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ABSTRACT

In this paper, we propose two major improvements to the

exemplar-based image inpainting algorithm, initially formu-

lated by Criminisi et al. [1]. First, we introduce a structure-

tensor-based data-term for a better selection of pixel candi-

dates to fill in based on priority. Then, we propose a new

lookup heuristic in order to locate the best source patches to

copy/paste to these targeted points. These two contributions

clearly make the inpainting algorithm reconstruct more geo-

metrically coherent images, as well as speed up the process

drastically. We illustrate the great performances of our ap-

proach compared to existing state-of-the-art methods.

Index Terms— Examplar-based image inpainting, Struc-

ture tensor analysis, Patch lookup strategy.

1. INTRODUCTION

Inpainting is the process of reconstructing unknown (masked)

image regions such that the resulting image looks as natural as

possible. Since 2000, this kind of algorithm has raised a wide

interest in the image processing community due to the various

applications it is able to deal with, such as object removal, or

image repairing and interpolation. The literature on inpaint-

ing algorithms, reviewed in [2], exhibits mainly two kinds of

approaches: geometry-based, and patch-based methods.

• Geometry-based methods [3, 4, 5] aim at reconstructing

image regions using various semi-local geometry-aware in-

terpolations of the known (noncorrupted) image data. These

methods usually provide interesting results in terms of local

geometry consistency. However, they mostly fail at recon-

structing wide-scaled textures and often lead to flat-looking

images particularly when large holes have to be filled.

• On the other hand, patch-based methods [1, 6, 7, 8, 9]

are the logical sequel of previous algorithms originally pro-

posed for texture synthesis [10]. They focus on finding pat-

terns which are present in the known part of the image and

fit visually well with the local data lying on the boundaries

of the missing regions. Such similar local pieces of images

(i.e. patches) are then copied inside the masked region to fill
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in, iteratively. This kind of methods has proven to work re-

markably well in case of quite large holes to fill, due to its

ability to synthesize large-scale textures respectful of the im-

age content. Nonetheless, such methods often lack a good

global geometry analysis of the image. This leads to some un-

realistic reconstruction of geometrical structures (often with

block artefacts for instance). Although hybrid methods have

been more recently proposed in the literature [11, 12] to take

advantages of both geometric and texture approaches, most

of these visual artefacts remain. In this paper we focus on

the so-called examplar-based inpainting algorithm initiated

by Criminisi et al. in [1], which has been quickly considered

as a reference method in the field of patch-based inpainting.

This paper proposes two important adjustments to the origi-

nal method and show that they both clearly improves the ge-

ometric coherence of the inpainted results: we first reformu-

late the so-called data-term, in order to better select the pixel

candidates to fill in based on priority. Then, we introduce a

new lookup heuristic that is able to locate source patches to

be copied back to the masked hole, in a very efficient way

(both in terms of visual quality and execution speed). These

two geometry-guided contributions greatly improve the visual

quality of inpainted results when complex geometric struc-

tures are involved. We illustrate the effectiveness of our ap-

proach with difficult reconstruction examples of real images.

2. CONTEXT AND CONTRIBUTIONS

Examplar-based inpainting: Back in 2004, Criminisi et al.

proposed a greedy inpainting algorithm [1] aiming at recon-

structing a missing region Ω of an image I piece by piece,

with a priority scheme. The order of pixel reconstruction was

defined by a priority function Pp estimated at each p ∈ δΩ
(δΩ being the boundary of Ω). The priorities Pp = Cp ×Dp

are defined over [0, 1] s.t. the confidence term Cp that only

depends on the local topology of Ω (the more pixels of Ω in

the neighborhood of p means a lower confidence), while the

data term Dp also depends on local image structures:

Dp =
|
−−→
∇Ip

⊥ . −→np|
α

with
−→
∇I⊥p = {

−→
∇I⊥q | argmax

q∈((I−Ω)∩Ψp)

‖
−→
∇Iq‖}

(1)



(a) Example of a local inpainting con-

figuration, with Ω (in white) crossed by

an horizontal contour (zoom).

(b) Map of the original data terms Dp (com-

puted with (1)), and corresponding highest-

priority patch (in hatched purple).

(c) Map of our modified data terms Dp

(computed with (2)), and corresponding

highest-priority patch (in dotted green).

Fig. 1. Illustration of the impact of the data terms (1) (original) or (2) (ours) for selecting the priority points to inpaint.

where Ψp is the patch with a fixed size, centered at p, −→n p
is the normal vector to the mask at p, and α a constant

normalization factor (that can be in fact ignored). Dp is

intended to favor the reconstruction of local linear struc-

tures orthogonally crossing Ω at p. Once all priorities

Pp have been computed, the pixel p with the highest pri-

ority is chosen as the target pixel. For this p, the patch

ψp̂ = {ψq | argmin
q|ψq∈(I−Ω)

‖Ψp − ψq‖
2} is sought all over the

image (or generally into a square lookup region of fixed size

centered at p) and is drawn at p in Ψp ∩ Ω. The confidences

are then updated with ∀ q ∈ Ψp ∩ Ω, Cq = Cp as well as the

boundary δΩ. The whole process is repeated until δΩ = ∅.

This algorithm has been actually praised for the overall qual-

ity of the image reconstructions, and the acceptable execution

time it provides. The heuristics proposed for defining the

priorities Pp were actually good and quite hard to improve

(some recent attempts in that direction has been tried in

[2, 13]). Anyway, the algorithm has some drawbacks that

we propose to manage hereafter. Note that, as the inpainting

process is iterative, and as each patch Ψp copy-pasted in Ω
at one iteration depends mostly on the local image geometry

(i.e. on what happened during all previous iterations), it is not

so surprising improving even slightly one or two aspects of

the initial algorithm leads finally to great visual ameliorations

in the results.

A better priority term: The data-term Dp must tell about

whether linear structures are present or not at a point p and

with which angle they eventually cross the region Ω. Unfor-

tunately, as p ∈ δΩ on an point having no data, the gradient
−→
∇Ip cannot be precisely estimated at this point. In [1], it is

suggested to approximate
−→
∇Ip as the maximum value of the

image gradient in the known neighborhood Ψp ∩ I of p (1).

This approximation is actually a bit too coarse to get a locally

accurate geometry analysis: when the patch size N is large,

Dp will be high not only on the exact location of an eventual

image contour crossing Ω, but also for every target candidates

no more distant than N to this contour. This dilation effect

of Dp gives too much importance to these neighboring points

and one of them can be unluckily selected as having the high-

est priority (instead of the contour point itself), particularly

if its confidence term Cp is higher. Fig.1(a)-(b) illustrates

this assertion: here, Dp is high for all target points around

the sand-sea frontier, and the final selected target patch to

reconstruct (in hatched purple) will not be centered at the

contour. A patch containing only sand will be likely pasted

there, breaking seriously this local image structure.

To overcome this issue, we propose a more geometry-aware

approach by using structure tensors [14] to modelize the im-

age variations inside a candidate patch Ψp. First, this has

the interest of better managing local image structures using

a channel-correlated approach (R,G,B channels will be taken

into account simultaneously). Second, we take advantage of

the algebraic properties of the tensor sum, to allow patches

containing structures with multiple orientations (typically

textures) to score favorably whatever the local normal vector
−→n p to δΩ is. We propose to define D̃p as:

D̃p = ‖Gp
−→n p‖ with Gp =

∑

q∈Ψp∩(I−Ω)

wq
−→
∇Iq

−→
∇ITq (2)

G is a weighted average of structure tensors estimated on

non-masked parts (I − Ω) of the target patch Ψp and wp is a

normalized 2d gaussian function centered at p, with a given

constant standard deviation. Thus, these properties hold:

• When G is anisotropic (G ≈ −→u−→u T ), one main contour

oriented along −→u ⊥ lies inside the patch Ψp. (2) is almost

equal to | < −→u ,−→n p > | and will be indeed high when the

contour crosses Ω orthogonally. Note that Dp will be higher

for target points p that are precisely on the image contour

(thanks to the weights w which will be maximal at the center

of Ψp). No more dilation effects occur, and the contour point

itself will have the highest data-term priority (Fig.1c).

• When G is isotropic (i.e. G ≈ λ Id), (2) is almost equal

to λ. As expected, it is low for homogeneous regions. But,

it remains high when Ψp contains a lot of variations with



different directions (λ high) whatever the orientation of the

mask normal −→n p is (on the contrary, the original formulation

(1) can be low there if the maximum gradient and the normal

vector −→n p are orthogonal by misfortune).

By using (2), we improve the finding of the point to recon-

struct in priority. This has actually a tremendous incidence on

the overall quality of the reconstructed images, as the iterative

nature of the inpainting algorithm propagates reconstruction

errors (Fig.3(b)-(c) show an example of differences).

A better patch lookup procedure: Our second contribution

consists in the proposal of an improved patch search tech-

nique for the examplar-based inpainting algorithm [1]. We

actually borrow ideas from the famous Patchmatch algorithm

[15] and its recent extensions [16, 9]. These algorithms ac-

tually propose to efficiently compute an approximate Nearest

Neighbor Field (NNF) for each point p of the image, which

quickly returns the most similar patch to the one centered at

p. This has been successfully used within multiscale pixel-

based inpainting approaches, but it becomes far less efficient

when dealing with purely patch-based methods, as it requires

an update of the NNF each time a new patch is pasted, which

is time-consuming in practice.

Our proposed extended search scheme relies on a similar

use of offsets to reduce the patch lookup space. Let pN
be the center of the partially unknown target patch ΨpN
to fill in, A = {p0, . . . , pN−1} the set of centers of the

patches {Ψp0 , . . . ,ΨpN−1
} already pasted during the previ-

ous iterations of the inpainting algorithm, NN(pi) = p̂i the

center of the best patch ψp̂i found for Ψpi , and NNF =
{p̂0, . . . , p̂N−1} the set centers of the best patches.

We first define the offset vector between pN and the points

of A as ∆
pi
pN

= pN − pi, ∀i ∈ {0, . . . , N − 1}. Let S be

the set of points pi of A for which ‖∆pi
pN

‖ < T . Our pro-

posed search scheme consists in extending the search space

by considering several lookup sub-windows centered around

each point NN(q) − ∆
q
pN
, ∀q ∈ S. This scheme allows

to search for the best patch candidate in potentially more

interesting windows w.r.t. the already pasted patches. Note

that a search window centered on pN is still considered for

the lookup. In order to reduce the number of overall lookup

candidates, we set the size szN of all these sub-windows

as szN = sz/
√

Card(S), where sz is the size of the ini-

tial seach window (fixed parameter, used when no patches

have been already reconstructed in a neighbor of the target

point p ∈ δΩ). The rationale behind this size is to keep a

similar complexity regardless the number of visited sites. A

schematic view of the process is illustrated on Fig. 2, where

the target patch Ψp3 is the dotted square inside Ω, and the two

search windows are depicted by the two large dotted squares

centered on the initial guesses (obtained by the offsets ∆
p3
p1

and ∆
p3
p2

w.r.t. p̂1 and p̂2). For clarity purposes, the search

window centered on the p3 is not shown. Note that to inpaint

a patch such as Ψ0, the search window is bigger and centered

Fig. 2. Summarized view of our proposed patch lookup technique.

on its center p0 since it has no direct already reconstructed

neighbors (i.e. S = ∅). The advantages of our scheme are:

• As lookup sub-windows may overlap (they do it often in

practice), the number of lookup candidates is always lower

than the one defined by the initial searching scheme [1], hence

we accelerate the whole process by a non-neglictible order of

magnitude (see Fig.3(a)-(d)).

• As the size of the search space is reduced, the approximate

nearest neighbor patch may be not optimal (in the sense of

the SSD), but in fact it is often visually better. Lookup sub-

windows are indeed centered at geometrically coherent loca-

tions w.r.t. the previously pasted patches, As a consequence,

our modified inpainting algorithm becomes less sensitive to

the patch size: in practice, one can recover larger coher-

ent image structures and textures while considering smaller

patches sizes than the original examplar-based algorithm [1].

3. RESULTS AND CONCLUSION

Fig. 3(a)-(d) illustrates the successive improvements of our

two contributions to the original examplar-based inpainting

algorithm [1]. The large size of the mask as well as the very

complex structures involved in this image make it a very diffi-

cult case for an image inpainting algorithm. It clearly appears

that our two improvements make the inpainted image more

respectful of the initial image content. Fig. 3 shows that our

final inpainting algorithm clearly competes with other state-

of-the-art methods [17] (modified examplar-based inpainting)

and [8, 16] (base of the Photoshop content-aware filling al-

gorithm). For each result, an additional spatial patch blend-

ing step has been used to slightly improve the visual coher-

ence (this is one of our previous work published in [18]). To

ease the reproductibility of our research work, we have re-

leased the C++ sources and binaries of this inpainting algo-

rithm within the G’MIC open-source framework [19].



(a) Masked image. (b) Inpainting result using Criminisi et

al. [1] (1m48s).

(c) Inpainting result using [1] with our

new data term (2) (1m36s).

(d) Inpainting result using [1] with

all improvements from this paper

(0m01s).

Fig. 3. First row: Illustration of the successive contributions presented in this paper. Then from top to bottom, comparisons with state-of-

the-art inpainting algorithms: Masked images, results from Lemeur et al. [17], results from Wexler et al. [8] (using Patchmatch [16]), and

results from our inpainting algorithm. We have tried to find optimal parameters to generate each of these results.
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