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ABSTRACT

Accurate skin lesion segmentation is critical for automated

early skin cancer detection and diagnosis. We present a novel

method to detect skin lesion borders in multispectral der-

moscopy images. First, hairs are detected on infrared images

and removed by inpainting visible spectrum images. Second,

skin lesion is pre-segmented using a clustering of a superpixel

partition. Finally, the pre-segmentation is globally regular-

ized at the superpixel level and locally regularized in a narrow

band at the pixel level.

Index Terms— Skin cancer, dermoscopy, hair detection,

hair removal, graphs, segmentation.

1. INTRODUCTION

The incidence of both non-melanoma and melanoma skin

cancers has been increasing over the past decades, espe-

cially melanoma for fair-skinned populations in industrial-

ized countries [1]. Early diagnosis is particularly important

since melanoma can be cured with a simple excision if de-

tected early [2]. Dermoscopy is a non-invasive skin imaging

technique used in dermatology for early diagnosis of skin

lesions [3]. The visual diagnosis from dermoscopy images is

difficult, subjective and lacks reproducibility [2]. Therefore,

the development of computerized image analysis techniques

that can assist dermatologists is of paramount importance

[4]. An essential step is the automatic segmentation of the

lesions. The segmentation is very challenging due to factors

such as illumination variations, irregular structural and color

variations, presence of hair and reflections. In this paper we

propose a method for the segmentation of multispectral der-

moscopic images composed of 6 spectral bands (3 in visible

light and 3 in infrared -IR- light)

2. IMAGE PRE-PROCESSING

Presence of hairs in dermoscopic images is a challenge in the

design of an automated segmentation of skin lesions. Indeed,

hair pixels occlude some of the information of the lesion such

as its boundary and texture. Hair detection is complicated
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due to thin and thick hair, hairs with different colors and

similar color with the lesion [5]. The interest of multispectral

imaging in dermoscopy [6] relies on the principle that light

of the visible and infrared spectrums penetrates the skin in

different depths and this enables to reveal different features

of the skin lesion. We can make the most of the information

provided with infrared light since, in addition to reveal the

melanin present in the deeper layers of the skin [7], it also

better exhibit the hairs than under visible light (see the two

first columns in Figure 1). Therefore, we have based our

hair detection method on the IR images. Assuming that in

IR images, hairs are darker that the surrounding zones, a

morphological closing top-hat filtering is applied [8]. Con-

sidering that hairs are thin linear structures, the structuring

element is a straight line. Since the hair direction is not

known, a top-hat filtering operation is performed four times

using a straight line with four different orientations and the

maximum of the four top-hat responses is calculated . This is

done for each component of the IR image and is expressed by

max
i∈{0,1,2}

max
θ∈{0,45,90,135}

�

φy∈Bθ(x)(f
IR
i (y))− f IR

i (x)
�

where Bθ is a directional structuring element of length 9 and

f IR
i is the i-th component of the IR image. Since the detec-

tion can be noisy, the result is smoothed using a non-local

means algorithm [9] with patches of size 3 × 3 in a window

of size 5 × 5. This filter enables to filter the residual noise

while well preserving the edges (i.e., detected hairs). The

denoised image is then automatically binarized and structures

longer than a given length are selected. This length is checked

in different orientations to include hairs with different posi-

tions and orientations [10]. We have fixed the length to 33
and considered 24 different possible orientations. Third and

fourth columns of Figure 1 shows sample results. Once hairs

have been extracted, we have to fill-in the areas of detected

hairs to repair hair-occluded information. Hair removal is

performed on visible spectrum images. Given the hair mask,

we use a recent inpainting method we developed in [11]. This

method allows reducing artefacts produced by any patch-

based inpainting algorithm [12] and enables to lower possible

inter-patch seams and inconsistencies, rendering the image

perceptually more visually coherent which is very important

for dermoscopy images. Finally a last artifact has to be re-

moved from the images: light reflection. Reflection areas are



detected by comparing if the pixel blue intensity is high and

well above the average blue intensity in its neighborhood.

Detected reflection areas are inpainted using again our spa-

tial patch blending inpainting [11]. The two last columns of

Figure 1 shows sample results of hair and reflection removal.

As it can be seen, our method works well for many different

configurations.

3. GRAPH-BASED IMAGE SEGMENTATION

Once the artifacts have been removed from the images in the

visible spectrum, we propose to perform the segmentation us-

ing a graph-based image processing approach [13]. Our ap-

proach uses graphs either at the superpixel or at the pixel lev-

els and is very different to usual methods used to skin lesion

border detection [14, 15]. We detail each of these steps in

the sequel but start with needed graph theoretical notions and

algorithms.

3.1. Notations and Preliminaries

A weighted graph G = (V,E, w) consists of a finite set

V = {v1, . . . , vN} in vertices and a finite set E ⊂ V × V

of weighted edges. Let (vi, vj) be the edge of E that con-

nects two vertices vi and vj of V. Its weight, denoted by

w(vi, vj), represents a similarity measure and is computed

with a positive symmetric function w : V × V → R
+ satis-

fying w(vi, vj) = 0 if (vi, vj) /∈ E. The notation vi ∼ vj is

used to denote two adjacent vertices. Let H(V) be the Hilbert

space of real-valued functions defined on the vertices of a

graph (i.e., vectors associated to vertices).

3.2. Difference Operators on Weighted Graphs

Let G = (V,E, w) be a weighted graph. The difference

operator [16], denoted dw : H(V) → H(E), is defined

for all f ∈ H(V) and (vi, vj) ∈ E by: (dwf)(vi, vj) =
�

w(vi, vj)(f(vj)− f(vi)). The weighted gradient operator

of a function f ∈ H(V), at a vertex vi ∈ V, is the vector

defined by: (∇wf)(vi) = ((dwf)(vi, vj))
T
vj∈V

. The �p norm

of this vector is defined, for p ≥ 1, by: �(∇wf)(vi)�p =
�

�

vj∼vi
w(vi, vj)

p/2
�

�f(vj)−f(vi)
�

�

p
�1/p

.

3.3. Regularization on graphs

In this section, we consider a general function f0 : V → R
m

defined on graphs of the arbitrary topologies and we want to

regularize this function. The regularization of such a function

corresponds to an optimization problem that can be formal-

ized by the minimization of an energy as a weighted sum of

two regularization and data fitting terms:

E∗
w,p(f, f

0, λ) = 1
p

�

vi∈V

�(∇wf)(vi)�
p
2 +

λ
2 �f − f0�22 (1)

In previous works [16], we have shown that solutions min-

imizing such an energy on weighted graphs can be ob-

tained by the following iterative algorithm ∀u ∈ V, with

(γi
w,pf)(vi, vj) = wij

�

�(∇wf)(vj)�
p−2
2 + �(∇wf)(vi)�

p−2
2

�

:















f
(0) = f

0

f
(n+1)(vi) =

λf0(vi) +
�

vj∼vi
(γi

w,pf
(n))(vi, vj)f

(n)(vj)

λ+
�

vj∼vi
(γi

w,pf
(n))(vi, vj)

(2)

This formulation can be used to denoise a function, but

also for interpolation. In particular it can be used for semi-

supervised clustering [17]. Let Cl be a set of labeled vertices,

these latter belonging to the lth class. Let V0 =
�

{Cl}l=1,...,k

be the set of initial labeled vertices and let V\V0 be the ini-

tial unlabeled vertices. Each vertex of vi ∈ V is then de-

scribed by a vector of labels f0(vi) = (f0
l (vi))

T
l=1,...,k with

f0
l (vi) = +1 if vi ∈ Cl and f0

l (vi) = 0, ∀vi ∈ V\V0.The

semi-supervised clustering problem then reduces to inter-

polate the labels of the unlabeled vertices (V\V0) from the

labeled ones (V0). To solve this interpolation problem, we

consider the variational problem (1) and estimate class mem-

bership probabilities with Eq. (2). Final classification can

be obtained for a given vertex vi ∈ V by the maximum

membership l(vi) = arg max
l∈1,...,k

�

f
(n)
l

(vi)
�

l f
(n)
l

(vi)

�

.

3.4. Superpixel segmentation

Given these notions, our method starts by computing a seg-

mentation of the image into superpixels. In this paper, we

have considered the Eikonal-based Region Growing Cluster-

ing algorithm [18]. ERGC is a recent superpixel algorithm

formulated as the solution of an Eikonal equation. We con-

sider here a more general formulation of ERGC on arbitrary

graphs. The Eikonal equation describes the evolution of a

propagation front V0:

�

�(∇wf)(vi)�p = P (vi) ∀vi ∈ V

f(vi) = 0 vi ∈ V0.
, (3)

where V corresponds to the set of vertices of a 8-grid graph

associated to an image, V0 is an initial set of seed ver-

tices, P is a positive potential function, and f(vi) is the

distance of vi from source V0. This problem can be effi-

ciently solved on graphs using a generalization of the fast

marching method on graphs [19]. In ERGC, the potential

map P evolves during diffusion process and is defined as

P (vi) =

�

�fc(vi)− fc(ṽj)�22 +
m�fp(vi)−fp(ṽi)�2

2

S where ṽj

denotes the superpixel region vi belongs to, S =
�

|V|/|V0|
is the initial sampling step of the seeds, fp denotes the coor-

dinates of a vertex or of the initial seed of a superpixel, fc and

fc denote the color in the CIELAB color space of a vertex

or a superpixel (mean color in this case). The first term of



the potential favors the creation of homogeneous and close to

edges superpixels and the second term favors regular-shaped

superpixels with the compactness factor m. The initialization

of the algorithm consists in sampling the set of seeds vertices

V0 on the vertices V of a regular 8-grid graph. First line

of Figure 2 shows sample results of the obtained superpixel

partition.

3.5. Superpixel clustering and regularization

To classify the different areas in a dermoscopy image, each

superpixel is described by a vector of 6 values providing the

average and standard deviation of the superpixel for each

CIELAB color channel. These feature vectors are computed

on a simplified version of the image obtained by a regulariza-

tion (Eq. (2)) of the image on a 8-grid graph G = (V,E, w1)
with no data-term (λ = 0), p = 2 and bilateral weights

w1(vi, vj) = Gσs
(�fp(vi)−fp(vj)�

2
2)·Gσr

(�fc(vi)−fc(vj)�
2
2)

where Gσ is a Gaussian kernel.Then we use a 3-means clus-
tering to classify each superpixel in three classes. We consider
three classes and not only two because there can be much
variability inside the skin lesion. We use a robust version of
the k-means algorithm [20] that is not sensitive to initializa-
tion. Second column of Figure 2 presents the results of the
obtained clustering. This result is a good initial guess but
does not provide a good localization of the skin lesion. To
enhance this result, we first perform a regularization of the la-
bels associated to each superpixel. We first associate a graph

G̃ = (Ṽ, Ẽ, w2) to the superpixel partition where each super-

pixel ṽi is identified with a node of Ṽ and Ẽ is filled with
edges that connect adjacent superpixels. In our case, after
the 3-means clustering, each superpixel has a label, therefore
there are no unlabeled vertices. Our algorithm can however
be used to spatially regularize the classification to enhance its
coherence. We apply Eq. (2) until convergence with p = 1
and λ = 1 (low values of λ enable a modification of the initial
labels). However, this method is efficient only if the graphs
weights well reflect the similarity between the superpixels.
Since dermoscopic images are highly textured, we have used
a similarity between superpixels that takes into account both
color and texture by

w2(ṽi, ṽj) = Gσc(�fc(ṽi)− fc(ṽj)�
2
2) ·Gσh

(�h(ṽi)− h(ṽj)�
2
χ2)

where h(ṽi) is the histogram of uniform gray-scale and rota-

tion invariant Local Binary Patterns [21] of the superpixel ṽi
and � · �χ2 is the χ2 distance between two histograms. Third

column of Figure 2 presents results of regularized clustering.

At the end of the regularization process, three classes are still

available. Therefore we post-process the final classification to

determine if the second class (light green in Figure 2) belongs

to the lesion or the surrounding skin using criteria based on

area, color and spatial position relative to the detected lesion

(dark-green in Figure 2). Fourth column of Figure 2 presents

results of merging.

3.6. Pixel boundary spatial refinement

The obtained segmentation has been obtained on the super-

pixel graph, and the boundaries are not very precise. In a last

step we want to refine the obtained superpixel labeling at the

pixel level, starting from the result obtained from the super-

pixels. First we assign to each pixel vi of a 8-grid graph (i.e.,

the pixel level) the label of the superpixel ṽj it belongs to:

l(vi) = l(ṽj). Each vertex is then associated with a cluster

label l : V → Z. The set of vertices associated to one cluster

j is: Vj = {vi ∈ V : l(vi) = j} where j = 1, . . . , C with C
the number of classes. The aim of the clustering spatial refine-

ment is to modify the labels assigned to pixel vertices in order

to have a clustering that is better delineated along its bound-

aries. Therefore, we use again discrete label regularization.

Since the spatial refinement has to be performed only around

the boundaries of objects, we consider a specific grid-graph

that is a subset of the whole grid-graph. The set of vertices

that corresponds to the boundaries between two different clus-

ters is defined by: ∂V = {vi ∈ V : ∃vj ∈ V with (vi, vj) ∈
E and l(vi) �= l(vj)}. The set of vertices that belongs to a

narrow band of size 2δ + 1 around the set ∂V is defined by:

∂+V = {vi ∈ V : ∃vj ∈ ∂V with d(vi, vj) ≤ δ} where

d(vi, vj) is the length of the path {vi = v1, v2, . . . , vn = vj}
with (vj , vj+1) ∈ E. The set of edges E+ is defined as

the subset of edges in E that connects two vertices of ∂+V:

E+ = {(vi, vj) ∈ E : vi, vj ∈ ∂+V }. Then, E+ is reduced to

E++ such that each vertex vi is connect to only its 8-nearest

neighbors (in terms of 3× 3 patch L2 distance). The cluster-

ing spatial refinement is then accomplished by label regular-

ization processes on the graph G+ = (∂+V,E++, w3). We

use p = 1, λ = 1, and weights are defined as w3(vi, vj) =
Gσ(�F(f

0, vi)−F(f0, vj)�
2
2) where F(f0, vi) is a 3×3 patch

at vi. Last column of Figure 2 presents the results of spatial

boundary refinement superimposed on the inpainted visible

spectrum image.

4. RESULTS AND CONCLUSION

Our images were acquired with a multispectral camera un-

der development by the Intuiskin company. We have 32 im-

ages of size 800 × 600 with 6 spectral bands (3 under vis-

ible light and 3 under IR light) from the Grenoble Hospi-

tal. To evaluate the segmentation results, we have used im-

age ground truths that have been manually created and we

have considered the quantitative error metrics defined in [14].

Our method gives the following results: Sensitivity=93.62%,

Specificity=98.54% and Error Prob.=2,79%. This shows how

well our method is able to extract the lesion from the mul-

tispectral image. In conclusion, we have presented a whole

strategy for multispectral dermoscopy images that enables to

segment images with a graph-based approach after the re-

moval of hairs and reflections. In future works, we plan to

optimize important parameters of the method.



Fig. 1. Image pre-processing steps illustration. From left to right: Visible Light image, Infra-Red Light image, Filtered Top-Hat,

Hair detection, Hair removal, Reflection removal. See text for details.

Fig. 2. Image Segmentation steps illustration. From left to right: Superpixel segmentation, Superpixel clustering, Superpixel

regularized clustering, Superpixel merged clustering, final segmentation after boundary spatial refinement, overlay on the image.

See text for details.
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