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Abstract

A strong edge-coloring of a graph G is an assignment of colors to edges such that every color class
induces a matching. We here focus on bipartite graphs whose one part is of maximum degree at
most 3 and the other part is of maximum degree ∆. For every such graph, we prove that a strong
4∆-edge-coloring can always be obtained. Together with a result of Steger and Yu, this result
confirms a conjecture of Faudree, Gyárfás, Schelp and Tuza for this class of graphs.
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1. Introduction

One common notion of graph theory is the one of proper edge-coloring, which is, given an
undirected simple graph G = (V,E), an assignment of colors to the edges such that no two adjacent
edges receive the same color. A proper edge-coloring can equivalently be seen as a partition of the
edges into matchings. One can easily convince himself that these matchings are generally not
induced. If we want each matching of the partition to be induced, then in every part all edges
must be sufficiently far apart in the graph. In this perspective, Fouquet and Jolivet introduced
the following stronger notion [7]: a strong edge-coloring of G is a proper edge-coloring such that
every two edges joined by another edge are colored differently. Clearly, every color class of a given
strong edge-coloring is an induced matching. The least number of colors in a strong edge-coloring
is referred to as the strong chromatic index, denoted χ′

s(G) for G.
We denote by ∆(G) (or simply ∆ when no ambiguity is possible) the maximum degree of G. If

S is a subset of vertices of a graph, we refer to ∆(S) as the maximum degree of the vertices of S.
Greedy coloring arguments show that 2∆2−2∆+1 is a naive upper bound on the strong chromatic
index of any graph. But so many colors are generally not necessary to obtain a strong edge-coloring.
Actually, the tightest upper bound on χ′

s(G) involving ∆ is believed to be the following.

Conjecture 1 (Erdős and Nešetřil [5]). For every graph G, we have

χ′
s(G) ≤

{

5

4
∆2 if ∆ is even,

1

4
(5∆2 − 2∆+ 1) if ∆ is odd,

which, if true, would be tight as the graphs described on Figure 1 achieve these bounds.

This conjecture was verified for graphs of maximum degree at most 3 [1, 8], and also considered in
other situations [9, 3]. But it remains still widely open in general.

In this paper we focus on strong edge-coloring of bipartite graphs, which are graphs whose vertex
set admits a bipartition into two independent sets. In this context, Conjecture 1 was strengthened
to the following by Faudree, Gyárfás, Schelp and Tuza:

Conjecture 2 (Faudree et al. [6]). For every bipartite graph G, we have χ′
s(G) ≤ ∆2.
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• Every Ij is an independent set.

• “Ij ⊲⊳ Ij′ ” means that Ij is complete to Ij′ .

• If ∆ = 2k, then |Ij | = k.

• If ∆ = 2k + 1, then |I1| = |I2| = |I3| = k

and |I4| = |I5| = k + 1.

Figure 1: Erdős and Nešetřil’s construction.

Brualdi and Quinn Massey introduced a new notion of edge-coloring – the incidence coloring
of graphs [2]. They showed a connection of this notion with the one of strong edge-coloring, which
made them refine Conjecture 2.

Conjecture 3 (Brualdi and Quinn Massey [2]). For every bipartite graph G with bipartition
A and B, we have χ′

s(G) ≤ ∆(A)∆(B).

In the spirit of this conjecture, we define a (dA, dB)-bipartite graph to be a bipartite graph with
parts A and B such that ∆(A) ≤ dA and ∆(B) ≤ dB. Conjectures 2 and 3 are still widely open,
the second being proved to hold in two specific non-trivial situations. It is first known to hold
whenever G is subcubic bipartite:

Theorem 1 (Steger and Yu [11]). For every (3, 3)-bipartite graph G, we have χ′
s(G) ≤ 9.

Later on, Nakprasit solved the case where one part of the bipartition is of small maximum
degree, namely at most 2.

Theorem 2 (Nakprasit [10]). For every (2,∆)-bipartite graph G, we have χ′
s(G) ≤ 2∆.

Theorems 1 and 2 were proved using a similar proof scheme, first used in [11]. Reusing this
idea, we prove the following which, together with the aforementioned previous results, settles a
special case of Conjecture 2.

Theorem 3. For every (3,∆)-bipartite graph G, we have χ′
s(G) ≤ 4∆.

2. Proof of Theorem 3

Let G be a (3,∆)-bipartite graph with bipartition A and B such that ∆(A) ≤ 3. We set
nB = |V (B)|. It is sufficient to prove the result for the case where all vertices of A are of degree
exactly 3, so let us make this assumption.

We describe G by a (non-unique) (nB ×∆)-matrix constructed in the following way:

• the rows are indexed by the vertices of B and the columns are indexed by 1, 2, . . . ,∆;

• every row with index b ∈ B contains exactly once every edge incident to b (some cells will be
empty if b is of degree strictly less than ∆).

We give an example of a bipartite graph and two such associated matrices in Figure 2. Note that
the order of the edges (and the empty cells, if any) in any row of a matrix can be arbitrary, and
we will explain later how to take advantage of it. Assuming an edge e of G lies in cell (i, j) of a
matrix, we often refer to the index j as the “column of e” (with respect to this matrix).

Every matrix describing G yields a classification of the vertices of A into three types:

Type 1: vertices whose all incident edges are in the same column,

Type 2: vertices whose only two incident edges are in the same column,
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1 2 3 4

b1 b1a1
b2 b2a1 b2a2 b2a3
b3 b3a1 b3a2 b3a3 b3a4
b4 b4a4 b4a3
b5 b5a2 b5a4

























1 2 3 4

b1 b1a1
b2 b2a1 b2a2 b2a3
b3 b3a1 b3a2 b3a4 b3a3
b4 b4a4 b4a3
b5 b5a2 b5a4













Figure 2: Example of (3,∆ = 4)-bipartite graph and two associated matrices. A “ ” indicates that the content of
the cell is empty.

Type 3: vertices whose all incident edges are in different columns.

Since every Type 1 vertex v has all of its three incident edges of the same column, say i, calling
i the “column of v” directly makes sense. When considering a Type 2 vertex, we say that its two
incident edges located in the same column are paired. Its third incident edge is called lonely.

Since the order of the edges and the empty cells in a given row is arbitrary, different matrices
can describe G. However, some of them will be better for us, so let us define an order on the
matrices and, from now on, consider a maximum matrix MG of G. The order is defined as the
lexicographical order on (T1, T2), where Ti (i = 1, 2) is the number of Type i vertices. As an
illustration of this order, note that, with the first (top) matrix of Figure 2, only a1 is Type 1, the
vertices a2 and a3 are Type 2, while only a4 is Type 3. But this matrix is not maximum in our
order as the second (bottom) matrix of Figure 2 describes the same graph but yields three Type 1
vertices (a1, a2 and a3), one Type 2 vertex (a4), and no Type 3 vertex. Thus this second matrix is
actually greater in the order which we defined (also note that this matrix is not maximum neither
as several other permutations of entries are possible in order to obtain more Type 1 vertices).

Now we give some observations on MG which will be useful for the coloring process. Most of
these observations are straightforward and can be proved by just showing that if some particular
situation occurs, then we can perform switches (i.e. exchange two edges in a same row) in MG to
get a matrix contradicting the maximality of MG. We provide the proof of Observation 3 as an
illustration of this statement.

Observation 1. For every i ∈ {1, . . . ,∆}, every vertex of B has at most one incident edge in
column i.

Let e and e′ be two edges of G. We say that e is visible from e′ (or e′ sees e) if e and e′ are
adjacent or share a common adjacent edge. So equivalently a strong edge-coloring is an assignment
of colors such that every two edges which are mutually visible are assigned different colors.

Observation 2. If two vertices a0 and a1 of A have no common neighbor in B, then every edge
incident to a0 sees no edge incident to a1.

Observation 3. Let a0 and a1 be two Type 3 vertices with incident edges a0b0, a0b1, a0b2 and
a1b3, a1b4, a1b2, respectively. Note that b2 is a common neighbor of a0 and a1. Let i, j, k (respectively
i′, j′, k′) be the columns of a0b0, a0b1, a0b2 (respectively a1b3, a1b4, a1b2). Then k /∈ {i′, j′, k′} and
k′ /∈ {i, j, k}.

Proof
Assume by contradiction that one of the situations described in the statement occurs, e.g. that
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i j k = i′ j′ k′

b0 b0a0 − − − −
b1 − b1a0 − − −
b2 − − b2a0 − b2a1
b3 − − b3a1 − −
b4 − − − b4a1 −












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





i j k = i′ j′ k′

b0 b0a0 − − − −
b1 − b1a0 − − −
b2 − − b2a1 − b2a0

b3 − − b3a1 − −
b4 − − − b4a1 −













M ′
G

Figure 3: An illustration of the proof of Observation 3. The first (left) matrix MG cannot be maximum, since one
can switch two edges on a same row to get the second (right) matrix M ′

G
, which has more Type 2 vertices and

the same number of Type 1 vertices. A “−” indicates that the content of the cell can be arbitrary (either filled or
empty).

without loss of generality we have k = i′. Then MG looks like the first (left) matrix depicted in
Figure 3. But then, by switching b2a0 and b2a1 in the row indexed by b2, we get the second (right)
matrix M ′

G depicted in Figure 3 which yields the same number of Type 1 vertices, but one extra
Type 2 vertex a1. Therefore, MG is not maximum – a contradiction. �

Observation 4. Let a0 be a Type 3 vertex with incident edges e1, e2, e3 in columns i, j, k, respec-
tively. Let a1 be a Type 2 vertex with incident edges e4, e5, e6 in columns i′, i′, j′, respectively. If
e6 is adjacent to e3, then j′ /∈ {i, j, k} and i′ 6= k.

Observation 5. Let a0 and a1 be two Type 2 vertices. Let e1, e2, e3 (respectively e4, e5, e6) be
their incident edges in columns i, i, j (respectively i′, i′, j′). If e3 is adjacent to e4 or e5, then
i 6= i′.

Observation 6. Let a0 and a1 be two Type 2 vertices. Let e1, e2, e3 (respectively e4, e5, e6) be
their incident edges in columns i, i, j (respectively i′, i′, j′). If e3 is adjacent to e6, then j 6= i′.

Observation 7. Let a0 and a1 be two Type 1 vertices of columns i and j, respectively. If a0 and
a1 have a common neighbor, then i 6= j.

Observation 8. Let a be a Type 2 vertex with incident edges e1, e2, e3, where e1 is the lonely edge
in column j. Then at least one of e2 or e3 is not adjacent to a lonely edge of column j different
from e1.

We now describe the coloring process which will yield a strong 4∆-edge-coloring c of G. Each
edge e will be given a color c(e) = (i, j), where j ∈ {1, . . . ,∆} is fixed as the column of e in MG

and i ∈ {1, 2, 3, ∗} is to be set in the coloring process. So, in what follows, by “coloring an edge”
we mean assigning a value to i.

The coloring process mainly consists in coloring the edges of G successively without creating any
conflict, i.e. in such a way that every resulting partial edge-coloring remains strong. Its successive
steps are the following:

Coloring Procedure:

Step 1: color the edges incident to Type 1 vertices.
Step 2: color the paired edges incident to Type 2 vertices.
Step 3: color the edges incident to Type 3 vertices.
Step 4: color the lonely edges incident to Type 2 vertices.

In order to show that this coloring procedure is almost optimal somehow, we will impose ourselves
the constraint that the “special” color ∗ is used during Step 4 only. This will show that 3∆ colors
are sufficient to color all edges considered during Steps 1 to 3.

The first three steps will be performed greedily, while the last one requires a careful analysis
of the structure of the remaining non-colored edges. The rest of this section is dedicated to
explanations on why this procedure can be achieved correctly, i.e. why there is always an available
color for an edge considered at any of the four steps.
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Step 1: color the edges incident to Type 1 vertices.

For each Type 1 vertex with incident edges e1, e2 and e3, just color e1, e2 and e3 greedily (i.e.
properly) with {1, 2, 3}. The obtained edge-coloring is also strong, which follows directly from
Observations 2 and 7.

Step 2: color the paired edges incident to Type 2 vertices.

Once again, for each Type 2 vertex with incident paired edges e1 and e2, we just color e1 and e2
greedily, in such a way that no conflict arises with the already colored edges. The following lemma
shows that this is always possible, i.e. that, after Step 1 and at any moment of Step 2, there is
always (at least) one color available for any considered paired edge.

Lemma 1. After performing Step 1 and any number of iterations of Step 2, for each Type 2 vertex
which was not considered yet, there are always at least two colors available among {1, 2, 3} for each
of its paired edges.

Proof
Let a be a Type 2 vertex, ab1 and ab2 be its paired edges situated in column, say, j of MG, and
ab0 be the lonely edge. Let us count the number of already colored edges in column j visible from
ab1 or ab2. We prove that there is at most one such edge, which moreover is incident to b0. First
recall that, according to Observation 1, none of the edges incident to b1 or b2, except ab1 and ab2,
are in column j. Consider the neighbors of b1 and b2 distinct from a. Without loss of generality we
consider one of them, say a1 - neighbor of b1, and assume for contradiction that a1 has at least one
already colored incident edge e in column j. As mentioned previously, according to Observation 1,
e cannot be a1b1. Thus a1 cannot be a Type 1 vertex. Moreover, if a1 is a Type 3 vertex, then e
has not been colored yet. The same happens if a1 is a Type 2 vertex and e is a lonely edge. The
last case occurs when a1 is a Type 2 vertex and e is a paired edge: by Observation 1, edge a1b1
has to be lonely, and then Observation 5 yields a contradiction. Now observe that b0 has at most
one incident edge in column j by Observation 1. Consequently, at any moment while performing
Step 2 of the procedure, two colors among {1, 2, 3} are available for ab1 and ab2. �

Step 3: color the edges incident to Type 3 vertices.

Once again, a correct extension of the partial strong edge-coloring to the edges incident to the
Type 3 vertices can be obtained greedily. The following lemma shows that available colors exist
for any edge considered during the procedure.

Lemma 2. After performing Step 2 and any given number of iterations of Step 3, for each edge
incident to any given Type 3 vertex there is at least one available color among {1, 2, 3}.

Proof
Let a be a Type 3 vertex with neighbors b0, b1 and b2, and let j be the column of ab0. Let us
count the number of edges visible from ab0, which are already colored and in column j. We prove
that there can be at most two of them. Due to Observation 1, vertices b1 and b2 can each have at
most one incident edge in column j. Let a0 be a neighbor of b0 and suppose for contradiction that
a0 has an incident edge e in column j. By Observation 1, edge a0b0 cannot be in column j, and
thus a0 is not a Type 1 vertex. For the same reason, if a0 is of Type 2, edge a0b0 cannot be paired
with e; moreover, by Observation 4, edge a0b0 cannot be a lonely edge, so e is the lonely edge of
a0, and thus is not colored yet. Finally a0 cannot be a Type 3 vertex according to Observation 3.
Thus at least one color among {1, 2, 3} is available for a0b0. �

Step 4: color the lonely edges incident to Type 2 vertices.

Before explaining how to color the lonely edges explicitly, we first introduce some notions and
raise some observations about how these edges appear in G.

Let F be a subset of edges of G. The subgraph induced by F is the subgraph induced by the
endpoints of the edges of F . For each column j of MG, we define the component of j, denoted Cj,
as the subgraph of G induced by the set of lonely edges of column j. Since G is bipartite, observe
that every cycle of Cj have even length. We call a cycle v0v1v2 . . . vk−1v0 of Cj alternate if exactly
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half of its edges are lonely in column j and, for every pair of consecutive edges vivi+1 and vi+1vi+2

(where i is taken modulo k), one is lonely in column j and the other is not (i.e. the lonely edges
of column j on the cycle are non-adjacent). Similarly, we say that a path of Cj is alternate if for
every pair of adjacent edges of the path, one of them is lonely in column j and the other is not.
We prove below that each Cj has a very specific structure. We first start with a direct consequence
of Observation 8.

Observation 9. Let j be a column of MG. Every Type 2 vertex a ∈ A appearing in Cj cannot
have both its paired edges in Cj.

Lemma 3. Let j be a column of MG. Every connected component of Cj has at most one cycle.
Moreover, if this cycle exists, then it must be alternate.

Proof
Observe that Cj has no lonely edge e which is not in column j. Otherwise, since we are considering
the component Cj , the endpoint of e in part A would be incident to a lonely edge of column
j contradicting the definition of a Type 2 vertex. Therefore, from now on in this proof, when
speaking about lonely edges of Cj we will refer to lonely edges of column j.

First we show that all cycles in Cj are alternate. Suppose by contradiction that there is a cycle
in Cj which is non-alternate. Observe first that there cannot be two adjacent lonely edges in Cj
(otherwise there would be two lonely edges incident to a same vertex in A or B, which is impossible
by the definition of a Type 2 vertex and Observation 1). Thus by hypothesis the non-alternate
cycle must have two non-lonely adjacent edges e and e′ sharing a same vertex v.

Observe first that v cannot be in part A: otherwise, these two non-lonely edges e and e′ would
be the paired edges of v, a contradiction with Observation 9. Now suppose that v is in part B. We
denote the non-alternate cycle by C = b0a0b1a1...bkakb0, where each vertex ai (resp. bi) belongs
to A (resp. B). Assume v = b0, as well as e = b0a0 and e′ = b0ak. Then, since no vertex ai has its
two paired edges along C (according to Observation 9), we get that a0b1 is lonely. Now, since two
lonely edges cannot be adjacent, b1a1 is not lonely. Repeating these arguments along the edges of
C, we get that every edge biai with 0 ≤ i ≤ k is non-lonely, while every aibi+1 for 0 ≤ i ≤ k − 1
is lonely. Then we get that the two edges incident to ak along C are not lonely, which contradicts
Observation 9.

Therefore, all the cycles of the component are alternate.

Now we prove that there can be only one alternate cycle (if any) in every connected component
of Cj . Suppose by contradiction that there are two alternate cycles in a connected component of
Cj. We show the following properties about these two cycles to end up with a contradiction:

1. the two cycles cannot share a vertex without sharing an edge,

2. the two cycles cannot share an edge,

3. the two cycles cannot be joined by a path in the component.

The first property follows from the fact that the two cycles are alternate and there cannot be
two adjacent lonely edges in a same component. Suppose by contradiction that the second property
is false, i.e. that two cycles share an edge. Let P = v1 · · · vk be one longest alternate path shared
by theses cycles. Observe that v1v2 must be lonely (since otherwise there would be two adjacent
lonely edges) and v1 must have two other incident non-lonely edges - one in each of the two cycles.
We call these edges e and e′ respectively, and observe then that v1 /∈ A thanks to Observation 9.
However, by the same arguments, vk must be in B as well, and vk−1vk must be a lonely edge. Then
P is an alternate path of odd length between v1 and vk which are both in part B, a contradiction
since Cj is bipartite.

Finally, in order to show the third property, suppose by contradiction that there is a path
connecting the two cycles in the component. Consider in particular the shortest path P with
extremities u and v, where u lies on the first cycle while v lies on the second one. Recall that
the cycles are alternate, and thus one edge of the first cycle incident to u is lonely, and similarly
for v with respect to the second cycle. Recall also that P is a subgraph of Cj. Therefore, by
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Observation 9, none of u and v can be in part A: otherwise, they would have two paired edges in
Cj - one on the cycle, and one on P .

Let us hence denote P = b0a0b1a1...bk, where u = b0 and v = bk, and k ≥ 2 is even. Now
consider the successive vertices of P , i.e. from b0 to bk. By Observation 1, the edge b0a0 cannot
be lonely since b0 already has an incident lonely egde on the first cycle. Now, a0b1 has to be
lonely, since otherwise a0 would have both its paired edges in Cj. Repeating the same arguments
until we reach bk, we get that every edge biai is not lonely, while every edge aibi+1 is lonely, for
0 ≤ i ≤ k − 1. Then bk is incident to two lonely edges (one is ak−1bk and the other one is on the
second cycle), a contradiction with Observation 1. �

We now explain how to color the lonely edges in order to finish the coloring of G. Recall
that during this step, we allow the use of the special color ∗. Consider every successive value of
j ∈ {1, ...,∆}. We may assume that Cj is connected (if not, apply the procedure below component-
wisely). The lonely edges of Cj are colored in up to two phases as follows:

Phase 1: In case Cj has an induced cycle C, it is unique and alternate according to Lemma 3.
Let C = a1b1a2b2...akbka1 be this cycle, where a1b1, a2b2, . . . , akbk are its lonely edges and ai ∈ A
(resp. bi ∈ B) for 1 ≤ i ≤ k. Then greedily color the edges a1b1, . . . , ak−1bk−1, in this order, with
colors among {1, 2, 3} in order to obtain a partial strong edge-coloring. Color the remaining lonely
edge akbk with color ∗.

Phase 2: If C exists, then first remove its edges to get a (possibly empty) forest. Each tree T
of the forest will have as a root a vertex r of C. If the component had no cycle C, we designate
an arbitrary node of T to be the root r. Then greedily color with colors among {1, 2, 3, ∗} the
remaining uncolored lonely edges of T as they are encountered during a Breadth-First Search
(BFS) algorithm performed from r.

The following two results show that Phases 1 and 2 can always be performed correctly.

Lemma 4. During Phase 1, for every lonely edge of C there is at least one available color among
{1, 2, 3, ∗}.

Proof
Assume that the edges a1b1, . . . , ai−1bi−1 have already been colored and let aibi 6= akbk be the
considered lonely edge. Recall that, due to our ordering, the edge ai+1bi+1 is uncolored. Recall
also that no other edge adjacent to aibi in G is in column j of MG (according to Observation 1
and the definition of a Type 2 vertex). Let us count the number of edges visible from aibi which
are already colored and in column j. Let us prove that there can be at most two of them. One of
them is ai−1bi−1. Let b be the third neighbor of ai. By Observation 1, at most one of the edges
incident to b can be in column j. Now consider a neighbor a of bi (different from ai) and assume
it has an incident edge e in column j. By Observation 1, a cannot be a Type 1 vertex, nor a Type
2 vertex where e would be paired with abi. By Observation 6, if a is a Type 2 vertex, then e is
lonely and thus not yet colored: indeed, there exists at most one cycle per component (according
to Lemma 3), and, for now, we have colored only lonely edges involved in a cycle. Finally a cannot
be a Type 3 vertex according to Observation 4. Therefore, one color among {1, 2, 3} is available to
color aibi+1. As for akbk, no other edge of the same connected component of Cj is colored with ∗,
so coloring this edge cannot create any conflict (note that akbk can have three visible edges in
column j and thus none of {1, 2, 3} may be available). This completes the proof. �

Lemma 5. During the BFS algorithm in Phase 2, for every lonely edge of T there is at least one
available color among {1, 2, 3, ∗}.

Proof
Consider a Type 2 vertex a ∈ A with lonely edge ab0 ∈ T , where a ∈ A and b0 ∈ B. So a is
Type 2 with paired edges a0b1 and a0b2. Then b1 and b2 can be each incident to at most one edge
in column j, and each of these two edges may be colored already (for example, if both b1 and b2
are adjacent to a Type 1 vertex in column j).

We now prove that the other edges visible from ab0 and in column j have to be lonely, and that
at most one of them is already colored. Consider any edge b0a0 different from ab0 and adjacent
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to an edge e in column j. By Observation 1, b0a0 cannot be in column j. Then a0 is either of
Type 2 or Type 3. Actually, a0 cannot be of Type 3 according to Observation 4. Also, according
to Observation 6, a0 cannot be of Type 2 with b0a0 being lonely and its paired edges being of
column j. So necessarily a0 is of Type 2 with lonely edge e in column j. Observe that b0 may have
several neighbors playing the same role as a0, i.e. incident to an edge e′ in column j, but then the
same argument applies and e′ is lonely.

The important remark to raise is that the BFS algorithm performed on T from r ensures that,
whenever a lonely edge e is treated, at most one lonely edge of T (and C, if it exists) visible from e
has already been colored: indeed, assume first that e is not adjacent to the root and call v↑ (resp.
v↓) the endpoint of e which is closer (resp. further) to the root r. Then e is the only lonely edge
adjacent to v↑; call v↑↑ the father of v↑ in the tree: v↑↑ has only one incident lonely edge in column
j (which happens to be colored before e); finally, any subtree rooted at a son of v↑, or rooted at v↓
is not colored yet. So e sees at most one already colored lonely edge. Let us now deal with a lonely
edge e incident to the root r: if Cj had a cycle, then we chose the root r to be on C; consequently
r already has an incident lonely edge on the cycle, a contradiction with Observation 1 and the
definition of a Type 2 vertex. Otherwise, the component had no cycle, and thus no lonely edge
visible from e has already been colored.

�

3. Conclusion and possible improvements

In this paper, we have proved that, for every (3,∆)-bipartite graph G, we have χ′
s(G) ≤ 4∆.

This result, together with Theorem 1, confirms Conjecture 2 for this specific family of bipartite
graphs. We however believe that our upper bound should not be tight, as stated in Conjecture 3
where 3∆ is conjectured to be the right bound.

Avoiding using ∗

Maybe the upper bound we have obtained, could be improved by refining the coloring procedure
introduced in Section 2. To do so, one would have to find a way to do without color ∗, i.e. color
every lonely edge of Cj with “regular” color 1, 2 or 3. One optimistic reason why this should be
possible is that each such color is only used when 1, 2 and 3 are all forbidden, that is when coloring
the connected components of the Cj’s during Step 4.

On the one hand, color (∗, j) is always used, in Phase 1 of Step 4, once for each alternate cycle
of Cj . But this use of (∗, j) is sometimes not necessary. The main purpose for us to systematically
use it is to facilitate and lighten the proof of Theorem 3 by avoiding a tedious case analysis. But
one may note that the only bad situation, that is when the use of color (∗, j) might be necessary
to color the lonely edges of C, is when the following three conditions are satisfied:

• C is of length 2k with k ≥ 3 odd;

• every vertex ai ∈ A of C is at distance 2 from a Type 1 vertex a′i of column j – call e′i the
edge which is not in C and which joins a′i and the common neighbor of ai and a′i;

• and every edge e′i has been assigned exactly the same color (i, j) in Step 1 with i ∈ {1, 2, 3}.

On the other hand, color (∗, j) may also be used during Phase 2 of Step 4 to color a lonely edge
of a tree T of Cj − C. A careful analysis shows that actually color (∗, j) may only be needed for
lonely edges incident to a leaf of T , and if the around vertices are colored in an unfavourable way
(typically when several Type 1 vertices surround the leaf).

We believe that if it would be possible to decrease the number of colors used in our procedure,
these two bad cases above should be the ones to tackle. To this regard, choosing MG among all
maximal matrices so that it meets additional convenient properties such as minimizing the number
of alternate cycles would be interesting to investigate. Also, it is worth pointing out that many
tasks of the coloring process are performed arbitrarily (e.g. coloring the edges during Steps 1 to 3,
the choice of r during Phase 2 of Step 4, etc.). Searching for better choices would be another
promising perspective.
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From 3 to higher values of ∆(A)

An interesting perspective of research is to investigate whether the coloring scheme we have used
herein may be generalized to larger values of ∆(A). One could indeed, based on some maximum
matrix MG describing G, organize the incident edges of every vertex in A(G) into maximal groups
of paired edges, i.e. edges in a same column of MG, and generalize the coloring scheme described
in Section 2. Namely, one could first color the maximal groups of ∆(A) paired edges (which
correspond to the notion of Type 1 vertex herein), then color the maximal groups of ∆(A) − 1
paired edges, and so on, and show that such strong extensions exist according to generalized versions
of Observations 1 to 9. Following the same idea as in our proof of Theorem 3, the algorithm to
color the graph would require ∆(A)+1 steps. But the success of this task does not seem immediate
to us. In particular, the last step of the new procedure seems hard to define, a simple adaptation
of Step 4 from the proof of Theorem 3 being not clear. This is due to the fact that expressing
accurately how the maximal groups of paired edges are organized in G in general, is not easy.

Complexity matters

For computational complexity, our proof yields a polynomial-time algorithm to deduce a strong
4∆-edge-coloring of a given (3,∆)-bipartite graph G. Indeed, first note that a coloring can easily
be obtained once MG is known, since assigning a color to an edge then just requires to check what
are its neighboring colors. We start the coloring process with any matrix MG (not necessarily
maximal). Then during the coloring process, if at some particular step the coloring cannot be
achieved, then that would imply that MG is not maximal (since one of the observations would not
be satisfied). Moreover, in this case we would know which are the entries of MG to be permuted
in order to obtain another matrix M ′

G which would be greater than MG. Thus we restart the
coloring process on M ′

G. In the worst case, the coloring process will be restarted O(|V (A)|2) times
until we reach a matrix M ′

G which is maximal. This clearly shows that the coloring is obtained in
polynomial time.

On the other hand, it turns out that obtaining MG is an NP-hard problem in general. In order
to prove this statement, let us introduce the following problem.

Maximum Number of Type 1 Vertices

Instance: a bipartite graph G and an integer ℓ ≥ 1.
Question: does there exist a matrix describing G yielding at least ℓ Type 1 vertices?

Our statement above follows from a polynomial-time reduction from the following problem,
where a properly k-vertex-colorable graph is a graph admitting a proper k-vertex-coloring, that is a
partition of its vertices into k independent sets (i.e. with no adjacent vertices).

Maximum Properly k-Vertex-Colorable Subgraph

Instance: a graph G and an integer ℓ ≥ 1.
Question: does there exist a properly k-vertex-colorable subgraph of G with at least ℓ vertices?

Maximum Properly 2-Vertex-Colorable Subgraph is known to remain NP-complete
when its input graph is of maximum degree 3 (see [4]). Using this fact, we prove the following
result establishing the hardness of Maximum Number of Type 1 Vertices.

Theorem 4. Maximum Number of Type 1 Vertices is NP-complete, even when restricted to
(3, 2)-bipartite graphs.

Proof
Given a matrix MG describing a graph G (which, obviously, has size polynomial in the number of
vertices of G), one can compute in polynomial time the number of Type 1 vertices yielded by MG.
So Maximum Number of Type 1 Vertices is an NP problem.

We now prove the NP-hardness of Maximum Number of Type 1 Vertices. Consider an
instance of Maximum Properly 2-Vertex-Colorable Subgraph, i.e. a graph G of maximum
degree 3 together with an integer ℓ ≥ 1. From G, we construct a (3, 2)-bipartite graph H such that
the number of vertices in a maximum properly k-vertex-colorable subgraph of G is exactly equal
to the number of Type 1 vertices yielded by a maximum matrix MH describing H . Hence, (H, ℓ)
will be a positive instance of Maximum Number of Type 1 Vertices if and only if (G, ℓ) is a
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positive instance of Maximum Properly 2-Vertex-Colorable Subgraph. We construct H
as the 1-subdivision of G, namely H = A ∪B, as follows:

• for every vertex u of G, add a vertex au to H ,

• for every edge uv of G, add one vertex bu,v to H ,

• A = {au : u ∈ V (G)} and B = {bu,v : uv ∈ E(G)},

• for every edge uv of G, add the edges aubu,v and avbu,v to H .

Clearly ∆(A) ≤ 3 and ∆(B) = 2, so H is a (3, 2)-bipartite graph. Besides, the reduction is
achieved in polynomial time since the number of vertices of H is |V (G)|+ |E(G)|. Note that every
two adjacent vertices u and v of G are directly depicted in H by the two vertices au and av which
are at distance exactly 2 (because of bu,v). So u and v cannot be assigned the same color by a
partial proper 2-vertex-coloring of G while au and av cannot be Type 1 vertices of a same column
of MH , and vice-versa. From this fact, assuming color, say, 1 is liken to column 1 of MH , coloring 1
a vertex u of G is equivalent to having au being a Type 1 vertex of column 1 of MH . Because
∆(B) = 2, note that MH has exactly two columns by definition, and so we can define a straight
equivalence between the two colors used to color G and the two columns of MH . The equivalence
between the two instances then follows. �
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