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Abstract

Modem advances in computing power have greatly widened scientists’
scope in gathering and investigating information from many variables. We
describe sliced inverse regression (SIR), for reducing the dimension of the
input variable x without going through any parametric or nonparametric
model-fitting process. This method explores the simplicity of the inverse
view of regression. Instead of regressing the univariate output variable
y against the multivariate x, we regress x against y. Forward regression
and inverse regression are connected by a theorem that motivates this
method. The theoretical properties of SIR are investigated under a model
of the form, y = f(β′

1x, β
′

2x, . . . , β
′

Kx, ǫ) where the β’s are unknown vec-
tors. This model looks like a nonlinear regression, except for the crucial
difference that the functional form off is completely unknown. For effec-
tively reducing the dimension, one only needs to estimate the effective
dimension reduction (e.d.r.) space generated by the β’s. If the distribu-
tion of x has been standardized to have the zero mean and the identity
covariance, the inverse regression curve falls into the e.d.r. space. Hence a
principal component analysis on the covariance matrix for the estimated
inverse regression curve can be conducted to locate its main orientation,
yielding our estimates for e.d.r. directions. Furthermore, a simple step
function can be used to estimate the inverse regression curve.

Regression is a popular way of studying the relationship between a response
variable y and its explanatory variable x, a p-dimensional vector. Quite often,
a parametric model is used to guide the analysis. When the model is parsimo-
nious, standard estimation techniques such as the maximum likelihood or the
least squares method have proved to be successful. In most applications, how-
ever, any parametric model is at best an approximation to the true one, and the
search for an adequate model is not easy. When there are no persuasive models
available, nonparametric regression techniques emerge as promising alternatives
that offer the needed flexibility in modeling. A common theme of nonparamet-
ric regression is the idea of local smoothing, which explores only the continuity
or differentiability property of the true regression function. The success of lo-
cal smoothing hinges on the presence of sufficiently many data points around
each point of interest in the design space to provide adequate information. For
one-dimensional problems, many smoothing techniques are available. As the
dimension of x increases, however, the total number of observations needed for

1



local smoothing grows exponentially. Unless one has a huge sample, standard
methods, such as kernel estimates or nearest-neighbor estimates, break down
quickly because of the sparseness of the data points in any region of interest.
To challenge the curse of dimensionality, one hope that statisticians may cap-
italize on is that interesting features of high-dimensional data are retrievable
from low-dimensional projections. For regression problems, the following model
describes such an ideal situation:

y = f(β′

1
x, β′

2
x, . . . , β′

K
x, ǫ).

Here the β’s are unknown vectors, ǫ is independent of x, and f is an arbitrary
unknown function. When this model holds, the projection of the p-dimensional
explanatory variable x onto the K dimensional subspace, (β′

1
x, β′

2
x, . . . , β′

K
x)

captures all the information about y. When K is small, one may achieve the
goal of data reduction by estimating the β’s efficiently. For convenience, we shall
refer to any linear combination of the β’s as an effective dimension-reduction
(e.d.r.) direction, and to the linear space B generated by the β’s as the e.d.r.
space. The main focus is on the estimation of the e.d.r. directions, leaving
questions such as how to estimate main features of f for further investigation.
Intuitively speaking, after estimating the e.d.r. directions, standard smoothing
techniques can be more successful because the dimension has been lowered. On
the other hand, during the exploratory stage of data analysis, one often wants
to view the data directly. Many graphical tools are available but plotting y

against every combination of x within a reasonable amount of time is impossi-
ble. So, to use the scatterplot-matrix techniques, one often focus on coordinate
variables only. Likewise, 3D rotating plots can handle only one two-dimensional
projection of x at a time (the third dimension is reserved for y). Therefore, to
take full advantage of modem graphical tools, guidance on how to select the
projection directions is clearly called for. A good estimate of the e.d.r. di-
rections can lead to a good view of the data. Our method of estimating the
e.d.r. directions is based on the idea of inverse regression. Instead of regress-
ing y against x (forward regression) directly, x is regressed against y (inverse
regression). The immediate benefit for exchanging the roles of y and x is that
one can overcome the dimensionality problem. This comes out because inverse
regression can be carried out by regressing each coordinate of x against y. Thus,
one essentiallys deal with a one-dimension to one-dimension regression problem,
rather than the high-dimensional forward regression. As y varies, E(x|y) draws
a curve, called the inverse regression curve. This curve typically hovers around
a K- dimensional affine subspace. At one extreme, the inverse regression curve
actually falls into a K-dimensional affine subspace determined by the e.d.r. di-
rections. If x is standardized x to have mean 0 and the identity covariance, then
this subspace coincides with the e.d.r. space. Exploring the simplicity of in-
verse regression, a simple algorithm is proposed, called sliced inverse regression
(SIR), for estimating the e.d.r. directions. After standardizing x, SIR proceeds
with a crude estimate of the inverse regression curve E(x|y), which is the slice
mean of x after slicing the range of y into several intervals and partitioning the
whole data into several slices according to the y value. A principal component
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analysis is then applied to these slice means of x, locating the most important
K-dimensional subspace for tracking the inverse regression curve E(x|y). The
output of SIR is these components after an affine re- transformation back to the
original scale. Besides offering estimates of e.d.r. directions, the outputs of SIR
are themselves interesting descriptive statistics containing useful information
about the inverse regression curve. As a sharp contrast to most nonparametric
techniques that require intensive computation, SIR is very simple to implement.
Moreover, the sampling property of SIR is easy to understand, another advan-
tage over other methods. Thus it is possible to assess the effectiveness of SIR
by using the companion output eigenvalues at the principal component analysis
step. These eigenvalues provide valuable information for assessing the number
of components in the data. Finally, selection of the number of slices for SIR is
less crucial than selection of the smoothing parameter for typical nonparametric
regression problems. In view of these virtues, however, SIR is not intended to
replace other computer-intensive methods. Rather it can be used as a simple
tool to aid other methods; for instance, it provides a good initial estimate for
many methods based on the forward regression viewpoint.
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