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Spectral discretization

of a model for organic pollution in waters

by Christine Bernardi∗ and Driss Yakoubi∗

Abstract: We are interested with a mixed reaction diffusion system describing the or-
ganic pollution in stream-waters. In this work, we propose a mixed variational formulation
and recall its well-posedness. Next, we consider a spectral discretization of this problem
and establish nearly optimal error estimates. Numerical experiments confirm the interest
of this approach.

Résumé: Nous nous intéressons à un système d’équations aux dérivées partielles qui
modélise la pollution organique dans des rivières. Nous en écrivons une formulation vari-
ationnelle mixte et rappelons qu’il est bien posé. Puis nous considérons sa discrétisation
par méhode spectrale et démontrons des estimations presque optimales de l’erreur. Des
expériences numériques confirment l’intérêt de cette méthode.
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1. Introduction.

Let Ω be a bounded connected two- or three-dimensional domain with a Lipschitz-
continuous boundary ∂Ω. We are interested in the following system, where the unknowns
are the density b of the Biochemical Oxygen Demand (BOD) and the concentration c of
the Dissolved Oxygen (DO):


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


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



















−div (d∇b) + r b = f in Ω,

−div (d∇c) + r∗ c+ r b = g in Ω,

c = α on ∂Ω,

d ∂nc = β on ∂Ω.

(1.1)

The dispersion coefficient d and the reaction parameters r and r∗ are positive but depend
on the space variable. The right-hand side f represents the source of the pollution, while
the datum g can for instance describe the uptake oxygen from the atmosphere to reduce
the deficit of oxygen caused by the biodegradation of the organic pollutants.

Such a model was derived from an early formulation written by Streeter and Phelps in
1925 to study the Ohio river (see [13]), from which sophisticated modeling of the organic
pollution in stream-waters has been elaborated. We refer to [11], [5] and [12] for the
dispersion-reaction models. The central element of such problems is the oxygen. The
main tracers currently used are the BOD which is the amount of oxygen per unit volume,
necessary for the micro-organisms and aerobic bacteria to break down the organic matter
contained in the water and the DO which is the oxygen concentration housed in a unit
volume of water. The coupling term represented by r b in the second equation is the
depletion of oxygen due to elevated BOD.

One of the mathematical difficulties in system (1.1) is the existence of two boundary
conditions on c and none on b, which is similar to the stream-function/vorticity formulation
of the Stokes problem. Indeed, from a practical point of view, measurements on c are easy
and instantaneously obtained while those on b require a strict chemical protocol and last
five days. So, one of the stakes of working with problem (1.1) is to determine, for given
values of the data f , g and also α, β, the values of d ∂nb on the boundary.

Despite all of this, the theoretical results for the model given in (1.1) have already
been derived in [1], and we only recall them. Next, we propose a spectral discretization
of this model. It must be noted that, in contrast with the finite element discretization
proposed in [1], no stabilization is needed for this method. Thus, we construct a discrete
problem by the Galerkin method with numerical integration, we prove its well-posedness
and establish nearly optimal error estimates. Some numerical experiments confirm the
good properies of this discretization.
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The outline of the paper is as follows:
• In Section 2, we write the variational formulation of problem (1.1) and recall the argu-
ments for its well-posedness.
• In Section 3, we describe the discrete problem and prove its well-posedness.
• Quasi-optimal a priori error estimates are derived in Section 4.
• Numerical experiments are presented in Section 5.
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2. The mixed variational framework.

From now on, we assume that the reaction and diffusion coefficients r, r∗ and d are
piecewise continuous on Ω and also that there exist positive real constants r♭, r♯, d♭ and
d♯ such that

∀x ∈ Ω, r♭ ≤ r(x), r∗(x) ≤ r♯ and d♭ ≤ d(x) ≤ d♯. (2.1)

We also suppose the diffusion coefficient d to be piecewise continuously differentiable on
Ω. To develop our analysis we make a simplification assumption about the boundary data,
that is (α, β) = (0, 0), and discuss the case of non-homogeneous boundary data only at the
end of this section.

2.1. The variational formulation.

In what follows, we use the whole scale of Sobolev spaces Hs(Ω), s ≥ 0. We also need
the space H1

0 (Ω) of functions in H1(Ω) which vanish on ∂Ω and its dual space H−1(Ω),
the duality pairing being represented by 〈·, ·〉H−1,H1

0
. The functional framework involves

the following space, introduced in [3] for the stream-function/vorticity formulation of the
Stokes problem,

V =
{

χ ∈ L2(Ω); div (d∇χ) ∈ H−1(Ω)
}

,

which is a Hilbert space when endowed with the graph norm

‖χ‖V =
(

‖div (d∇χ)‖2H−1(Ω) + ‖χ‖2L2(Ω)

)1/2

.

To write the variational formulation of the system, let us introduce three bilinear
forms,

∀(χ, ϕ) ∈ V× V, a(χ, ϕ) =

∫

Ω

r(x)χ(x)ϕ(x) dx,

∀(ψ, ϕ) ∈ H1
0 (Ω)× V, m(ψ,ϕ) = 〈−div (d∇ϕ) + r ϕ, ψ 〉H−1,H1

0
,

∀(ψ, ϕ) ∈ H1
0 (Ω)× V, m∗(ψ, ϕ) = 〈−div (d∇ϕ) + r∗ ϕ, ψ 〉H−1,H1

0
.

The mixed variational problem may then be expressed in terms of these bilinear forms as
follows: For any data f in H−1(Ω) and g in L2(Ω), it reads

Find (b, c) in V×H1
0 (Ω) such that

∀ψ ∈ H1
0 (Ω), m (ψ, b) = 〈f, ψ〉H−1,H1

0
,

∀ϕ ∈ V, m∗(c, ϕ) + a(b, ϕ) =

∫

Ω

g(x)ϕ(x) dx.
(2.2)
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The following equivalence property is readily checked: A pair (b, c) in V × H1
0 (Ω) is a

solution of the mixed variational problem (2.2) if and only if it satisfies the boundary
value system (1.1) with α = β = 0.

2.2. Well-posedness.

We recall that, according to the analysis of the abstract problem achieved in [10] (see
also [2]), necessary and sufficient conditions on the bilinear forms are required to ensure
existence, uniqueness, and stability for the mixed problem (2.2). The inf-sup conditions
on the forms m(·, ·) and m∗(·, ·) easily follow from the imbedding of H1

0 (Ω) into V, see [1,
Lemmas 2.2 and 2.3].

Lemma 2.1. The bilinear formm(·, ·) satisfies the inf-sup condition for a positive constant

η,

∀ψ ∈ H1
0 (Ω), sup

ϕ∈V

m(ψ, ϕ)

‖ϕ‖V
≥ η ‖ψ‖H1(Ω). (2.3)

The bilinear form m∗(·, ·) satisfies the inf-sup condition for a positive constant η∗,

∀ψ ∈ H1
0 (Ω), sup

ϕ∈V

m∗(ψ,ϕ)

‖ϕ‖V
≥ η∗ ‖ψ‖H1(Ω). (2.4)

The inf-sup conditions on a(·, ·) use the kernels of the bilinear formsm(·, ·) andm∗(·, ·),
defined to be

K =
{

ϕ∈V; ∀ψ ∈H1
0 (Ω), m (ψ, ϕ) = 0

}

,

K∗ =
{

ϕ∈V; ∀ψ ∈H1
0 (Ω), m∗ (ψ, ϕ) = 0

}

.

Note that K and K∗ are closed subspaces in V, and are then Hilbert spaces, when endowed
with ‖ · ‖V. We now recall the inf-sup conditions on the form a(·, ·) from [1, Lemma 2.7],
their proof relies on the construction of an isomorphism between the spaces K and K∗.

Lemma 2.2. Assume that

osc

√

r∗

r
= max

x∈Ω

√

r∗

r
(x)−min

x∈Ω

√

r∗

r
(x) < 2. (2.5)

Then, the bilinear form a(·, ·) satisfies the two inf-sup conditions for a positive constant τ

∀χ ∈ K, sup
ϕ∈K∗

a(χ, ϕ)

‖ϕ‖V
≥ τ ‖χ‖V,

∀ϕ ∈ K∗, sup
χ∈K

a(χ, ϕ)

‖χ‖V
≥ τ ‖ϕ‖V.

(2.6)
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We are hence in a position to state the main result of this section, which is straightfor-
wardly derived from [10, Thm 3.1] and the generalized inf-sup conditions stated in Lemmas
2.1 and 2.2.

Theorem 2.3. Assume that (2.5) holds true. Then, for any data (f, g) inH−1(Ω)×L2(Ω),
the mixed problem (2.2) has a unique solution (b, c) in V×H1

0 (Ω). Moreover this solution

satisfies

‖b‖V + ‖c‖H1(Ω) ≤ C(‖f‖H−1(Ω) + ‖g‖L2(Ω)). (2.7)

Remark 2.4. Some further regularity of the solution can easily be derived from [9, Cor.
3.5.22]. For instance, if the domain Ω is a convex polygon or polyhedron, for any data
(f, g) in H−1(Ω)×H1(Ω), the solution (b, c) of problem (2.2) belongs to H1(Ω)×H3(Ω).

2.3. Nonhomogeneous boundary conditions.

Enforcing the nonhomogeneous boundary conditions on the boundary ∂Ω is worth
some comments. In view of the functional framework used in our analysis, prescribing the
Dirichlet condition c = α seems natural in H1/2(∂Ω) while imposing the Neumann one
d ∂nc = β arises some trouble. We start from the following variational formulation

Find (b, c) in V×H1(Ω) satisfying c|∂Ω = α and such that

∀ψ ∈ H1
0 (Ω), m (ψ, b) = 〈f, ψ〉H−1,H1

0
,

∀ϕ ∈ V, m∗(c, ϕ) + a(b, ϕ) =

∫

Ω

g(x)ϕ(x) dx− 〈β, ϕ〉∂Ω.
(2.8)

The key point is to give a sense to the duality product 〈β, ϕ〉∂Ω, which seems meaningless
for all ϕ in V. We recall from [9, Section 1.5] that, if the boundary ∂Ω is smooth, any ϕ in
V has a trace ϕ|∂Ω that belongs to H−1/2(∂Ω). As a result for 〈β, ϕ〉∂Ω to make sense, it is

necessary to assume that β lies in H1/2(∂Ω). This regularity seems too strong to consider
on a Neumann data. This difficulty can be overcome by using an appropriate lifting, see
[1, Thm 2.13], and we have therefore the following result.

Theorem 2.5. Assume that (2.5) holds true. Then, for any data (f, g) in H−1(Ω)×L2(Ω)
and (α, β) inH1/2(∂Ω)×H−1/2(∂Ω), the boundary value system (2.8) has a unique solution
(b, c) in V×H1(Ω).
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3. The discrete problem and its well-posedness.

We first describe the construction of the discrete problem. Next, we prove the analo-
gous lemmas as in Section 2 and we derive its well-posedness.

3.1. The discrete problem.

From now on, we work with the domain Ω equal to the square ]− 1, 1[2 or to the cube
] − 1, 1[3. For each nonnegative integer n, we denote by Pn(Ω) the space of polynomials
with 2 or 3 variables and degree ≤ n with respect to each variable. Next, we fix an integer
N ≥ 2 and define the variational spaces

VN = PN (Ω), XN = PN (Ω) ∩H1
0 (Ω). (3.1)

Despite the complex definition of V, they lead to a conforming discretization.

We also make use of the Gauss-Lobatto formula on the interval ]−1, 1[. Let Pn(−1, 1)
denote the space of restrictions to ]−1, 1[ of polynomials with degree ≤ n; setting: ξ0 = −1
and ξN = 1, we recall that there exist N − 1 nodes ξj , 1 ≤ j ≤ N − 1, in ] − 1, 1[, with
ξ0 < ξ1 < . . . < ξN , and N + 1 positive weights ρj , 0 ≤ j ≤ N , such that

∀Φ ∈ P2N−1(−1, 1),

∫ 1

−1

Φ(ζ) dζ =
N
∑

j=0

Φ(ξj) ρj . (3.2)

Moreover the following property holds [4, form. (13.20)]

∀ϕ ∈ PN (−1, 1), ‖ϕ‖2L2(−1,1) ≤

N
∑

j=0

ϕ2(ξj) ρj ≤ 3 ‖ϕ‖2L2(−1,1). (3.3)

This leads to define a discrete product on Ω: For any continuous functions u and v on Ω,

(u, v)N =

{

∑N
i=0

∑N
j=0 u(ξi, ξj)v(ξi, ξj) ρiρj in dimension 2,

∑N
i=0

∑N
j=0

∑N
k=0 u(ξi, ξj , ξk)v(ξi, ξj , ξk) ρiρjρk in dimension 3.

(3.4)

It follows from (3.3) that this product is a scalar product on PN (Ω). Let also IN be the
Lagrange interpolation operator on the nodes (ξi, ξj) or (ξi, ξj , ξk) with values in PN (Ω).

We can now define the bilinear forms needed for the discrete problem:

∀(χN , ϕN ) ∈ VN × VN , aN (χN , ϕN ) = (r χN , ϕN )N ,

∀(ψN , ϕN ) ∈ XN × VN , mN (ψN , ϕN ) = (d∇ϕN ,∇ψN )N + (r ϕN , ψN )N ,

∀(ψN , ϕN ) ∈ XN × VN , m∗N (ψN , ϕN ) = (d∇ϕN ,∇ψN )N + (r∗ ϕN , ψN )N .
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Note from (3.3) that all these forms are continuous when the spaces VN and XN are both
provided with the norm of H1(Ω) and also that replacing the coefficients d, r and r∗ by
their Lagrange interpolates does not change the previous definition.

The discrete problem is now constructed from problem (2.2) by the Gakerkin method
with numerical integration. In the case α = β = 0 of homogeneous boundary conditions
and for continuous data f and g on Ω, it reads

Find (bN , cN ) in VN × XN such that

∀ψN ∈ XN , mN (ψN , bN ) = (f, ψN )N ,

∀ϕ ∈ VN , m∗N (cN , ϕN ) + aN (bN , ϕN ) = (g, ϕN )N .
(3.5)

Obviously this problem results into a square linear system.

3.2. Wellposedness.

Even if the well-posedness of problem (3.5) can be derived in a simpler way, we have
decided to use the same arguments as for the continuous problem for that, namely to prove
inf-sup conditions on the forms aN (·, ·), mN (·, ·) and m∗N (·, ·).

Lemma 3.1. The bilinear form mN (·, ·) satisfies the inf-sup condition for a positive

constant η′ independent of N

∀ψN ∈ XN , sup
ϕN∈VN

mN (ψN , ϕN )

‖ϕN‖H1(Ω)
≥ η′ ‖ψN‖H1(Ω). (3.6)

The bilinear form m∗(·, ·) satisfies the inf-sup condition for a positive constant η′∗ indepen-

dent of N

∀ψN ∈ XN , sup
ϕN∈VN

m∗N (ψN , ϕN )

‖ϕN‖H1(Ω)
≥ η′∗ ‖ψN‖H1(Ω). (3.7)

Proof. Since the proofs of the two conditions are exactly the same, we only check the first
one. Using the embedding of XN into VN , we take ϕN equal to ψN , which gives

mN (ψN , ϕN ) = (d∇ψN ,∇ψN )N + (r ψN , ψN )N .

It thus follows from the positivity of d and r combined with (3.3) that

sup
ϕN∈VN

mN (ψN , ϕN ) ≥ min{d♭, r♭} ‖ψN‖2H1(Ω) = min{d♭, r♭} ‖ψN‖H1(Ω)‖ϕN‖H1(Ω).

This gives the desired inf-sup condition.
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Unfortunately, the conditions on aN (·, ·) turn out to be a little more complex. They
require the discrete kernels

KN =
{

ϕN ∈VN ; ∀ψN ∈XN , mN (ψN , ϕN ) = 0
}

,

K∗N =
{

ϕN ∈VN ; ∀ψN ∈XN , m∗N (ψN , ϕN ) = 0
}

.

There is no reason for them to be imbedded in the continuous kernels K and K∗.

Next, with any χN in KN , we associate the solution θN in XN of the following problem

∀ψN ∈ XN , (d∇θN ,∇ψN )N + (r∗ θN , ψN )N =
(

(r − r∗)χN , ψN )N . (3.8)

Obviously, thanks to (3.3) and the Lax–Milgram lemma, this problem has a unique solu-
tion. Then, we define an operator MN on KN by the formula

MNχN = χN + θN .

We now give some properties of this operator.

Lemma 3.2. The operator MN is one-to-one from KN onto K∗N . Moreover, the following

stability properties hold for positive constants σ♭ and σ♯ independent of N

∀χN ∈ KN , σ♭ ‖χN‖L2(Ω) ≤ ‖MNχN‖L2(Ω) ≤ σ♯ ‖χN‖L2(Ω). (3.9)

Proof. The fact that MN maps KN into K∗N follows from its definition and the fact that
it is one-to-one follows from estimate (3.9) that we now prove. By taking ψN equal to θN
in (3.8), we derive from (3.3)

‖θN‖L2(Ω) ≤ c ‖χN‖L2(Ω),

whence the second estimate in (3.9). The proof of the first estimate follows from the
same lines by using the formula χN = MNχN − θN and the fact that problem (3.8) can
equivalently be written

∀ψN ∈ XN , (d∇θN ,∇ψN )N + (r θN , ψN )N =
(

(r − r∗)MNχN , ψN )N .

We are now in a position to state and prove the next lemma. Its rather technical
proof relies on the same arguments as for [1, Lemma 2.7].

Lemma 3.3. Assume that condition (2.5) holds. Then, the bilinear form a(·, ·) satisfies

the two inf-sup conditions for a positive constant τ ′

∀χN ∈ KN , sup
ϕN∈K∗N

aN (χN , ϕN )

‖ϕN‖L2(Ω)
≥ τ ′ ‖χN‖L2(Ω),

∀ϕN ∈ K∗N , sup
χN∈KN

aN (χN , ϕN )

‖χN‖L2(Ω)
≥ τ ′ ‖ϕN‖L2(Ω).

(3.10)
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Proof. Owing to Lemma 3.2, with each χN in KN , we associate the function ϕN = MNχN
in K∗N and with each ϕN in K∗N , we associate the function χN = M−1

N ϕN in KN , so
that both inf-sup conditions rely on the evaluation of the quantity aN (χN , ϕN ). Since the
function θN = ϕN − χN belongs to XN and satisfies

∀ψN ∈ XN , (d∇θN ,∇ψN )N + (r∗ ϕN , ψN )N − (rχN , ψN )N = 0,

we obtain

(d∇θN ,∇θN )N + (r∗ ϕN , ϕN )N + (r χN , χN )N = (rχN , ϕN )N + (r∗χN , ϕN )N ,

whence, for any positive real number ξ,

(d∇θN ,∇θN )N +(r∗ ϕN , ϕN )N +(rχN , χN )N = (1+ξ)aN (χN , ϕN )+
(

(r∗−ξr)χN , ϕN )N .

Using the fact that (·, ·)N is a product together with the formula ab ≤ a2 + b2

4 , we derive

(r∗ ϕN , ϕN )N+(r χN , χN )N ≤ (1+ξ) aN (χN , ϕN )+(r∗ ϕN , ϕN )N+
( (r∗ − ξr)2

4r∗
χN , χN

)

N
,

whence

(1 + ξ) aN (χN , ϕN ) ≥

(

(

1−
(r∗ − ξr)2

4rr∗

)

r χN , χN

)

N

.

Now, assumption(2.5) is equivalent, see [1, Lemma 2.6], to the existence of a ζ > 0 such
that, for an appropriate value of ξ,

min
x∈Ω

(

1−
(r∗ − ξr)2

4rr∗

)

= ζ.

Combining all this with (3.3) and Lemma 3.2 leads to

(1 + ξ) aN (χN , ϕN ) ≥ r♭ζ (χN , χN )N ≥
r♭ζ

σ♯
‖χN‖L2(Ω)‖ϕN‖L2(Ω),

whence the desired inf-sup conditions.

Even if the norms in Lemma 3.1 and 3.3 are not coherent, using the equivalence of
norms on the finite-dimensional spaces VN and XN allows us to apply [10, Thm 3.1].

Theorem 3.4. Assume that (2.5) holds true. Then, for any data (f, g) continuous on Ω,
the discrete problem (3.5) has a unique solution (bN , cN ) in VN × XN .

3.3. Nonhomogeneous boundary conditions.
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We now define a discrete scalar product on ∂Ω as follows: On each edge (in dimension
2) or face (in dimension 3) of Ω, a discrete product is defined as in (3.4); then, the discrete
product (·, ·)∂ΩN is defined by summing these local products on the 4 edges or 6 faces of Ω.
We also introduce an interpolation operator I∂ΩN : On each edge or face Γ of Ω, it coincides
with the interpolation operator on the nodes (ξi, ξj) or (ξi, ξj , ξk) which belongs to Γ with
values in PN (Γ). The discrete problem is constructed in an obvious way:

Find (bN , cN ) in VN × VN satisfying cN |∂Ω = I∂ΩN α and such that

∀ψN ∈ XN ,ΓmN (ψN , bN ) = (f, ψN )N ,

forallϕ ∈ VN , m∗N (cN , ϕN ) + a(bN , ϕN ) = (g, ϕN )N − (β, ϕN )∂ΩN .
(3.11)

When all assumptions of Theorem 3.4 are satisfied and if moreover the data (α, β) are
continuous on ∂Ω, this problem has a unique solution.

10



4. A priori error analysis.

We first intend to bound ‖b− bN‖L2(Ω). For this, we introduce the affine subspace

KN (f) =
{

ϕN ∈VN ; ∀ψN ∈XN , mN (ψN , ϕN ) = (f, ψN )N

}

. (4.1)

When taking βN in KN (f), we observe that bN − βN belongs to KN . So the idea is to
apply the first inf-sup condition (3.10).

In all this section, we assume that the coefficients d, r and r∗ are constant, only for
simplicity of the estimates (otherwise, further terms of type ‖d− INd‖L∞(Ω) are involved
and when the coefficients are regular, which is most often the case, they can be considered
as neglectable).

The next proof requires the orthogonal projection operator ΠN−1 from L2(Ω) onto
PN−1(Ω).

Lemma 4.1. Assume that the data (f, g) belong to Hσ(Ω) ×Hσ(Ω), σ > d
2 . Then, the

following error estimate holds between the solutions (b, c) of problem (2.2) and (bN , cN ) of
problem (3.5)

‖b− bN‖L2(Ω) ≤ C

(

N2 inf
γN−1∈XN−1

‖c− γN−1‖H1(Ω)

+ inf
βN∈KN (f)

‖b− βN‖L2(Ω) + ‖b−ΠN−1b‖L2(Ω) + ε
(D)
N

)

,

(4.2)

where the quantity ε
(D)
N is given by

ε
(D)
N = N−σ

(

‖f‖Hσ(Ω) + ‖g‖Hσ(Ω)

)

. (4.3)

Proof. Let βN be any polynomial in KN (f). It follows from (3.10) that

‖bN − βN‖L2(Ω) ≤ τ ′−1 sup
ϕN∈K∗N

aN (bN − βN , ϕN )

‖ϕN‖L2(Ω)
.

By applying problem (3.5), then problem (2.2), we derive that, for any ϕN in K∗N ,

aN (bN − βN , ϕN ) = −aN (βN , ϕN ) + (g, ϕN )N

= m∗(c, ϕN ) + a(b, ϕN )− aN (βN , ϕN )−

∫

Ω

g(x)ϕN (x) dx+ (g, ϕN )N .

Since ϕN belongs to K∗N , we have for any γN−1 in XN−1,

m∗(c, ϕN ) = m∗(c− γN−1, ϕN ),

11



whence, by applying the standard inverse inequality [4, Thm 5.1] to ϕN ,

m∗(c, ϕN ) ≤ CN2 ‖c− γN−1‖H1(Ω)‖ϕN‖L2(Ω).

On the other hand, we derive by using first (3.2), next (3.3),

a(b, ϕN )− aN (βN , ϕN ) ≤ C
(

‖b−ΠN−1b‖L2(Ω) + ‖b− βN‖L2(Ω)

)

‖ϕN‖L2(Ω).

Finally, the same arguments yield

∣

∣(g,−ϕN )N −

∫

Ω

g(x)ϕN )(x) dx
∣

∣

=
∣

∣(INg −ΠN−1g, ϕN )N −

∫

Ω

(g −ΠN−1g)(x)ϕN (x) dx
∣

∣

≤
(

27 ‖g − INg‖L2(Ω) + 28 ‖g −ΠN−1g‖L2(Ω)

)

‖ϕN‖L2(Ω).

Using the standard approximation properties of the operators IN and ΠN−1, see [4, Thms

7.1 and 14.2], implies that this last term is bounded by ε
(D)
N ‖ϕN‖L2(Ω). Combining all this

gives the desired estimate.

We now prove an estimate for ‖c− cN‖H1(Ω),.

Lemma 4.2. If the assumptions of Lemma 4.1 are satisfied, the following error estimate

holds between the solutions (b, c) of problem (2.2) and (bN , cN ) of problem (3.5)

‖c− cN‖H1(Ω) ≤ C

(

N2 inf
γN−1∈XN−1

‖c− γN−1‖H1(Ω)

)

+ inf
βN∈KN (f)

‖b− βN‖L2(Ω) + ‖b−ΠN−1b‖L2(Ω) + ε
(D)
N

)

,

(4.4)

where ε
(D)
N is defined in (4.3).

Proof. It follows from problems (2.2) and (3.5) that, for any γN−1 in XN−1;

m∗N (cN − γN−1, cN − γN−1) = m∗(c, cN − γN−1)−m∗N (γN−1, cN − γN−1)

−

∫

Ω

g(x)(cN − γN−1)(x) dx+ (g, cN − γN−1)N + a(b, cN − γN−1)− aN (bN , cN − γN−1).

Thus, exactly the same arguments as in the proof of Lemma 4.1 lead to

‖cN − γN−1‖
2
H1(Ω) ≤ C‖c− γN−1‖H1(Ω)‖cN − γN−1‖H1(Ω)

+ C ′
(

‖b−ΠN−1b‖L2(Ω) + ε
(D)
N + ‖b− bN‖L2(Ω)

)

‖cN − γN−1‖L2(Ω).

12



Using estimate (4.2) gives the desired bound.

To make these estimates complete, we must only prove an upper bound for the quantity
infβN∈KN (f) ‖b−βN‖L2(Ω). The next lemma is just an extension of [8, Chap. II, eq. (1.16)].

Lemma 4.3. Assume that the part b of the solution (b, c) of problem (2.2) belongs

to H1(Ω). If the assumptions of Lemma 4.1 are satisfied, the following approximation

estimate holds

inf
βN∈KN (f)

‖b− βN‖H1(Ω) ≤ C

(

inf
δN−1∈VN−1

‖b− δN−1‖H1(Ω) + ε
(D)
N

)

, (4.5)

where ε
(D)
N is defined in (4.3).

Proof. Let δN−1 be any function in VN−1. Owing to the inf-sup condition (3.6), there
exists a polynomial δ⋄N in VN such that

∀ψN ∈XN , mN (ψN , δ
⋄
N ) = (f, ψN )N −mN (ψN , δN−1) ,

and which satisfies [8, Chap. I, Lemma 4.1]

‖δ⋄N‖H1(Ω) ≤ η′−1 sup
ψN∈XN

(f, ψN )N −mN (ψN , δN−1) ,

‖ψN‖H1(Ω)
. (4.6)

Obviously, the polynomial βN = δN−1 + δ⋄N belongs to KN (f). Moreover, we have

‖b− βN‖H1(Ω) ≤ ‖b− δN−1‖H1(Ω) + ‖δ⋄N‖H1(Ω).

To evaluate this last quantity, we observe from the first line of problem (2.2) that

(f, ψN )N −mN (ψN , δN−1) = (f, ψN )N −

∫

Ω

f(x)ψN (x) dx+m(ψN , b− δN−1).

Inserting this into (4.6) gives the desired estimate.

Remark 4.4. Since the domain Ω is convex, the assumptions on the data imply that b
belongs to H1(Ω), see Remark 2.4.

Even if the estimate for b− βN is not in the right norm, we are now in a position to
state the final error estimate which follows from Lemmas 4.1 to 4.3 together with standard
approximation properties.

Theorem 4.5. Assume that the data (f, g) belong to Hσ(Ω) ×Hσ(Ω), σ > d
2 , and that

the solution (b, c) of problem (2.2) belongs to Hs−1(Ω) × Hs+1(Ω), s ≥ 2. Then, the

following error estimate holds between this solution and the solution (bN , cN ) of problem
(3.5)

‖b− bN‖L2(Ω) + ‖c− cN‖H1(Ω)

≤ C

(

N2−s
(

‖b‖Hs−1(Ω) + ‖c‖Hs+1(Ω)

)

+N−σ
(

‖f‖Hσ(Ω) + ‖g‖Hσ(Ω)

)

)

.
(4.7)

Even if this estimate is not fully optimal, it proves the good properties of our dis-
cretization.
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5. Numerical experiments.

We report in this section several numerical tests, the aimi being to evaluate the per-
formance of the spectral discretization in two and three space dimensions. All the compu-
tations have been performed on the code FreeFEM3D, spectral version, developped during
the thesis of D. Yakoubi [14], in collaboration with S. Del Pino [6]. Note that, in all
simulations, the polynomial degree in the directions x, y and z are the same.

5.1. Accuracy test.

In this test, the rate of convergence with respect to polynomial degree N for the couple
(b, c) in the L2−norm and H1−norm have been tested numerically on the square

Ω =]−
1

2π
,−

1

2π
+ 1[2.

A two-dimensional analytic and very smooth solution of problem (1.1) is given by, with
the appropriate source terms f and g,

b(x, y) = cos(
3π

2
x) cos(

3π

2
y), c(x, y) = sin(

3π

2
x) sin(

3π

2
y). (5.1)

The dispersion and reaction parameters are variable and depend on N :

d(x, y) = 0.1 cos
(

π(x2 + y2)
)

+ 0.2,

r(x, y) = xN + 3yN + 4 and r∗(x, y) = 2xN − yN + 10.cr

Numerically, these parameters are replaced by their Lagrange interpolates.

We recall that this situation is already investigated in [1, Section 5] when the physical
parameters are constant but seem close to real-life values.

We illustrate the behavior of the error between the exact solution (b, c) and the discrete
solution (bN , cN ) versus the polynomial degree N which is varying between N = 5 and
N = 30. Figure 1 presents this error in the norm of L2(Ω), in plain red line for b and
dashed blue line for c, in semi-logarithmic scales and as a function of N . Figure 2 is similar
but presents the error in the norm of H1(Ω). In this simple geometry and for a smooth
solution, the error is of course of spectral type.
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Figure 1. The L2-errors on b and c as a function of N

Figure 2. The H1-errors on b and c as a function of N
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5.2. In an ellipse.

Now, we show the numerical simulation in non-parallelipedic domains obtained follow-
ing the spectral method in complex geometries proposed and analyzed in the thesis of D.
Yakoubi [14], see also [6]. In fact, this method uses a fictitious domain method combined
with a Nitsche penalization approach to enforce the boundary condition, see for instance
Girault and Glowinski [7], in order to allow the use of global high order polynomials over
the domain of interest. The numerical analysis of the method relies on the stability of an
extension operator from the domain of interest to a larger Cartesian domain, as well as
on the estimate on the penalization error. Finally, in order to compute integrals of poly-
nomials over general domains, an approximate internal covering of the domain by simple
parallelipedic domains is considered, where to use the standard quadrature formulas. So,
the computational domain we consider in this section is the interior of the ellipse defined
by:

x2

α2
+
y2

β2
= 1, α = 0.2 and β = 0.1.

Figure 3. Internal covering of the ellipse

Figure 3. shows the approximation of the ellipse by the union of the parallelipedic
domains. As proposed in [1, Section 5], the dispersion and reaction parameters are constant
and fixed to

d = 0.151, r = 0.2, r∗ = 0.4. (5.2)

We conserve the exact solution cited above.

We display in the left panel of Figure 4 the exact solution b and in the right its
approximation, while in Figure 5 the exact solution c and its approximation are presented.
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This spectral solution is issued from the discretization for N = 15. Clearly, as standard in
spectral methods, both the exact solution and discrete solution are very similar.

Figure 4. The exact solution b (left part) and the discrete solution bN (right part)

Figure 5. The exact solution c (left part) and the discrete solution cN (right part)

5.3. In a cube.

Finally, we conclude with an three dimensional experiment in the cube

Ω =]−
1

2π
,−

1

2π
+ 1[3.

The exact solution is builded from the above solution, as follows

b(x, y, z) = cos(πx) cos(πy) cos(πz), c(x, y, z) = sin(πx) sin(πy) sin(πz). (5.3)
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The physical parameters d, r and r∗ are taken constant and fixed as (5.2). Figure 6 presents
the error ‖c− cN‖L∞(Ω) projected on the oblique plan, which is of order 10−13, while the
Figure 7 shows the isolines of exact solution in the left panel and its equivalent of discrete
solution in the right panel.

Figure 6. The error between c and cN

Figure 7. The eaxct b (left part) and the discret bN (right part)
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