Eikonal-based vertices growing and iterative seeding for efficient graph-based segmentation

Pierre Buyssens, Matthieu Toutain, Abderrahim Elmoataz, Olivier Lézoray

To cite this version:

HAL Id: hal-01080017
https://hal.archives-ouvertes.fr/hal-01080017
Submitted on 4 Nov 2014
EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION

P. Buyssens, M. Toutain, A. Elmoataz, O. Lézoray

GREYC (UMR 6072) - CNRS, Université de Caen Basse-Normandie, ENSICAEN - Image Team 6, Bd. Maréchal Juin - 14000 Caen, FRANCE

ABSTRACT

In this paper we propose to use the Eikonal equation on graphs for generalized data clustering. We introduce a new potential function that favors the creation of homogeneous clusters together with an iterative algorithm that place seeds vertices at smart locations. Oversegmentation application shows the effectiveness of our approach.

Index Terms— Graphs, Eikonal equation, Seeds positioning, Oversegmentation.

1. INTRODUCTION AND CONTEXT

With the increasing amount of available data, and the need for fast and accurate processings, the simplification or clustering of data becomes a crucial point for many applications. A convenient way to address this task is to consider that organized or non-organized data can be modeled by a graph that inherently handle interactions between vertices. Exhibiting clusters of this graph leads to a simplification of the domain and decreases the size of the problem.

Many graph-based clustering techniques have been proposed in the literature, such as cut-based, spectral or random walks methods (see [1, 2] for a review of these techniques). Recent works try to adapt well-known signal processing tools to the discrete domain of the graphs [3, 4]. Recently, [5] introduces an adaptation to graphs of the Eikonal equation that generalizes front propagation methods to data of arbitrary dimensions. In this paper, we propose to use this Eikonal-based framework for data clustering, and more particularly for image oversegmentation. Together with a new potential function, we propose an iterative algorithm that automatically produces a desired number of clusters. Oversegmentation comparisons with state-of-the-art dedicated methods show the effectiveness of our approach.

Notations and context. We assume that any discrete domain can be modeled by a weighted graph. Let $G = (V, E, w)$ be a weighted graph composed of a finite set $V = \{v_1, \ldots, v_n\}$ of n vertices and $E \subseteq V \times V$ a set of weighted edges. An edge $(u, v) \in E$ connects two adjacent vertices u and v and is weighted by the function $w : V \times V \rightarrow \mathbb{R}^+$. In the following such a weight is denoted by w_{uv}. We denote by N_v the number of neighbors of v, i.e. the subset of vertices that share an edge with v. The degree δ_v of the vertex v is the sum of the weights of the edges connected to v: $\delta_v = \sum_{u \in V/(u,v) \in E} w_{uv}$.

Let $f : V \rightarrow \mathbb{R}$ be a real-valued function that assigns a real value $f(u)$ to each vertex $u \in V$. We denote by $\mathcal{H}(V)$ the Hilbert space of such functions. Graphs are assumed to be simple, connected and undirected, implying that the function w is symmetric.

The Eikonal equation transposed on graph makes use of the Partial difference Equations (PdE) framework [6] and can be written as:

$$
\begin{align*}
\|(-\nabla f)(u)\|_p &= P(u) \quad \forall u \in V \\
\hat{f}(u) &= \phi(u) \quad \forall u \in V_0
\end{align*}
$$

(1)

where P is a positive function, ϕ is an initialization function (see [5] and references therein for details), and V_0 is the set of initial seeds. Solving this equation for a graph gives for each vertex $v \in V \setminus V_0$ the geodesic distance $U(v)$ to the closest seed vertex $u \in V_0$.

The term $\|(-\nabla f)(u)\|_p$ denotes the \mathcal{L}_p norm of the weighted morphological gradient at a vertex u and is defined as:

$$
\|(-\nabla f)(u)\|_p = \left[\sum_{v \in (u,v) \in E} w_{uv}^{p/2} |(Df(u))^{-}|^p \right]^{1/p}
$$

with $(Df(u))^{-} = -\min(f(u) - f(v), 0)$.

Given a set of seed vertices V_0, the solution of Eq.1 processed by the adaptation of the Fast Marching algorithm [7] on graphs leads to a graph-based clustering of the datas.

2. CONTRIBUTIONS

Our contributions are twofold: First, we extend our previous work [8] by considering the adaptation of the Eikonal-based Region Growing Clustering (ERGC) algorithm on graphs. Given a set of seeds, ERGC processes to a label diffusion via a dynamic potential function. Second, we propose a greedy algorithm that adds iteratively labeled seeds at specific locations. The only parameter of this algorithm is the desired
number of clusters. Let $F_v \in \mathbb{R}^n$ be the data attached to v, and \hat{F}_{C_i} the mean feature vector of a subset C_i of V.

Proposed potential function. Classical potential functions are based on the gradient of the graph computed at each vertex [5]. In case of graph-based image segmentation, the results using this static potential function heavily depend on the location of the seeds. Fig. 1 (top middle) shows the geodesic distances computed with such a potential function: the front propagates on the white square before having recovered all the black area. Then, a good segmentation of the square based on these geodesic distances cannot be obtained. Such a bad result is shown in Fig. 1 (bottom left) that presents important leaks. In this work, we propose a dynamic potential function that favors the grouping of perceptually and adjacent vertices. Given a vertex v belonging to the evolving front, its local potential is computed as the distance between its feature F_v and the mean feature vector \hat{F}_{C_j} of the adjoining cluster C_j: $P(v, C_j) = \|F_v - \hat{F}_{C_j}\|_2$. Each time a vertex v_i is incorporated to a cluster C_j, its mean feature \hat{F}_{C_j} is updated:

$$\begin{align*}
\hat{F}_{C_j} &\leftarrow \frac{F_{C_j} \times \text{Card}(C_j) + F_{v_i}}{\text{Card}(C_j) + 1} \\
\text{Card}(C_j) &\leftarrow \text{Card}(C_j) + 1
\end{align*}$$

This potential function is clearly dynamic since it relies on continuously updating the cluster features. It also favors the diffusion of the front to vertices whose features are close to the mean features of the expanding cluster. Fig. 1 (top right) shows the geodesic distances computed with this potential function: the front recovers entirely the black area before propagating through the white square. Applied to image, it favors the grouping of perceptually and adjacent pixels, while preserving much more the contours, see Fig. 1 (bottom right).

![Image](image-url)

Algorithm 1: Automatic seeds positioning

Data: A Graph G, n the number of desired clusters.

$V_0 \leftarrow \arg \min_{v \in V} (\delta_v / N_v)$;
Solve Eq. 1 with V_0 as the seed vertices set;
Save geodesic distances U_0;
$it = 1$

while $it < n$ **do**

$V_0 \leftarrow V_0 \cup \arg \max_{v \in V} (U_{it}(v))$;
Solve Eq. 1 with V_0;
$it \leftarrow it + 1$;
Save geodesic distances U_{it};

Automatic seeds positioning. The set V_0 of initial seeds vertices is a critical aspect for many front propagation algorithms. As shown in Fig. 1, a not carefully well-chose location for seeds leads to important leaks and results in a bad segmentations. Together with our dynamic potential function, we propose a simple scheme (similar to the Farthest point seed-

Region Adjacency Graph (RAG) of the initial oversegmentation

This paper focuses on the image oversegmentation application of our proposal. In the following color images are consid-

- **Algorithm 1:** Automatic seeds positioning

 Data: A Graph G, n the number of desired clusters.

 $V_0 \leftarrow \arg \min_{v \in V} (\delta_v / N_v)$;
 Solve Eq. 1 with V_0 as the seed vertices set;
 Save geodesic distances U_0;
 $it = 1$

 while $it < n$ **do**

 $V_0 \leftarrow V_0 \cup \arg \max_{v \in V} (U_{it}(v))$;
 Solve Eq. 1 with V_0;
 $it \leftarrow it + 1$;
 Save geodesic distances U_{it};

 Automatic seeds positioning. The set V_0 of initial seeds vertices is a critical aspect for many front propagation algorithms. As shown in Fig. 1, a not carefully well-chose location for seeds leads to important leaks and results in a bad segmentations. Together with our dynamic potential function, we propose a simple scheme (similar to the Farthest point seed-

Algorithm 1: Automatic seeds positioning

Data: A Graph G, n the number of desired clusters.

$V_0 \leftarrow \arg \min_{v \in V} (\delta_v / N_v)$;
Solve Eq. 1 with V_0 as the seed vertices set;
Save geodesic distances U_0;
$it = 1$

while $it < n$ **do**

$V_0 \leftarrow V_0 \cup \arg \max_{v \in V} (U_{it}(v))$;
Solve Eq. 1 with V_0;
$it \leftarrow it + 1$;
Save geodesic distances U_{it};

Automatic seeds positioning. The set V_0 of initial seeds vertices is a critical aspect for many front propagation algorithms. As shown in Fig. 1, a not carefully well-chose location for seeds leads to important leaks and results in a bad segmentations. Together with our dynamic potential function, we propose a simple scheme (similar to the Farthest point seed-

Algorithm 1: Automatic seeds positioning

Data: A Graph G, n the number of desired clusters.

$V_0 \leftarrow \arg \min_{v \in V} (\delta_v / N_v)$;
Solve Eq. 1 with V_0 as the seed vertices set;
Save geodesic distances U_0;
$it = 1$

while $it < n$ **do**

$V_0 \leftarrow V_0 \cup \arg \max_{v \in V} (U_{it}(v))$;
Solve Eq. 1 with V_0;
$it \leftarrow it + 1$;
Save geodesic distances U_{it};

Automatic seeds positioning. The set V_0 of initial seeds vertices is a critical aspect for many front propagation algorithms. As shown in Fig. 1, a not carefully well-chose location for seeds leads to important leaks and results in a bad segmentations. Together with our dynamic potential function, we propose a simple scheme (similar to the Farthest point seed-

Algorithm 1: Automatic seeds positioning

Data: A Graph G, n the number of desired clusters.

$V_0 \leftarrow \arg \min_{v \in V} (\delta_v / N_v)$;
Solve Eq. 1 with V_0 as the seed vertices set;
Save geodesic distances U_0;
$it = 1$

while $it < n$ **do**

$V_0 \leftarrow V_0 \cup \arg \max_{v \in V} (U_{it}(v))$;
Solve Eq. 1 with V_0;
$it \leftarrow it + 1$;
Save geodesic distances U_{it};

Automatic seeds positioning. The set V_0 of initial seeds vertices is a critical aspect for many front propagation algorithms. As shown in Fig. 1, a not carefully well-chose location for seeds leads to important leaks and results in a bad segmentations. Together with our dynamic potential function, we propose a simple scheme (similar to the Farthest point seed-
tion that contains far much less vertices than the number of pixels of the image. The feature vector F_v attached to a vertex v corresponding to a region C_i is the mean color (in the Lab colorspace) of this region. As for the 4-grid graph, the L_2 norm is used to weight the edges of the RAG. Throughout the experiments, the stopping criterion of the iterative process is simply the desired number of final clusters in order to provide fair comparisons with other oversegmentation algorithms with equal number of clusters.

We compare our algorithm to state-of-the-art methods Simple Linear Iterative Clustering [10] (SLIC), Entropy Rate Superpixels [11] (ERS), and SEEDS [12]. Some oversegmentation results obtained with these algorithms are shown in Fig. 4. The Berkeley dataset [13] is used as a benchmark and contains 500 images of size 481×321 (or 321×481) and about 2700 ground truth manual segmentations. All the experiments have been computed from scratch on these images with the code of state-of-the-art methods available on their respective authors webpage. Our method has an approximate complexity of $O(n \log n)$ with an appropriate heap to sort the pixels/vertices according to their distances. Despite this theoretical complexity, the proposed algorithm is very fast in practice, and nearly linear in time. It oversegments an image of this dataset in less than half a second. This processing times are comparable to SEEDS and SLIC algorithms, ERS being quite slower (about 2s per image). Figure 3 plots comparative results on 4 metrics, namely Boundary Recall, (Corrected) Undersegmentation Error, Achievable Segmentation Accuracy, and the additional proposed metric Contour Coverage.

• Boundary Recall measures the fraction of segmented edges that is also present in the ground truth segmentation within a distances threshold t. t has been fixed to 2 (as in [10, 12, 11]) to deal with sometimes approximate manual segmentations.

• (Corrected) Undersegmentation Error proposed in [14] tries to overcome and unify the different definitions [10, 11] of Undersegmentation Error. It measures the fraction of clusters bleeding into another cluster according to the ground truth:

$$UE = \frac{\sum_k |C_k - g_{\text{max}}(C_k)|}{\sum_i |g_i|}$$

where $g_{\text{max}}(C_k)$ indicates the matching ground truth segment g_j of C_k with the largest overlap, and $|\cdot|$ denotes the size (in pixels) of an element.
Fig. 4. Visual comparison between algorithms with 100 clusters per oversegmentation. From top to bottom: SLIC [10], ERS [11], SEEDS [12], and our algorithm. Important leaks for SLIC, ERS and SEEDS can be seen on the muzzle of the bear (left column), on the horse’s mane or on the belly foal (middle column), and on the bear cubs (right column). High Contour Coverage of SEEDS is also highlighted (third row).

- Achievable Segmentation Accuracy (ASA) is a segmentation upperbound measure that gives the best segmentation accuracy that can be obtained by using the clusters as units:
 \[ASA = \frac{\sum_k \max_i |C_k \cap g_i|}{\sum_i g_i} \]

- We introduce the Contour Coverage metric (CC) in addition to traditional ones in order to measure the fraction of contour pixels present in the segmentation according to the whole size of the image. Low Contour Coverage values reflect high compactness of the clusters of an oversegmentation.

As shown in Fig. 3, over 200 clusters our algorithm outperforms state-of-the-art algorithms on UE and ASA metrics, and is competitive with the best algorithm (i.e. SEEDS) on the BR metric. This last result has to be appreciated under the light of Contour Coverage measures, for which SEEDS presents the worst results. The third row of Fig. 4 illustrates such high Contour Coverage values of SEEDS results.

4. CONCLUSION

In this paper we have presented a new dynamic potential function for the Eikonal equation on graphs. A simple iterative algorithm was also proposed to deal with the critical step of seeds placement. These two contributions applied to image oversegmentation leads to results comparable to those obtain with dedicated state-of-the-art methods. Further works will investigate the usability of our approach on meshes oversegmentation, automatic databases and point clouds clustering.
5. REFERENCES

