an experimental device aiming at
validating the different models with variable pitch is under
construction.
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