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Abstract

The performance of nearest-neighbor (NN) classifiers is known to be very sensitive to the distance metric used in

classifying a query pattern, especially in scarce-prototype cases. In this paper, a class-conditional weighted (CCW)

distance metric related to both the class labels of the prototypes and the query patterns is proposed. Compared with the

existing distance metrics, the proposed metric provides more flexibility to design the feature weights so that the local

specifics in feature space can be well characterized. Based on the proposed CCW distance metric, a multi-hypothesis

nearest-neighbor (MHNN) classifier is developed. The scheme of the proposed MHNN classifier is to classify the

query pattern under multiple hypotheses in which the nearest-neighbor sub-classifiers can be implemented based on

the CCW distance metric. Then the classification results of multiple sub-classifiers are combined to get the final

result. Under this general scheme, a specific realization of the MHNN classifier is developed within the framework

of Dempster-Shafer theory due to its good capability of representing and combining uncertain information. Two

experiments based on synthetic and real data sets were carried out to show the effectiveness of the proposed technique.

Keywords: Pattern classification, Weighted distance metric, Multi-hypothesis nearest-neighbor classifier,

Dempster-Shafer theory

1. Introduction

The nearest-neighbor (NN) rule, first proposed by Fix and Hodges [1], is one of the most popular and successful

pattern classification techniques. Given a set of N labeled samples (or prototypes) T = {(x(1), ω(1)), · · · , (x(N), ω(N))}
with input vector x(i) ∈ RD and class label ω(i) ∈ {ω1, · · · , ωM}, the NN rule classifies a query pattern y ∈ RD

to the class of its nearest neighbor in the training set T . The basic rationale of the NN rule is both simple and

intuitive: patterns close in feature space are likely to belong to the same class. The good behavior of the NN rule with

unbounded numbers of prototypes is well known [2]. However, in many practical pattern classification applications,
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only a small number of prototypes are available. Typically, under such a scarce-prototype framework, the ideal

asymptotical behavior of the NN classifier degrades dramatically [3]. This problem has driven the growing interest in

finding variants of the NN rule and adequate distance measures (or metrics) that help improve the NN classification

performance in small data set situations.

As the core of the NN rule, the distance metric plays a crucial role in determining the classification performance.

To overcome the limitations of the original Euclidean (L2) distance metric, a number of adaptive methods have

recently been proposed to address the distance metric learning issue. According to the structure of the metric, these

methods can be mainly divided into two categories: global distance metric learning and local distance metric learning

[4]. The first learns the distance metric in a global sense, i.e., to share the same simple weighted (SW) distance metric

for all of the prototypes:

dS W (x, y) =

√√√ D∑
j=1

λ2
j (x j − y j)2, (1)

where x is a prototype in the training set, y is a query pattern to be classified, and λ j is the weight of the j-th feature.

Based on the above distance metric, the feature weights learning in [5, 6] is formulated as a linear programming

problem that minimizes the distance between the data pairs within the same classes subject to the constraint that the

data pairs in different classes are well separated. Eick et al. [7] introduce an approach to learn the feature weights that

maximize the clustering accuracy of objects in the training set, and similarly, the classification error rate of objects in

the training set is employed to evaluate the feature weights in [8]. Although the above global distance metric learning

methods are intuitively correct, they are too coarse, as the feature weights of the distance metric are irrelevant with the

prior-known class labels of the prototypes. This issue becomes more severe when some features behave distinctly for

different classes (for example, one feature may be more discriminative for some classes but less relevant for others)

[9]. Thus, many methods [10, 11, 12, 13, 14] have been developed to learn a distance metric in a local setting, i.e.,

the feature weights may be different for different prototypes. The most representative method is the class-dependent

weighted (CDW) distance metric proposed by Paredes and Vidal [15, 16], which is related to the class index of the

prototype:

dCDW (x, y) =

√√√ D∑
j=1

λ2
c, j(x j − y j)2, (2)

where c is the class index of prototype x. Although the above CDW distance metric provides more freedom than

the SW metric, the following example illustrates that this distance metric is insufficient to reflect the local specifics

in feature space for query patterns in different classes. Fig.1 illustrates a simple three-class classification problem,

where the data in each class are uniformly distributed. (x(1), A), (x(2), B) and (x(3),C) are two-dimensional data points

in training set T . y1 and y2 are the query data to be classified. Considering the classification of data y1, when

calculating the distance between x(2) and y1, intuitively, to avoid classifying it to Class B mistakenly, the feature value

in the X-axis should be given a larger weight. However, in classifying data y2, it is reasonable that the feature value in

the Y-axis should be given a larger weight to determine the distance between x(2) and y2. That is, the feature weights
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Figure 1: A three-class classification example.

should also be related to the class labels of the query patterns to be classified.

Motivated by the above consideration, in this paper we propose a more general distance metric that associates with

both the class labels of the prototypes and the query patterns. As in classification problems the class label of the query

pattern is not prior-known, this general distance metric only makes sense when conditioned on the assumption that

the query pattern belongs to a specified class. Therefore, we define this type of variant as a class-conditional weighted

(CCW) distance metric. Compared with the existing distance metrics mentioned above, the CCW metric provides

more flexibility to design the feature weights so that the local specifics in feature space can be well characterized.

Based on the CCW distance metric, this paper develops a multi-hypothesis nearest-neighbor (MHNN) classifier.

The main scheme of this method is to classify the query pattern under multiple hypotheses in which the nearest-

neighbor sub-classifiers can be implemented based on the CCW distance metric and then to combine the classification

results of multiple sub-classifiers to obtain the final result. A variety of schemes have been proposed for deriving

a combined decision from individual decisions, such as majority voting [17], Bayes combination [18], multilayered

perceptrons [19], and the Dempster-Shafer theory (DST) [20, 21, 22]. In this paper, a specific realization of the

MHNN classifier is developed within the framework of DST due to its good capability of representing and combining

uncertain information which is always encountered in classification problems.

The rest of this paper is organized as follows. In Section 2, the class-conditional weighted distance metric is

defined and then both a heuristic method and a parameter optimization procedure are designed to derive the involved

feature weights. The multi-hypothesis nearest-neighbor classifier is designed and realized within the framework of

DST in Section 3. Two experiments are given to evaluate the performance of the proposed method in Section 4.

Finally, Section 5 concludes the paper.
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2. Class-conditional weighted distance metric

2.1. Definition

Before defining the class-conditional weighted distance metric for the purpose of classification, we will first give

a general weighted distance metric between two patterns with prior-known class labels as follows.

Definition 1 (General weighted distance metric). Suppose x(m) and x(n) are two D-dimensional patterns with class

labels ωp and ωq. A general weighted distance metric between x(m) and x(n) can be defined as

d(x(m), x(n)) =

√√√ D∑
j=1

λ2
p,q, j(x(m)

j − x(n)
j )2, (3)

where λp,q, j is a constant that weights the role of the j-th feature in the distance metric between class ωp and class ωq.

This definition includes, as particular cases, the distance metrics revisited in the Introduction. If λp,q, j = 1 for all

p = 1, · · · ,M, q = 1, · · · ,M, j = 1, · · · ,D, the above distance metric is just the L2 distance metric. Moreover, the

SW and CDW distance metrics correspond to the cases where the metric weights are not relevant to the class labels or

are only dependent on the class label of the first pattern, respectively. Therefore, the above weighted distance metric

provides a more general dissimilarity measure than the L2, SW or CDW metrics because the weights depend on both

class labels of the two considered patterns.

In NN-based classification, the problem is to calculate the distance between a prototype and a query pattern, while

the class label of the latter is not prior-known. So, for the purpose of classification, the above general distance metric

only makes sense conditioned on the assumption that the query pattern belongs to a specified class ωq. We will define

this type of variant as follows.

Definition 2 (Class-conditional weighted distance metric). Let T = {(x(1), ω(1)), · · · , (x(N), ω(N))} be a set of proto-

types. The class-conditional weighted (CCW) distance metric between a query pattern y and a prototype x ∈ T can

be defined as

dCCW (x, y) =

√√√ D∑
j=1

λ2
p,q, j(x j − y j)2, (4)

where, p is the class index of the prototype x and q is the hypothesized class index of the query pattern y.

Remark 1. The defined CCW distance metric has some advantages over the existing metrics. The most obvious

advantage is that it provides more flexibility to design the feature weights so that the local specifics in feature space

can be well characterized. Take the three-class classification problem studied in the Introduction, for example. In

Fig.1, using the CCW distance metric, to classify y1 to Class A, λB,A,X (the first two subscripts denote the class labels,

while the third subscript denotes the feature index) can take a much larger value than λB,A,Y , while one can assign

smaller value for λB,C,X than λB,C,Y to classify y2 to Class C.
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2.2. Heuristically deriving feature weights

In the previous subsection, the definition of the CCW distance metric was given and the advantages of this pro-

posed distance metric were noted. The only open parameters in the CCW distance metric are the feature weights that

associate with both the class labels of the prototypes and the query patterns. This section aims to derive the feature

weights λp,q, j (p = 1, · · · ,M, q = 1, · · · ,M, j = 1, · · · ,D) from the training set in a heuristic way.

We divide the training set T into M subsets Tk, k = 1, · · · ,M, with each Tk containing all of the nk training data

labeled to the same class ωk:

Tk = {x(i)} (i ∈ Ik), (5)

where Ik is the set of indices of the training data x(i) belonging to the class ωk.

Let us take into consideration the feature mean vector µk and feature variance vector Σk estimated on the set Tk

µk =
∑
i∈Ik

x(i)/nk,

Σk =
∑
i∈Ik

(x(i) − µk)2/(nk − 1),
(6)

where, the feature mean vector µk denotes {µk,1, · · · , µk,D} and the feature variance vector Σk denotes {σ2
k,1, · · · , σ2

k,D}.
Here, the feature weights associated with classes ωp and ωq are derived based on the following two commonsense

rules:

• The closer the feature centers (approximately represented by the feature mean vectors), the more difficult the

classification by this feature.

• The more dispersive the feature distributions (approximately represented by the feature variance vectors), the

more difficult the classification by this feature.

Based on the above rules, in determining the CCW distance metric between two different classes ωp and ωq

(p , q), the feature weights should monotonically increase with the distance of the feature centers (i.e., |µp, j − µq, j|)

and monotonically decrease with the sum of the feature distributions (i.e., σp, j + σq, j). Intuitively, we can construct

λp,q, j as

λp,q, j = |µp, j − µq, j|/(σp, j + σq, j), for j = 1, · · · ,D. (7)

When measuring the CCW distance between two patterns belong to the same class ωp (i.e., p = q), the first common-

sense rule no longer takes effect, and the feature weights λp,p, j can be constructed as

λp,p, j = 1/σp, j, for j = 1, · · · ,D. (8)

Lastly, the feature weights should be normalized so that
∑D

j=1 λp,q, j = 1. Similarly, we can obtain the feature

weights λp,q, j, j = 1, · · · ,D for all other class sets Tp, p = 1, · · · ,M and Tq, q = 1, · · · ,M, which are prepared for the

classifying process.
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Remark 2. From Eqs.(7)-(8), we can see that ∀p ∈ {1, · · · ,M} and ∀q ∈ {1, · · · ,M}, λp,q, j = λq,p, j for all j =

1, · · · ,D. That is, the proposed CCW metric satisfies the symmetry property, which reduces the number of parameters

to M(M + 1)D/2.

2.3. Feature weight optimization

In the above subsection, a heuristic derivation of feature weights λp,q, j (p = 1, · · · ,M, q = 1, · · · ,M, j = 1, · · · ,D)

was given, and it is supposed that the performance of the classification procedure can be further improved if these

parameters are learned from the training set via optimizing certain criteria. A simple way of defining the criteria for

the desired metric is to keep the data pairs from the same class close to each other while separate those data pairs from

different classes far from each other.

Let the set of data pairs from the same class ωp be denoted by

Sp,p = {(x(m), x(n))|m, n ∈ Ip; m , n}

and the set of data pairs from different classes ωp and ωq be denoted by

Dp,q = {(x(m), x(n))|m ∈ Ip; n ∈ Iq; p , q}.

To measure the CCW distance between two patterns belonging to the same class ωp, the feature weights λp,p, j

( j = 1, · · · ,D) can be optimized via minimizing the inner-class distance criterion

min
λp,p, j

∑
(x(m),x(n))∈Sp,p

d2
CCW (x(m), x(n))

s.t. λp,p, j > 0, j = 1, · · · ,D and
∑D

j=1 λp,p, j = 1.
(9)

In determining the CCW distance metric between two different classes ωp and ωq (p , q), the feature weights λp,q, j

( j = 1, · · · ,D) can be optimized via maximizing the between-class distance criterion

max
λp,q, j

∑
(x(m),x(n))∈Dp,q

d2
CCW (x(m), x(n))

s.t. λp,q, j > 0, j = 1, · · · ,D and
∑D

j=1 λp,q, j = 1.
(10)

Remark 3. For the above two optimization problems, the objectives are quadratic functions of the feature weights

λp,p, j or λp,q, j, and both constraints are easily verified to be convex. Thus, the optimization problems are convex

and can be solved using existing optimization software packages, such as the MATLAB optimization toolbox [23].

Moreover, the feature weights derived heuristically in the previous subsection can be used as the initial estimates to

shorten the optimization time.

3. Multi-hypothesis nearest-neighbor classifier

As in the classification process the class label of the query pattern is not prior-known, the proposed CCW distance

metric should be used based on the hypothesized class label. For this consideration, this section develops a multi-

hypothesis nearest-neighbor (MHNN) classifier based on the CCW distance metric. This approach first classifies the
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query pattern under multiple hypotheses in which the nearest-neighbor sub-classifiers can be implemented based on

the proposed CCW distance metric and then combines the classification results of multiple sub-classifiers to obtain

the final result. In Section 3.1, the general scheme of the proposed MHNN classifier is illustrated and analyzed, and

then a specific realization within the framework of Dempster-Shafer theory is developed in Section 3.2.

3.1. General scheme

Å

Figure 2: General scheme of the MHNN classifier

The general scheme of the proposed multi-hypothesis nearest-neighbor (MHNN) classifier is shown in Fig.2,

where C(y) = ωi represents that the class label of y isωi, and d∗,i-NN denotes the nearest-neighbor sub-classifier based

on the CCW distance metric under hypothesis Hi. The proposed MHNN classifier mainly includes the following two

stages:

• Stage 1: Nearest-neighbor classification under multiple hypotheses. M hypotheses (H1,H2, · · · ,HM) are con-

structed for the class labels of the query pattern y. Under each hypothesis Hi, the nearest-neighbor sub-

classifier is implemented based on the proposed CCW distance metric with the corresponding weights λp,i, j,

p = 1, · · · ,M, j = 1, · · · ,D.

• Stage 2: Combination of multiple sub-classifiers. The classification results ω(1), ω(2), · · · ,ω(M) of the M sub-

classifiers under different hypotheses are fused to obtain the final result.

Remark 4. As illustrated in Section 2, the proposed CCW distance metric provides more local specifics in feature

space than the CDW metric, so the sub-classifier with the correct hypothesis in MHNN will have a lower classification

error rate than the existing NN classifier based on CDW distance metric (CDW-NN for short) intuitively. Moreover,

the other M − 1 sub-classifiers with incorrect hypotheses are actually equivalent to CDW-NN because the CCW

distance metric reduces to the CDW metric when the hypothesis about the class label of the query pattern fails (in

which case, the class label of the query pattern has no effect for either distance metric in determining the feature

weights). Therefore, any sub-classifier in MHNN has a better or at least equal classification performance compared

with CDW-NN. Thus, it can be expected that through combination, the MHNN classifier will yield a much better

performance.
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3.2. Realization within the framework of Dempster-Shafer theory

Depending on the different combination methods employed in Stage 2 of the MHNN classification scheme, dif-

ferent types of realizations can be obtained. In this paper, we combine the output of multiple sub-classifiers within the

framework of Dempster-Shafer theory (DST) [24, 25], as it provides powerful tools for representing and combining

uncertain information.

Using DST to solve a specific problem generally involves three processes: constructing the mass functions (or

basic belief assignments) representing the uncertainties in the problem with independent items of evidence, then

combining multiple mass functions into a single one, and lastly, making a decision based on the combined result.

Thus, after a brief introduction of the basics in DST, we will focus on the construction and combination of the basic

belief assignments as well as the decision-making strategies in the MHNN classifier.

3.2.1. Basic concepts in DST

In DST, a problem domain is represented by a finite set Θ = {θ1, θ2, · · · , θn} of mutually exclusive and exhaustive

hypotheses called the frame of discernment. A mass function or basic belief assignment (BBA) expressing the belief

assigned to the elements of 2Θ by a given source of evidence is a mapping function m(·): 2Θ → [0, 1], such that

m(∅) = 0 and
∑
A∈2Θ

m(A) = 1. (11)

Elements A ∈ 2Θ having m(A) > 0 are called focal elements of the BBA m(·). The BBA m(A) measures the degree of

belief exactly assigned to a proposition A and represents how strongly the proposition is supported by evidence. The

belief assigned to all of the subsets of 2Θ is summed to unity, and there is no belief left to the empty set. The belief

assigned to Θ, or m(Θ), is referred to as the degree of global ignorance.

Shafer [25] also defines the belief function and plausibility function of A ∈ 2Θ as follows

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A,∅
m(B). (12)

Bel(A) represents the exact support to A and its subsets, and Pl(A) represents all of the possible support to A and its

subsets. The interval [Bel(A), Pl(A)] can be seen as the lower and upper bounds of support to A. The belief functions

m(·), Bel(·) and Pl(·) are in one-to-one correspondence.

For decision-making support, Smets [26] proposed the pignistic probability BetP(A) 1 to approximate the unknown

probability in [Bel(A),Pl(A)], given by

BetP(A) =
∑

B⊆Θ
A∩B,∅

|A ∩ B|
|B| m(B), (13)

where |X| stands for the cardinality of the set X.

1from the Latin word pignus meaning a bet
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Several distinct bodies of evidence characterized by different BBAs can be combined using Dempster’s rule.

Mathematically, the Dempster’s rule of combination of two BBAs m1(·) and m2(·) defined on the same frame of

discernment Θ is

m(A) =


0, for A = ∅∑

B,C∈2Θ ;B∩C=A
m1(B)m2(C)

1− ∑
B,C∈2Θ ;B∩C=∅

m1(B)m2(C) , for A ∈ 2Θ and A , ∅.
(14)

As described in [25], Dempster’s rule of combination is both commutative and associative.

3.2.2. The construction of BBAs in the MHNN classifier

This section aims to construct the BBAs from the M sub-classifier output ω(i), i = 1, · · · ,M. From the view of

DST, the class set Ω = {ω1, · · · , ωM} can be regarded as the frame of discernment of the problem.

Being affected by the noises of the patterns, the classification results of the sub-classifiers do not always have full

accuracy. For any sub-classifier under hypothesis Hi, the result ω(i) = ωq can be regarded as a piece of evidence that

increases the belief that the query pattern y belongs to ωq. However, this piece of evidence does not by itself provide

100% certainty. In DST formalism, this can be expressed by saying that only some part of the belief is committed

to ωq. Because ω(i) = ωq does not point to any other particular class, the rest of the belief should be assigned to the

frame of discernment Ω representing global ignorance. Therefore, this item of evidence can be represented by a BBA

m(· | Hi) verifying: 
m({ωq} | Hi) = αi

m(Ω | Hi) = 1 − αi

m(A | Hi) = 0, ∀A ∈ 2Ω \ {Ω, {ωq}},

(15)

where αi ∈ [0, 1] represents the belief that the sub-classifier under the hypothesis Hi provides the correct classification

result.

Remark 5. Eq.(15) can be seen as a discounting operation that discounts the classification result of each sub-classifier

with its classification reliability. After discounting, only some part of the belief is assigned to the classification result of

the sub-classifier and the rest of the belief is assigned to the frame of discernment which represents global ignorance.

Thus, with the discounting operation, the conflict among different pieces of evidence from different sub-classifiers

can be highly reduced.

In determining the belief factors αi, i = 1, · · · ,M, we divide the M sub-classifiers into two groups: sub-classifier

with the correct hypothesis (i.e., ω(i) = ωi), and those with incorrect hypotheses (i.e., ω(i) , ωi). As indicated

in Section 3.1, the sub-classifiers with incorrect hypotheses reduce to CDW-NN and thus, on average, have larger

classification error rates than the one with the correct hypothesis which is based on the proper CCW distance metric.

The belief factors can therefore be determined as

αi =

 α
CCW , if ω(i) = ωi

αCDW , if ω(i) , ωi

for i = 1, · · · ,M, (16)

9



where, αCCW and αCDW denote the classification accuracy based on the CCW and CDW distance metrics, respectively.

These parameters can be obtained via the leave-one-out (LOO) test 2 on the training set.

3.2.3. The combination of BBAs in the MHNN classifier

To make a decision regarding the output of the M sub-classifiers, the corresponding BBAs constructed in the above

part can be combined using Dempster’s rule. However, as indicated in [27], the direct use of the Dempster’s rule will

result in an exponential increase in computational complexity for the reason of enumerating all subsets or supersets

of a given subset A of Ω, and the operation becomes impractical when the frame of discernment has more than 15

to 20 elements. The following part is intended to develop an operational algorithm for evidence combination, which

reduces the computational complexity to linear time considering the fact that the focal elements of each associated

BBA are all singletons except the ignorance set Ω.

Define I(i) as the set of the former i hypotheses

I(i) = {H1,H2, · · · ,Hi}. (17)

Let m(· | I(i)) be the BBA after combining all of the former i BBAs associated with I(i). Given the above definitions,

a recursive evidence combination algorithm can be developed as follows

m({ωq} | I(i + 1)) = KI(i+1)

[
m({ωq} | I(i)) ·m({ωq} | Hi+1) +m(Ω | I(i)) ·m({ωq} | Hi+1)

+m({ωq} | I(i)) ·m(Ω | Hi+1)
]
, q = 1, 2, · · · ,M

m(Ω | I(i + 1)) = KI(i+1) [m(Ω | I(i)) ·m(Ω | Hi+1)]

KI(i+1) =

[
1 −

M∑
j=1

M∑
p=1,p, j

m({ω j} | I(i)) ·m({ωp} | Hi+1)
]−1

i = 1, 2, · · · ,M − 1,

(18)

where KI(i+1) is a normalizing factor, so that
M∑

q=1
m({ωq} | I(i + 1)) +m(Ω | I(i + 1)) = 1.

Note that m({ωq} | I(1)) = m({ωq} | H1) for q = 1, 2, · · · ,M and m(Ω | I(1)) = m(Ω | H1), so this recursive

evidence combination algorithm can initiate with the BBA under the first hypothesis H1. Accordingly, when the

recursive index i comes to M − 1, the final results m({ωq} | I(M)) and m(Ω | I(M)) (m({ωq}) and m(Ω) for short,

respectively) are obtained by combining all of the M BBAs.

3.2.4. Decision-making strategies

For decision-making with hard partition, the belief function Bel(·), plausibility function Pl(·) and pignistic proba-

bility BetP(·) are common alternatives. Because the focal elements of the combined BBA m(·) are all singletons except

2In the LOO test, one sample in the training set is selected randomly and is classified based on the remaining training set. This procedure is

repeated until all the samples in the training set have been tested.
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the ignorance set Ω, the credibility, plausibility and pignistic probability of each class ωq are derived as follows

Bel({ωq}) = m({ωq})
Pl({ωq}) = m({ωq}) +m(Ω)

BetP({ωq}) = m({ωq}) + m(Ω)
M .

(19)

for q = 1, 2, · · · ,M. It is supposed that, based on this evidential body, a decision has to be made assigning query

pattern y to one of the classes in Ω. Denote Aq the action of assigning y to class ωq. Further suppose the loss incurred

in the case of wrong classification is equal to one, while the loss corresponding to correct classification is equal to

zero. Then, the lower, upper and pignistic expected losses [28] associated to action Aq are given as follows

R∗(Aq) = 1 − Bel({ωq})
R∗(Aq) = 1 − Pl({ωq})

Rbet(Aq) = 1 − BetP({ωq}).

(20)

Because of the particular structure of the combined BBA (i.e., the focal elements are either singletons or the whole

frame Ω), it can be easily discovered that

ω = arg min
ωq∈Ω

R∗(Aq)

= arg min
ωq∈Ω

R∗(Aq)

= arg min
ωq∈Ω

Rbet(Aq)

= arg max
ωq∈Ω

m({ωq}).

(21)

That is, the three strategies minimizing R∗, R∗, and Rbet lead to the same decision, in which case the pattern is assigned

to the class with the maximum basic belief assignment.

3.2.5. Some merits of the realization

Combining multiple sub-classifiers within the framework of DST has some potential benefits.

First, due to the noises of the patterns and the unfitness of the distance metrics, great uncertainty may exist in

the classification results of the multiple sub-classifiers. Compared with the previously mentioned majority voting,

Bayes combination and multilayered perceptions methods, the DST framework provides more powerful tools for

representing and combining uncertain information [21]. On the one hand, by representing each sub-classifier output

with a BBA structure, different types of uncertainty (probability uncertainty and ignorance) can be well characterized.

On the other hand, with Dempster’s rule of combination, the uncertain information of multiple pieces of evidence can

be well considered to obtain the final results.

Second, this method can tackle the classification problem in which the class memberships of the training data are

only partially known.3 Well-labeled data are often difficult to obtain due to limitations of the underlying equipment,

3In this case, the class membership of training data x(i) has the following form ω(i) = {(ω1, p1,i), · · · , (ωM , pM,i)}, where pq,i is the probability

that the training data x(i) belongs to class ωq.
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partial or uncertain responses in surveys, and so on [29, 30]. In this case, the classification results of the sub-classifiers

will have imprecise and/or uncertain soft labels. Because both soft and crisp labels can easily be recast as BBAs, the

uncertainty of the training sample can be well addressed within the framework of DST.

Third, the combined result based on DST gives more freedom to make decisions. In addition to the hard partition

studied above, the soft partition [31] is occasionally also needed when the conditional error of making a hard decision

is high. In some applications (especially those related to defense and security, as in target classification [32]), it is

better to obtain a robust (and eventually partially imprecise) result that will become more precise with additional

techniques than to obtain a precise result directly with high risk [33, 34]. Fortunately, the DST-based sub-classifier

combination result is expressed in the form of BBA, which is originally a type of soft partition.

Fourth, this DST-based sub-classifier combination method can be applied to classify a query pattern with priori

information if it is available, such as when a query pattern belonging to some classes with larger probability is known

in advance. For our method, the priori information can be used to make decisions by providing an additional sub-

classifier with a proper output in the form of BBA, and this priori information can take effect in the combination

process.

4. Experiments

The capabilities of the proposed MHNN classifier based on the CCW distance metric will be empirically assessed

through two different types of experiments. In the first experiment, a synthetic data set is used to show the behavior

of the proposed approach in a controlled setting. In the second experiment, several standard benchmark data sets

from the well-known UCI Repository of Machine Learning Databases [35] are considered to show that the proposed

technique is uniformly adequate for a variety of tasks involving different data conditions, such as large/small training

sets and large/small dimensionality.

4.1. Synthetic data

The three-class classification problem mentioned in the Introduction is evaluated here to compare our method

with the original NN classifier based on the L2 distance metric (L2-NN) [1] and the NN classifier based on the CDW

distance metric (CDW-NN) [15, 16]. The following class-conditional uniform distributions are assumed. Class A:

[2, 10] × [2, 10]; Class B: [10, 18] × [2, 10]; Class C: [10, 18] × [10, 18].

Fig.3 shows classification error rates of L2-NN, CDW-NN, MHNN and MHNN with optimized feature weights

(MHNN Opt.) for different training set sizes. For each size, each classification algorithm runs 100 times with different

training sets randomly drawn from the above distributions. A fixed test set of 300 query patterns, independently drawn

from the same distributions, is used for error statistics. As seen from the result, the CDW-NN classifier is only slightly

better than the original L2-NN classifier for small training sets. This is mainly because the CDW distance metric

only characterizes the local specifics of the features with respect to the prototypes, while in this particular simulation
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scenario, for each class the statistical variances of the prototypes in different features (i.e., X-axis, Y-axis) are nearly

the same. Under this circumstance, the CDW distance metric becomes asymptotically approximate to the L2 distance

metric as the amount of training data increases. The proposed MHNN classifier produces a much lower error rate, as

the CCW distance metric provides more local specifics of the features related to both the prototypes and the query

patterns. Moreover, the performance improvement is particularly significant for small training sets, in which case

the ideal asymptotical behavior of NN classifier degrades dramatically. We can also see that through feature weight

optimization, the performance of the proposed method can be further improved, but not significantly. Thus, for

highly time-constrained classification problems, the heuristic feature weight derivation method may be a better choice

considering both the classification rate and the computation burden.
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Figure 3: Classification error rates of our proposed method in comparison with other methods with different training set sizes.

To better illustrate the superiority of the proposed MHNN classifier, the classification results of different methods

for one Monte Carlo run with 30 training data and 30 test data are given in Fig.4. As can be seen in Fig.4(a), the test

data y1, y2, y3 are quite close to the boundary between Class A and Class B, and in this scarce-prototype condition,

it is quite difficult to make the right classification. The L2-NN and CDW-NN just classify these three data points to

Class A as shown in Fig.4(b) and (c) because, based on L2 and CDW distance metrics, their nearest neighbors are the

same training data x1 labeled Class A. However, as shown in Fig.4(d), the test data y2 is correctly classified based on

the MHNN classifier. The MHNN classifier classifies the test data y2 by combining the results of three sub-classifiers

under the hypothesis H1 : C(y2) = A, H2 : C(y2) = B, and H3 : C(y2) = C, respectively. For hypothesis H2(the
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right hypothesis), in calculating the distance between test point y2 and the training points in Class B, the value in the

X-axis has a nearly equivalent weight with that in the Y-axis(λB,B,X = 0.55 and λB,B,Y = 0.45), while in calculating

the distance with the training points in Class A, the value in the X-axis has a much larger weight than that in the

Y-axis(λB,A,X = 0.87 and λB,A,Y = 0.13). With this distance metric, the nearest neighbor of the test point y2 is x3

labeled Class B, which is quite different from the results based on the L2 or CDW distance measures. Accordingly,

the nearest neighbors of the test point y2 under hypotheses H1 and H3 are x2 labeled Class B and x1 labeled Class A,

respectively. Then, in the combination process of multiple sub-classifiers within the DST framework, the result under

the correct hypothesis H2 is assigned larger belief (αCCW = 0.97 by LOO test on the training set) than the results under

incorrect hypotheses (αCDW = 0.9 by the same way). Lastly, based on the combined BBA, we obtain the classification

result Class B with hard partition.

4.2. Benchmark data sets

In this second experiment, ten well-known benchmark data sets from UCI repository are used to evaluate the

performance of the MHNN classifier. The main characteristics of the ten data sets are summarized in Table 1.

Table 1: Statistics of the benchmark data sets used in the experiment.

Data set # of instances # of features # of classes

Balance 625 4 3

Cancer a 683 9 2

Diabetes 768 8 2

Glass 214 9 6

Letter 20,000 16 26

Liver 345 6 2

Satimage 6,435 36 6

Segment 2,310 19 7

Vehicle 846 18 4

Wine 178 13 3

aFor Cancer data set, the samples with missing feature values are discarded.

As displayed in Table 1, some UCI data sets are small. In these cases, B-Fold Cross-Validation (B-CV) [36] is

applied to estimate the error rates by different classification methods. Each data set is divided into B blocks using

B − 1 blocks as a training set and the remaining block as a test set. Therefore, each block is used exactly once as a

test set. We use the simplest 2-CV here, because it has the advantage that both the training and test sets are large, and

each sample is used for both training and testing on each fold. The 2-CV test is repeated 10 times, and the average
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Figure 4: Classification results for different methods with 30 training data and 30 test data. (a)Training data and test data. (b) Classification results

by L2-NN. (c) Classification results by CDW-NN. (d) Classification results by MHNN. (The blue makers represent the training data, and the red

makers represent the test data, with circle for class A and square for class B and triangle for class C, respectively. The filled makers represent the

data mistakenly classified.)

classification result on the test data is calculated. For the relatively larger data sets, such as Letter and Satimage, the

single partition into training and test sets specified in the UCI repository is adopted.

The classification results of the ten benchmark data sets are shown in Table 2. The significance of the differences

between results is evaluated using a Mc Nemar test [37] at the 5% level. For each data set, the best classification

accuracy is underlined, and those that are significantly improved over the baseline L2-NN method are printed in bold.

As seen from these results, the MHNN classifier (with feature weights derived heuristically) presented in this paper

outperforms the baseline L2-NN or CDM-NN in most of the data sets. Moreover, for the Balance, Diabetes, Liver, and

Wine data sets, the improvements are statistically significant because the local distance metric plays a more crucial role

in determining the NN-based classification performance for these scarce-prototype and large-dimensionality cases.
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Table 2: Classification accuracy (in %) of our proposed method in comparison with other NN-based methods.

Data set L2-NN CDW-NN MHNN

Balance 75.15 80.12 a 85.56 b

Cancer 95.24 95.48 98.06

Diabetes 70.05 69.96 75.33

Glass 69.36 71.15 73.72

Letter 95.15 96.60 96.08

Liver 64.36 60.88 68.12

Satimage 89.09 88.45 90.29

Segment 95.42 95.90 96.92

Vehicle 69.42 69.55 73.60

Wine 76.45 89.40 94.38

aThe results typeset in boldface are significantly better over the baseline L2-NN method at the 5% level.
bThe results underlined correspond to the best accuracy.

To evaluate the computational consumption of the proposed MHNN method, the average classification CPU times

of the different methods are listed in Table 3. The numerical experiments are executed by MATLAB7.12 in an HP

EliteBook 8570p with an Intel(R) Core(TM) i7-3540M CPU @3.00 GHz and 8 GB memory. From the results, it

can be seen that the proposed MHNN classifier has a relatively higher computational consumption, approximately M

(the total number of classes) times higher than the original L2-NN classifier (because the MHNN classifier is quite

time-saving in both the heuristic feature weight derivation and the multiple sub-classifier combination process, the

time is mainly consumed in the classification process under multiple hypotheses). Fortunately, for most classification

problems, such as the benchmark data sets studied here, the number of considered classes is not very large, so the

computation cost of the MHNN classifier is not a significant problem.

To verify the performance of the proposed method more generally, we compare our results against several state-

of-the-art classification methods tested in [38]. These methods can be categorized into decision tree based methods

(CART, Cal5, C4.5) and statistical methods (ALLOC80, Discrim, NBayes, Quadisc). For a complete description of

these methods, the reader may refer to [38]. Table 4 compares our results with those using the above methods on

several data sets under the same experimental arrangement4. From these comparisons, it can be seen that the proposed

MHNN classifier exhibits a uniformly good behavior for all of the data sets, while other procedures may work very

well for some data sets but typically tend to worsen (dramatically in many cases) for the rest.

4Only those methods that have results in many data sets, and those data sets for which results with many methods are available have been chosen

for the comparisons in Table 4.
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Table 3: Classification CPU time (/s) of our proposed method in comparison with other NN-based methods.

Data set L2-NN CDW-NN MHNN

Balance 0.5616 0.9360 1.8308

Cancer 0.5772 1.0140 1.3472

Diabetes 0.9984 1.4976 2.1840

Glass 0.0836 0.1248 0.5192

Letter 311.20 724.45 8325.4

Liver 0.1560 0.2496 0.3358

Satimage 53.414 88.450 340.22

Segment 6.5520 14.945 48.965

Vehicle 0.8580 1.8720 3.8360

Wine 0.0468 0.0780 0.1516

Table 4: Classification accuracy (in %) of our proposed method in comparison with other well-known methods.

Data set ALLOC80 CART C4.5 Discrim NBayes Quadisc Cal5 MHNN

Diabetes 69.9(8)a 74.5(4) 73.0(7) 77.5(1) 73.8(5) 73.8(5) 75.0(3) 75.3(2)

Letter 93.6(2) - 86.8(4) 69.8(6) 47.1(7) 88.7(3) 74.7(5) 96.1(1)

Satimage 86.8(2) 86.2(3) 85.0(4) 82.9(7) 71.3(8) 84.5(6) 84.9(5) 90.3(1)

Segment 97.0(1) 96.0(3) 96.0(3) 88.4(6) 73.5(8) 84.3(7) 93.8(5) 96.9(2)

Vehicle 82.7(2) 76.5(4) 73.4(6) 78.4(3) 44.2(8) 85.0(1) 72.1(7) 73.6(5)

aThe numbers in brackets denote the accuracy orders of the eight methods.

5. Conclusion

To improve the performance of the NN-based classifier in small data set situations, a new distance metric, called

the CCW distance metric, is proposed in this paper. Compared with the existing distance metrics, the CCW metric

provides more flexibility to design the feature weights so that the local specifics in feature space can be well charac-

terized. Based on the CCW distance metric, an MHNN classifier is developed that mainly includes two stages. In the

first stage, the query pattern is classified under multiple hypotheses in which the nearest-neighbor sub-classifiers can

be implemented based on the proposed CCW distance metric. In the second stage, the classification results of multiple

sub-classifiers are combined within the framework of DST to obtain the final result. From the results reported in the

last section, we can conclude that the proposed technique achieved a uniformly good performance when applied to a

variety of classification tasks, including those with high dimensionality and sparse prototypes.
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