
HAL Id: hal-01080076
https://hal.science/hal-01080076

Submitted on 4 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Design Method for Synthesizing Control-Command
Systems out of Reusable Components

Salam Hajjar, Emil Dumitrescu, Laurent Pietrac, Eric Niel

To cite this version:
Salam Hajjar, Emil Dumitrescu, Laurent Pietrac, Eric Niel. A Design Method for Synthesizing
Control-Command Systems out of Reusable Components. IFAC IWDES, May 2014, Cachan, France.
�10.3182/20140514-3-FR-4046.00111�. �hal-01080076�

https://hal.science/hal-01080076
https://hal.archives-ouvertes.fr

A Design Method for Synthesizing
Control-Command Systems out of Reusable

Components

Salam HAJJAR, Emil DUMITRESCU, Laurent PIETRAC,
Eric NIEL

Université de Lyon, INSA Lyon, Ampère (UMR5005),
F-69621 Villeurbanne, France

(e-mail: firstname.lastname@insa-lyon.fr).

Abstract: This paper investigates an industrial design issue related to code reusability: building
control-command systems out of Commercial off the shelf (COTS) components. The design
method proposed uses in synergy the formal verification (FV) and the discrete controller
synthesis (DCS) techniques. COTS are formally specified using temporal logic and/or executable
observers, and coded according to their formal specification. New functions are built by
assembling COTS together. The COTS assembly operation is not error free: the resulting
assembly may not achieve the desired function it is supposed to. For these reasons, COTS
assemblies need to be formally verified and if errors are found, they must be corrected using
DCS. The resulting system is ready for hardware (e.g. FPGA) implementation.

Keywords: Formal verification, discrete controller synthesis, COTS, simulation, embedded
systems, control-command.

1. INTRODUCTION

Due to design constraints bounding delays, costs and en-
gineering resources, component re-usability has become a
key issue in embedded design. The expertise of the design
process has been shifted from code writing to the effi-
cient management of Commercial off the Shelf (COTS) li-
braries. By assembling adequately COTS components, new
functions can be quickly built. Paradoxically, the brute
force application of this method has lead to important
design and maintenance costs, far from the theoretically
expected gains. This is caused by an antagonism between
the genericity expected for a COTS, and the context-
specific needs which fail to be handled correctly by that
COTS. Indeed, by assembling COTS which have been
separately designed, the resulting interactions cannot be
entirely anticipated. Thus, unwanted behaviors may occur,
although each component taken separately is considered
free of errors. Ensuring a safe behavior of the COTS-based
system is an important challenge. It calls for safe design
methods and techniques, ensuring functional correctness.
Besides simulation, the model checking technique (Clarke,
2008) is vital for discovering subtle bugs, which are very
difficult to uncover by simulation. Even though this tech-
nique has become mature, the designer must correct errors
manually, which is an error-prone task: by attempting to
manually correct an error, another error is introduced,
which creates a vicious circle. This situation emphasizes
the need to complete the automatic error detection, by an
automatic error correction.

This work advocates the use of the Discrete Controller
Synthesis (DCS) technique (Marchand et al., 2000) in
order to generate correct-by-construction design code.

The design method proposed in this paper highlights the
synergy and the interdependence between these formal
tools for achieving control-command COTS-based design.

The development of component-based design has been
dependent on the growing maturity of formal techniques.
(Addy and Sitaraman, 1999) have proposed the formaliza-
tion of the COTS interface, in order to facilitate their com-
position. A similar formalization is proposed by (De Alfaro
and Henzinger, 2001) with the interface automata, captur-
ing compositional aspects such as environment assump-
tions. Interface generation is also considered by (Roop
et al., 2009), in order to solve mismatches between inter-
acting protocols. A formalization of the COTS behavior
has been proposed by (Guerrouat and Richter, 2005), using
extended finite state automata. On a more practical point
of view (Abts, 2002) show that COTS-based design faces
in general exponential blowup of maintenance costs. This
phenomenon is due to the lack of control on the COTS be-
haviors, which are handled as black box components. (Xie
et al., 2007) show the importance of the model checking
technique, together with the assume-guarantee reasoning
in COTS-based design. The DCS has been suggested by
(Altisen et al., 2003) to synthesize properties-enforcing
layers, on the composition of local robot controllers. A
contract-based modular design approach has also been
proposed by (Delaval et al., 2010). This approach also
relies on DCS and provides a toolchain able to build
controlled systems automatically.

This paper takes over the issues presented by (Hajjar et al.,
2013), and tackles two context-specific concerns related
to the application of DCS. On the one hand, hardware
target implementations require a particular representation

of the synthesized controller. On the other hand, the exis-
tence of interfaces between control-command components,
requires additional care: sometimes, generated controllers
become part of the interface between two or more COTS
and their behavior should not contradict the behavior
expected for that interface. As it is shown in the sequel,
this requirement cannot be handled by DCS alone. The
control solution needs to be formally verified. These are
the specificities of this work, compared to other existing
propositions, namely (Delaval et al., 2010). The validity of
this approach is demonstrated on an industrial case study
concerning a train control-command system.

The rest of the paper is organized as follows: section 2
recalls the backgrounds of the models and techniques used
throughout the method proposed in this paper. Section
3 highlights the structural issues in applying DCS to
hardware designs. Section 4 presents a variant of the DCS
technique, taking into account environment assumptions.
The COTS-based design method is presented in section 5.
Section 6 presents the controller validation issues. Section
7 illustrates this design method on an industrial design.

2. BACKGROUND AND DEFINITIONS

The Boolean Finite State Machine (BFSM). This model
is very useful in our context because it is structurally
and dynamically close to the hardware control-command
systems we handle. Indeed, these are composed of Boolean
variables, implementing either inputs, states or outputs.
Thus the Boolean FSM is defined as a tuple M =
〈q0, X,Q, δ, PROP, λ〉, where q0 designates the initial
state, X a set of Boolean inputs, Q is the set of states of
M , δ : Q×X → Q is the transition function, PROP is a
set of atomic Boolean propositions, and λ : Q→ B|PROP |

is a labelling function modeling the outputs of M . This
formal model is automatically extracted from design code
written in VHDL, or in a similar proprietary framework.
These programs feature systematically a hardware clock,
which triggers all the transitions of the design, and which
is considered to be common to the whole design. Under
these circumstances, the clock representation can be left
implicit inside the formal model.

Formal Requirement Specifications. Formal specifica-
tions are expressed either logically, as temporal logic for-
mulæ, written in the PSL (IEEE, 2005) standard language,
or operationally, as a “program” modeled formally by a
BFSM and referred to as a monitor.

Control-command COTS are the basic building blocks
considered in this work. A stand-alone COTS component
C is defined as a 4-tuple C = 〈IC , MC , AC , GC〉,
where IC is the COTS’ input-output interface, MC is the
behavioral model of the COTS expressed as a BFSM, AC

is a set of assumptions on the expected behavior of the
environment of C and GC is a set of guarantees on the
behavior MC of C. Both the assumptions and the guar-
antees are expressed formally, either as PSL formulæ or
as monitors. A COTS C satisfies a guarantee g ∈ GC

provided an assumption a ∈ AC holds. This is denoted:

MC , 〈a〉 |= g

A COTS is considered rather a “mature” component than
a “perfect” one; it probably has hidden bugs, and building

designs out of existing COTS elements also amounts to
mixing unwanted behaviors from each building block. The
COTS’s behavior is expressed as design code, using a stan-
dard and/or proprietary framework. All the components
handled in this work are automatically translatable into
BFSMs.

COTS assembly. This is the act of composing COTS
components together, in order to produce a new behavior.
This operation produces a new component which is not
considered as a COTS until its maturity is assessed. The
assembly operation produces new sets of assumptions and
guarantees: assumptions can be implied by newly added
guarantees and need not be assumed anymore. They can
also be contradicted by newly added guarantees, in which
case they cannot be assumed anymore. These issues are
not developed in this paper. The behavior of a COTS as-
sembly is given by the synchronous composition operation,
denoted ||, between their corresponding behavioral models.

The discrete controller synthesis (DCS) This
technique enforces the satisfaction of a safety requirement
P on a given BFSM model M by attempting to make
invariant the greatest subset of states of M which satisfy
P . The input set of M is divided into two disjoint subsets:
controllable Xc and uncontrollable Xuc inputs. The target
set satisfying P is made invariant by disabling all the
transitions of M leading out of it. This is achieved by
generating a supervisor, which assigns adequate values to
the controllable inputs Xc.

The DCS proceeds in two steps (Marchand et al., 2000):
(1) computation of the invariant under control (IUC) set
and (2) computation of the supervisor. The computation
of IUC calls recursively a basic step: finding the set of
controllable predecessors of a given set of states E ⊆ Q.
This step is implemented by the CPRED operator:

CPRED(E, δ) = {q ∈ Q | ∀xuc ∈ B|Xuc|,∃xc ∈ B|Xc|,

∃q′ ∈ E : q′ = δ(q,xuc,xc)}
In other words, the state q is a controllable predecessor
of a state q′ ∈ E iff for any uncontrollable value xuc,
there exists a controllable value xc such that the transition
function δ leads to q′.

The resulting invariant under control set IUC is the fixed
point of the equation:

IUC0 = {q | P is true in q}
IUCi+1 = IUCi ∩ CPRED(IUCi, δ)

A supervisor does not exist if the IUC set is empty or if
it does not contain q0. When it exists, the supervisor is
defined as: SUP = {(q,xuc,xc) | δ(q,xuc,xc) ∈ IUC}.

3. DCS FOR HARDWARE DESIGN

The supervisor provided by DCS is implemented as a
characteristic function:

SUP : Q× B|Xuc| × B|Xc| → B
defined as:

SUP(q,xuc,xc) = 1 iff (q,xuc,xc) ∈ SUP
The actual control of M requires solving the equation

SUP(q,xuc,xc) = 1

continuously, for each reaction of M , considering Xc as
unknown variables. However, a hardware (FPGA) imple-
mentation of this control loop requires that the value of
each controllable variable xc be computed by an appro-
priate expression, for each reaction of M . The supervisor
decomposition technique presented in (Dumitrescu et al.,
2008) is used in order to obtain systematically the control
architecture presented in Figure 1. Let exp|x←0/1 denote
the negative/positive co-factor of a Boolean expression
exp with respect to a variable x. The supervisor SUP is
recursively decomposed according to the rule:

fi = ¬SUPi|xci←0 ∧ SUPi|xci←1∨
xenvci ∧ SUPi|xci←0 ∧ SUPi|xci←1

where SUP0 = SUP and SUPi = SUPi−1|xci−1←fi−1
.

System

Controller Ĉ

xuc PROP

qxc

xenv
c

Fig. 1. Target control architecture for hardware designs

The resulting controller is a vector Ĉ of m Boolean func-
tions, where m is the number of controllable variables:

Ĉ =

 f1(q, xuc, x
env
c1 , f2, . . . , fm)

f2(q, xuc, x
env
c2 , f3, . . . , fm)

.
fm(q, xuc, x

env
cm)


This decomposition process associates each controllable
variable xci with an auxiliary variable xenvci . The action of

Ĉ is similar to filtering: at each moment, depending on the
current state q and on xuc, xci is assigned either xenvci or
¬xenvci . The auxiliary variables xenvc are meant to be driven

from outside M ||Ĉ in order to specify desired values for xc.
This is why they are referred to as environment variables.

It is worth noting that this control paradigm is totally
opposite to the one developed by the supervisory control
theory (Ramadge and Wonham, 1989). Indeed, unlike con-
ventional supervisors, the control architecture presented
above interferes with the environment by filtering if needed
the values of the controllable inputs. Obviously, this sit-
uation is globally undesirable but acceptable for control
reasons; however, this issue induces additional design con-
straints, developed in Section 5.

A DCS illustrative example Consider the state-
based design illustrated in Fig 2. Let a property P =
always¬(E1 ∨ E2) be the target requirement to enforce
using DCS, by controlling the input variable go. The
IUC computation algorithm gives the following results:
IUC0 = {A,B,C}, IUC1 = {A,C}, IUC2 = {A,C} .

The final IUC set is {A,C}. The generated controller Ĉ
assigns the controllable variable go, so that the controlled
system always remains inside the set of states IUC, as
illustrated in Figure 3.

4. THE ENVIRONMENT-AWARE DCS (EDCS)

In the context of COTS-based design, environment as-
sumptions are of great importance. It often happens that

Fig. 2. A 5-states design to be controlled using DCS

Fig. 3. The controlled 5-states system

the environment of a given COTS consists of a collection of
other COTS. Thus, a direct connection between a COTS
and the “physical world”, made of sensors and of actuators,
may not always exist. In this situation, unlike a physical
environment, the environment of a COTS must feature a
precise behavior so that the COTS at hand can fulfill its
function.

The conventional DCS algorithm used in this work does
not support the specification of environment assumptions.
In order to handle this additional information, a variant of
the DCS algorithm is proposed, called environment aware
DCS (EDCS). It redefines the computation of the control-
lable predecessors, by assuming that at each step, the un-
controllable inputs satisfy the environment assumptions.
Each assumption is modeled as a safety property aC ∈ AC

concerning the uncontrollable inputs. It is translated into
an invariant A : Q × B|Xuc| → B, defined as the set of all
the transitions of M satisfying ac:

A(q,xuc) = {∃xc : ac is true in state δ(q,xc,xuc)}
which is supposed to be always true. The computation of
the environment-ware controllable predecessors is defined
as follows:

CPREDenv(E, δ,A) = {q ∈ Q | ∀xuc ∈ B|Xuc|,

∃xc ∈ B|Xc|,∃q′ ∈ Q :

(q′ = δ(q,xuc,xc) ∧ A(q,xuc))→ q′ ∈ E}
The recursive application of CPREDenv produces an in-
variant under control set under an environment assump-
tion. This rule is less “pessimistic” with respect to the
uncontrollable input variables, and thus less restrictive.
The resulting IUC set is often larger than the one obtained
with conventional DCS.

EDCS illustrative example For a sample environ-
ment assumption stating that the uncontrollable req must
be asserted when the system is in state B: always(B →
req), the EDCS application computes the invariant under
control IUC = {A,B,C}. Unlike conventional DCS, state
B is not pruned, as req is supposed to be asserted whenever
this state is active, and thus, due to this assumption, the
error state E1 is not reached.

5. THE SAFE COTS-BASED DESIGN METHOD

The method proposed relies on the conjunction between
traditional design techniques, such as simulation and for-

Fig. 4. Controller synthesis using EDCS

mal verification and the DCS. An overview of the design
flow is presented in figure 5. It highlights the conven-
tional steps, like COTS formalization and verification us-
ing assume-guarantee reasoning. This paper only focuses
on the use of DCS in order to correct a COTS assembly,
shown at step 3, and the verification of the controlled
system, shown at step 4.

The DCS application occurs after the failure of the formal
verification (step 2) applied to a safety requirement. The
most delicate operation here, is the construction of the
controllable input set, intended to be assigned by the
controller. The controllable candidates are supplied by
the model-checking counterexample. The designer chooses
among these candidates, but should avoid controlling
inputs driven by sensors, or inputs carrying data.

The formal verification of the controlled system occurs at
step 4. It has two main motivations. As the generated
controller interferes with the environment of the controlled
system, it can be in contradiction with the environment as-
sumptions of this system. Safety environment assumptions
can be taken into account by EDCS, but liveness environ-
ment assumptions cannot. Thus, the first objective of this
verification step is to ensure that the liveness environment
assumptions are not broken, and thus, that the liveness
guarantees are preserved. Second, it must be ensured that
the controller satisfies application-specific requirements.
These are developed in the next section.

Fig. 5. Safe design flow

6. IMPLEMENTATION OF THE CONTROL LOOP

Even though the general control loop architecture pre-
sented in Section 3 fills the structural specific needs of
hardware design, there remain specific behavioral con-
straints that need to be guaranteed, and which cannot be
handled by (E)DCS.

Controllable inputs with soft reactive constraints. Con-
sider the 4-phase handshake protocol, which is both a

generic and representative mechanism, widely used for
data exchange and synchronization between hardware
components. It is implemented by a pair of Boolean sig-
nals: a request and an acknowledge. The handshake proto-
col starts when the request is activated. The acknowledge
is then activated, followed by the request de-activation,
and finally by the acknowledge deactivation. This sequence
is called a transaction; it achieves a synchronisation be-
tween two components. Typically, transactions have an ar-
bitrary delay. It is only required that they last a finite time.
For this specific case, the desired control should implement

Fig. 6. Controlling transactions

System

Controller

data acknowledge

staterequestcontrolled

requestenv

(a) Controlled transaction architecture

clock

requestenv

requestcontrolled

acknowledge

(b) Desired controller behavior

one among the two following behaviors: either prevent
a transaction from starting if its beginning is likely to
break the requirement to enforce, or let it start otherwise.
The transaction start is triggered by the environment,
through the requestenv input variable. This value should
be either forwarded or delayed by the controller, as shown
in figures 6 a and b: the transaction initiated by the
environment is delayed for two clock cycles, and then it
is forwarded.

The “event invention” phenomenon. The signal activa-
tion and deactivation notions need to be associated to
actual Boolean values, usually 1 for the active value and
0 for the inactive value. However, a controller which acts
upon the requestcontrolled input is not aware of the notions
of activation or deactivation, but only manipulates the
values 1 or 0 of this input. At some moments, the value 1
can be forbidden (and thus the value 0 is forced), or vice-
versa. However, these two situations are not symmetric:
in the first case, the transaction may not start, while
in the second, the transaction is forced, or “invented”!
This is illustrated in figure 7 a. Usually, transactions also
carry data, and hence such a situation does not make
sense. Obviously, this is unacceptable. This requires to
make sure a posteriori that the controller never “invents”
transactions, and if it does, invalidate the control solution.

Hence it is vital to formally ensure the absence of “event-
invention” phenomena. The expression of this requirement
for a controllable variable x needs to mention systemati-
cally xenv, which is generated by (E)DCS, as explained in
Section 3. However, the variable xenv does not exist at the
moment DCS starts. It is not possible mention its name to
express requirements over the resulting controller. This is
why the event invention phenomenon cannot be forbidden,
but only detected by model checking.

Detection of “event inventions”. This behavior is sim-
ply checked by the PSL property:

Fig. 7. The event “invention” phenomenon

clock

requestenv

requestcontrolled

acknowledge

(a) Transaction “invention” by the con-
troller

NO EV ENT INV ENTION : always¬(requestcontrolled

∧ ¬requestenv)

In complement, it must also be established that the con-
troller is not too restrictive, by delaying transactions for-
ever. Thus, once a transaction starts, it must be acknowl-
edged within finite time:

FINITE TRANSACTION = always(requestenv →
eventually acknowledge)

In order to prove these requirements, it can be needed
to assume that once the environment asserts the input
request requestenv, it is held until it is acknowledged:

REQUEST STABLE : always(requestenv →
next (stable(requestenv) until acknowledge))

where stable is a built-in PSL operator: stable(x) evaluates
to true in every cycle where variable x did not change its
value with respect to the previous cycle.

If this verification step is successful, the resulting con-
trolled COTS can be considered as valid.

7. INDUSTRIAL APPLICATION

The method proposed above has been applied on a train
passenger access control-command system, featuring two
COTS: the Door and the Filling gap, as shown in fig-
ure 8. This case study has been provided by Bombardier
Transport, and has been used during the FerroCOTS
project (Jadot, 2009). The Door COTS Model is 4-tuple

Fig. 8. The COTS and their physical environment

Cd = 〈Id,Md, Ad, Gd〉 where

Id = {req open, req close, sns open, sns close, sns obst,
cmd open, cmd close, ack open, ack close}.

The behavior Md of the Door COTS is modeled by a
BFSM shown in Figure 9. The output values are assigned
in each state. The train conductor issues open or close
requests via the req open or req close signals and the con-
trol command answers with a corresponding acknowledge,
once the physical part has had the expected reaction.

The preconditions required for the correct behavior of the
Door COTS are given by the set Ad = {ad1, ad2, ad3, ad4},

where ad1,2 express sensor liveness and ad3,4 the absence of

request cancellation: ad1 = always eventually (sns open)
and ad2 = always eventually (sns closed); ad3 = always
req open → stable(req open) until ack open The guaran-

Fig. 9. Door COTS behavioral model

tees of the Door COTS are given by the set Gd = {gd1 , ad2}.
They express the fact that if the door is requested to
open or close the request is finally treated. They are
modeled by the PSL assertions gd1 = always req open →
eventually (ack open); gd2 = always req close→ eventually
(ack close). The relationship between Ad and Gd are the
following:

Md, 〈ad1, ad3〉 |= gd1 Md, 〈ad2, ad4〉 |= gd2

The Filling gap COTS is modeled similarly: Cfg =
〈Ifg,Mfg, Afg, Gfg〉 . Its function consists in deploying
and retracting the physical filling gap according to the
requests sent by the conductor via the inputs req deploy
and req withdraw.

The door/filling-gap assembly Cd||Cfg is modeled as fol-
lows: Iasm = {Id ∪ Ifg}, Aasm = {Ad ∪ Afg}, Gasm =
{Gd∪Gfg}, Masm = Md||Mfg. It must implement an ad-
ditional requirement, expressing the coordination between
the door and filling gap operation for security reasons. This
requirement states that after an open request, the filling-
gap should always deploy before the door is open:

P asm : always req open→ ack deploy before ack open

This safety property is modeled as a monitor MPasm

illustrated in figure 10. The COTS assembly does not

Fig. 10. Monitor MPasm modeling P asm

satisfy P asm and the model checking tool provides a
counter-example which highlights the fact that the inputs
req open, req close, req deploy, req withdraw are respon-
sible for this violation. By designating these inputs as
controllable, P asm is enforced on Masm by EDCS. The
resulting control architecture is shown in figure 11. The
validation of the controller corresponds to the step 4 of
the design method. It consists of formally verifying the

properties mentioned in Sections 5 and 6: the guarantees
Gd and Gfg should still hold after the addition of the
controller; on the other hand, “event inventions” should
never occur, and the controller should not delay input
transactions forever. The absence of event invention is
checked by the properties: never (req • ∧¬req •env) for
the open , close, deploy and withdraw mechanisms.

Finite transactions are checked by the properties: always
(req •env → eventually) ack •, which in this particular
example happen to be identical to the sets Gd and Gfg.
Since all these properties are verified, it can be concluded
that the controller enforcing P asm is valid. An overview of

Fig. 11. The controlled passengers’ access system

the resulting behavior is presented in the simulation trace
figure 12. It can be noticed that at simulation time 10sec
the designer requests to open the door while the filling-gap
is not yet deployed. The controller filters this request until
the second 31 where the filling-gap sensor provides the full
deploy information and from that moment the controller
stops filtering the door opening request. Regardless of the
order in which the driver requests the doors and filling gap
operations, they always operate in the safe order.

Fig. 12. Simulation of the controlled system

8. CONCLUSION

This paper has presented a safe design method for COTS-
based hardware embedded systems. This method uses in
synergy the Discrete Controller Synthesis and formal veri-
fication techniques in order to produce correct by construc-
tion COTS-based systems. Specific issues related to the use
of DCS in the hardware design context have been identified
and addressed: the structural compatibility between the
controller and the system to control, the integration of
environment assumptions in solving the DCS problem,
and the behavioral validation of the controller. Future

directions of this work aim at using DCS for interface
generation, as well as handling liveness requirements en-
forcement.

REFERENCES

Abts, C. (2002). Cots-based systems (cbs) functional
density – a heuristic for better cbs design. In Proceedings
of the First International Conference on COTS-Based
Software Systems, ICCBSS ’02, 1–9. Springer-Verlag,
London, UK, UK.

Addy, E.A. and Sitaraman, M. (1999). Formal specifica-
tion of cots-based software: a case study. In Proceedings
of the 1999 symposium on Software reusability, SSR ’99,
83–91. ACM, New York, NY, USA.

Altisen, K., Clodic, A., Maraninchi, F., and Rutten, E.
(2003). Using controller-synthesis techniques to build
property-enforcing layers. In Proceedings of the 12th Eu-
ropean conference on Programming, ESOP’03, 174–188.
Springer-Verlag, Warsaw, Poland. ACM ID: 1765727.

Clarke, E.M. (2008). 25 years of model checking. chapter
The Birth of Model Checking, 1–26. Springer-Verlag,
Berlin, Heidelberg.

De Alfaro, L. and Henzinger, T.A. (2001). Interface
automata. SIGSOFT Softw. Eng. Notes, 26(5), 109–
120.

Delaval, G., Marchand, H., and Rutten, E. (2010). Con-
tracts for modular discrete controller synthesis. In Pro-
ceedings of the ACM SIGPLAN/SIGBED 2010 confer-
ence on Languages, compilers, and tools for embedded
systems, LCTES ’10, 57–66. ACM, Stockholm, Sweden.

Dumitrescu, E., Ren, M., Piétrac, L., and Niel, É. (2008).
A supervisor implementation approach in discrete con-
troller synthesis. In ETFA, 1433–1440.

Guerrouat, A. and Richter, H. (2005). A component-
based specification approach for embedded systems us-
ing FDTs. In Proceedings of the 2005 conference on
Specification and verification of component-based sys-
tems, SAVCBS ’05. ACM, New York, NY, USA.

Hajjar, S., Dumitrescu, E., Niel, E., et al. (2013). Safe de-
sign method of embedded control systems : Case study.
In 5èmes Journées Doctorales / Journées Nationales
MACS Ecole en Modélisation, Analyse et Conduite des
Systèmes dynamiques. Strasbourg, France.

IEEE (2005). Ieee standard for property specification
language (psl). IEEE Std 1850-2005, 1–143.

Jadot, J.Y. (2009). Ferrocots, from cable to chip. URL
http://www.eurailmag.com/mag/21.htm?page=14.

Marchand, H., Bournai, P., LeBorgne, M., and Guer-
nic, P.L. (2000). Synthesis of discrete-event controllers
based on the signal environment. In IN DISCRETE
EVENT DYNAMIC SYSTEM: THEORY AND AP-
PLICATIONS, 325–346.

Ramadge, P. and Wonham, W. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77(1),
81–98. doi:10.1109/5.21072.

Roop, P., Girault, A., Sinha, R., and Goessler, G. (2009).
Specification enforcing refinement for convertibility ver-
ification. In Proceedings of the 2009 Ninth International
Conference on Application of Concurrency to System
Design, ACSD ’09, 148–157. IEEE Computer Society.

Xie, F., Yang, G., and Song, X. (2007). Component-based
hardware/software co-verification for building trustwor-
thy embedded systems. Journal of Systems and Soft-
ware, 80(5), 643–654.

