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Mode detection and discernability as a framework for the estimation of
time-varying delays

Mereim Halimi1,2 and Gilles Millérioux1,2 and Jamal Daafouz1,2

Abstract— In this paper, it is shown how the issue of recon-
structing time-varying unknown delays for linear systems can
be turned into a mode detection one for switched affine systems.
The specificities due to this reformulation are highlighted. The
property of discernability, that is the ability for a detector to
deliver a unique solution, is specifically addressed. An example
is given as an illustration of the efficiency of the approach.

Time-delay systems have been the subject of intensive
researches over the years. This is due to the fact that
time delays are inherent in many real physical systems,
such as mechanical systems, chemical processes, biology,
transportation or communication systems and econometric
models. The estimation of time delays of dynamical systems
has received considerable attention in automatic control.
Although a review and a comparison of time-varying delays
estimation approaches have been proposed in the literature,
see [8] and more recently [7], most of the available methods
are dedicated to continuous systems. The problem of the
estimation of the delay for discrete-time systems is rather
scarce and motivates the present work. It is shown that such
an issue for linear systems can be turned into a special
mode detection one for switched affine systems.

An important concept for mode detection purpose is the
so-called discernability. Roughly speaking, discernability
reflects the ability of discriminating the active sequence from
any other ones. In other words, it deals with the matter of
uniqueness. A sufficient condition for discernability to hold
is the observability [13]. However, less restrictive conditions
can be found in the literature like (η, ω)–discernability [1],
Backward Discernability and Forward Discernability [3].
For systems with input, discernability deserves a special
treatment because it depends on the input sequence. In this
respect, the so-called active mode observation has been
addressed in [2], [4] and [5] where a distinction between
discerning control sequences over a finite or an infinite
horizon of time is made. In this paper, discernability is
tackled in the special context of the estimation of time-
varying delays.

This paper is organized as follows. Section I is devoted to
the problem statement. The reformulation of the estimation
of time-varying delays as a mode detection problem for
switched affine systems is carried out. In section II, discern-
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ability is discussed in the general context. It is introduced
the notion of (λ)–discernability. In Section III, discernability
and mode detection methodologies are particularized for the
purpose of time-varying delays estimation. The paper ends
up with an illustrative example in Section IV.
Notation: N is the set of natural numbers. Rn is the n-
dimensional set of real numbers. 1 is the identity matrix and 0
is the zero matrix, being both of appropriate dimension when
unspecified. XT is the transpose of the matrix X . The matrix
X† stands for the generalized inverse (Moore-Penrose) of X
satisfying X†X symmetric, XX† symmetric, XX†X = X
and X†XX† = X†. The kernel (null space) of X is denoted
ker(X). R(X) is the column range space of X . The rank
of a matrix X is denoted rank(X).

I. PROBLEM STATEMENT

Let us consider the discrete-time affine delayed system
given by{

Xk+1 = AXk + GXk−τ(k) + BUk−τ ′(k) + E
Yk = CXk +DUk

(1)

where k is the natural number standing for the discrete-
time, Xk ∈ RN is the state vector, Yk ∈ RM is the
output, Uk ∈ RP is the input. The matrices A ∈ RN×N ,
G ∈ RN×N , B ∈ RN×P , C ∈ RM×N , D ∈ RM×P and
E ∈ RN×1 are constant matrices. The quantities τ(k) and
τ ′(k) are time-varying delays acting respectively on the state
vector and on the input. They take values in two respective
finite sets T = {0, 1, · · · , α} and T ′ = {0, 1, · · · , α′}. The
time variation of τ(k) and τ ′(k) is arbitrary. The case when
τ(k) and τ ′(k) are not directly accessible is considered.
Hence, the aim is to estimate τ(k) and τ ′(k) while the
model, the sequences Uk and Yk are assumed to be known
and available on-line.

As a clue to tackle this problem, we can interestingly
point out that such an issue can be reformulated as a
mode detection problem of an equivalent switched affine
system. Indeed, despite a different purpose, the same lines
of reasoning than the ones suggested in [11] [12] can be
followed, that is, a switched system transformation approach
can be used. It is detailed below.
Let σ be a function σ : N → J which, at any time k,
uniquely identify the pair (τ(k), τ ′(k)) ∈ T × T ′ according
to the following one-to-one correspondence: (τ(k), τ ′(k)) =
(0, 0)↔ σ(k) = 1, (τ(k), τ ′(k)) = (1, 0)↔ σ(k) = 2, . . . ,
(τ(k), τ ′(k)) = (α, 0) ↔ σ(k) = α + 1, (τ(k), τ ′(k)) =



(0, 1) ↔ σ(k) = α + 2, . . . , (τ(k), τ ′(k)) = (0, α′) ↔
σ(k) = (α + 1) · α′ + 1, . . . , (τ(k), τ ′(k)) = (α, α′) ↔
σ(k) = (α+ 1) · (α′ + 1). Then, defining

xk =


Xk

Xk−1
...

Xk−α

 , uk =


Uk
Uk−1

...
Uk−α′

 , yk = Yk (2)

The system (1) can be equivalently rewritten as a switching
affine system like{

xk+1 = Aσ(k)xk +Bσ(k)uk + Eσ(k)

yk = Cσ(k)xk +Dσ(k)uk
(3)

where xk ∈ Rn is the state vector with n = (α+ 1)N , yk ∈
Rm is the output with m = M , and uk ∈ Rp is the input with
p = (α′ + 1)P . The function σ defined above corresponds
for (3) to the switching law σ : N → J = {1, . . . , J} with
J = (α+1)(α′+1) that assigns, to any discrete-time k ∈ N,
the integer σ(k) ∈ J . The matrices Aσ(k) ∈ Rn×n, Bσ(k) ∈
Rn×p, Cσ(k) ∈ Rm×n, Dσ(k) ∈ Rm×p and Eσ(k) ∈ Rn×1
are the state space matrices of the system which belong to the
respective sets {A1, . . . , AJ}, {B1, . . . , BJ}, {C1, . . . , CJ},
{D1, . . . , DJ} and {E1, . . . , EJ}. The state space matrices
obey the following construction

Aσ(k) =


A+ κ(τ(k))G ψ1(τ(k)) · · · ψα(τ(k))

1 0 · · · 0
0 1 · · · 0
... · · ·

...
0 0 · · · 1 0


Bσ(k) =

[
ψ′0(τ ′(k)) ψ′1(τ ′(k)) · · · ψ′α(τ ′(k))

0 0 · · · 0

]
Eσ(k) =

[
E
0

]
, Cσ(k) =

[
C 0

]
, Dσ(k) =

[
D 0

]
ψi is defined for i = 1, . . . , α as

ψi(τ(k)) =

{
G if τ(k) = i
0 if τ(k) 6= i

, κ(τ(k)) =

{
1 if τ(k) = 0
0 if τ(k) 6= 0

Finally, ψ′i is defined for i = 0, . . . , α as

ψ′i(τ
′(k)) =

{
B if τ ′(k) = i
0 if τ ′(k) 6= i

This being the case, estimating τ(k) and τ ′(k) of (1) amounts
to estimate the mode σ(k) of (3), being known a sequence
of input/output data uk and yk over a finite length receding
horizon. As a result, we can write without any confusion a
sequence of modes σs = σ(k)σ(k + 1) . . . σ(k + h) and
a sequence of pairs of delays σs = (τ(k), τ ′(k))(τ(k +
1), τ ′(k + 1)) . . . (τ(k + h), τ ′(k + h)). Hereafter, σ[k1,k2]
will stand for the finite sequence of modes (also called
path) {σ(k1), · · · , σ(k2)} in the interval of time [k1, k2]. We
denote with S the set of integers s ∈ S that uniquely identify
a sequence σs ∈ J h+1 in the interval of time [k − h, k]
and with S the number of admissible sequences in J h+1.
By admissible sequence, it is meant a sequence for which

σ(k + 1) is compatible with σ(k) and the transition rule
defined by the switching function σ. The active sequence
will be denoted with σ∗.
Hence, we can resort to the mode detection proposed in [9]
and recalled in the following proposition.

Proposition 1: [9] Let h be a horizon length. The active
sequence σ∗ in the interval of time [k − h, k] is a sequence
σs ∈ J h+1 such that the corresponding residual fulfills

rh,σs = 0 (4)

with
rh,σs = Ωσs(yk−h,k − Tσsuk−h,k − T ′σs)

where Ωσs is the solution of ΩσsOσs = 0, with

yk−h,k = Oσ[k−h,k]xk−h + Tσ[k−h,k]uk−h,k + T ′σ[k−h,k]
(5)

where

Oσ[k−h,k] =



Cσ(k−h)
Cσ(k−h+1)Aσ(k−h)

...
Cσ(k−1)A

σ(k−h)
σ(k−2)

Cσ(k)A
σ(k−h)
σ(k−1)

 (6)

Tσ[k−h,k] =



Dσ(k−h) 0 0
Cσ(k−h+1)Bσ(k−h) Dσ(k−h+1) 0

...
. . .

...
Cσ(k−1)B

σ(k−h)
σ(k−2) Dσ(k−1) 0

Cσ(k)B
σ(k−h)
σ(k−1) Dσ(k)



T ′σ[k−h,k]
=



0
Cσ(k−h+1)Eσ(k−h)

...
Cσ(k−1)E

σ(k−h)
σ(k−2)

Cσ(k)E
σ(k−h)
σ(k−1)


Ak2k1 = Ak1Ak1+1 · · ·Ak2

Bk2k1 =
[
Ak2−1k1

Bk2 · · · Ak1+1
k1

Bk1+2 Ak1Bk1+1 Bk1

]
Ek2k1 = Ak2−1k1

Ek2 + · · ·+Ak1+1
k1

Ek1+2 +Ak1Ek1+1 +Ek1

yk1,k2 =
[
yTk1 yTk1+1 · · · yTk2

]T
uk1,k2 =

[
uTk1 uTk1+1 · · · uTk2

]T
Oσ[k−h,k] is the observability matrix in the finite observation
window [k − h, k].
Actually, the horizon length h is defined in [9] as the integer
which satisfies rank(Oσ[k−h,k]) = n. That supposes the
system to be pathwise observable and is restrictive. It has
been shown in [10] that such a condition can be relaxed and
h must obey

rank(Oσ[k−h,k]) = rank(Oσ[k−h,k−1]
) (7)

An important issue to be addressed for mode detection
purpose is the ability for a detector to deliver a unique
solution, that is a unique mode sequence σs. Let us stress



that the detector defined as in Proposition 1 does not
exclusively deliver the active mode σ(k) at time k but
deliver the whole active sequence σ∗ in the interval of
time [k − h, k]. Addressing the question of uniqueness
amounts to checking whether the mode detector is able
to discriminate the active sequence σ∗ from any other
sequences σs ∈ J h+1. Such a notion is related to the
so-called discernability.

First, we recall and provide new results on the question
of uniqueness in the general case. Then, we particularize the
investigation in the special context of time-varying delays
estimation.

II. UNIQUENESS

A. Discernability

Discernability has been thoroughly discussed in [3] and
[9]. Let us point out that some authors use the terminology
“mode observability” instead of “discernability”. Formally,
discernability of mode sequences obeys the following def-
inition which is restated here to be in accordance with the
notation of the present paper and with the detector defined
as in Proposition 1.

Definition 1: For the detector defined as in Proposition 1
based on the residual rh,σs , two modes sequences σs1 and
σs2 delivered by (3), with (s1, s2) ∈ S2, are discernible on
an observation window of length h+ 1, if the corresponding
residuals rh,σs1 et rh,σs2 are not simultaneously zero when
one of the sequence σs1 or σs2 is the active sequence σ∗.

A necessary and sufficient condition for discernability of two
sequences is proved in [9] and is recalled below.

Theorem 1: [9] For a given input sequence uk−h,k,
two mode sequences σs1 and σs2 delivered by (3), with
(s1, s2) ∈ S2, are discernible on an observation window
of length h+ 1, for almost all initial conditions xk−h, iff at
least one of the two following conditions is satisfied for all
i, j ∈ {s1, s2} , i 6= j

ΩσiOσj 6= 0 (8)

Ωσi((Tσj − Tσi)uk−h,k + (T ′σj − T
′
σi)) 6= 0 (9)

Finally, we can introduce the notion of discernability for (3).
Definition 2: For a given input sequence uk−h,k, sys-

tem (3) is discernible if, for every pairs of sequences
σs1 , σs2 ∈ J h+1 with (s1, s2) ∈ S2, σs1 is discernible from
σs2 .
According to Definition 1, if discernability is not satisfied,
this means that several residuals can vanish simultaneously.
That causes the estimation of the sequence σs provided in
Proposition 1 to be unsuccessful. In other words, the active
sequence of length h + 1 cannot be discriminated from all
the other ones and then, cannot be directly estimated. This
being the case, an alternative to circumvent the problem has
been proposed in the literature through the concept of (η, ω)–
discernability [1]. It is the purpose of next subsection.

B. (η, ω)–Discernability

The property of (η, ω)–discernability has been introduced
in [1]. It reflects the ability to discriminate, and then to
estimate, the active subsequence σ∗[k−h+η,k−ω] from all the
other ones. The quantities η and ω are positive integers
verifying η ∈ {0, . . . , h}, ω ∈ {0, . . . , h} and η + ω ≤ h.
Clearly, (η, ω)–discernability coincides with discernability
if η = 0 and ω = 0. In the sequel, we shall consider either
η > 0 or ω > 0. The integers η and ω shall be chosen as
small as possible to get a estimated sequence of maximal
length. Letting σs[k−h+η,k−ω] with s ∈ S as the sequence
of modes σ(k − h+ η), . . . , σ(k − ω), (η, ω)–discernability
obeys the following definition.

Definition 3: [1] σs1 is (η, ω)–discernible from σs2 with
σs1 , σs2 ∈ J h+1, (s1, s2) ∈ S2, if σs1 [k−h+η,k−ω] 6=
σs2 [k−h+η,k−ω] and σs1 is discernible from σs2 .
Based on Theorem 1 of discernability, we can derive con-
ditions for checking (η, ω)–discernability as given in the
following proposition.

Proposition 2: For a given input sequence uk−h,k, two
modes sequences σs1 and σs2 of (3) with (s1, s2) ∈ S2
are (η, ω)–discernible on an observation window of length
h+ 1, for almost all initial conditions xk−h, iff at least one
of the two following conditions is satisfied for all i, j ∈
{s1, s2} with i 6= j

ΩσiOσj 6= 0 (10)

Ωσi((Tσj − Tσi)uk−h,k + (T ′σj − T
′
σi)) 6= 0 (11)

with σs1 [k−h+η,k−ω] 6= σs2 [k−h+η,k−ω]
Proof 1: The proof is a straightforward consequence

of the consideration of both Definition 3 of (η, ω)–
discernability and (8)-(9) of Theorem 1.

Definition 4: [1] For a given input sequence uk−h,k, (3) is
(η, ω)–discernible, if, for every pairs of sequences σs1 , σs2 ∈
J h+1 with (s1, s2) ∈ S2 such that σs1 [k−h+η,k−ω] 6=
σs2 [k−h+η,k−ω], σs1 is discernible from σs2 .
The estimation of the active subsequence σ∗[k−h+η,k−ω] can

be performed according to the following proposition.
Proposition 3: Assume that (3) is (η, ω)–discernable. Let
S̄ ⊂ S be the set of integers s ∈ S such that all the sequences
σs[k−h+η,k−ω] differ one another. The active subsequence
σ∗[k−h+η,k−ω] in the interval of time [k − h, k] is the unique
subsequence σs[k−h+η,k−ω] of the sequences σs with s ∈ S̄
such that the corresponding residual fulfills

rh,σs = 0 (12)

with
rh,σs = Ωσs(yk−h,k − Tσsuk−h,k − T ′σs)

where Ωσs is the solution of ΩσsOσs = 0.
Proof 2: The proof follows along the same lines of rea-

soning as in the proof of Proposition 1 except that s ∈ S is
replaced by s ∈ S̄, that is, only the residuals for which the
subsequences σs[k−h+η,k−ω] which differ from all the other
ones are considered.



If discernability is satisfied, the first active sequence σ∗[0,h]
can be obtained. On the other hand, if (η, ω)–discernability is
satisfied, at time k = h, the active subsequence σ∗[η,h−ω] can
be estimated but by a sliding window approach, the initial
active sequence can be complemented to obtain a sequence
of any prescribed length. On the other hand, the sequence
σ∗[0,η−1] cannot be estimated. All in all, Proposition 3 allows
to achieve the estimation of all the modes σ(k) for k ≥ 0
or k ≥ η accordingly. However, the complexity of the
estimation of the mode σ(k) at time k, in terms of required
amount of data and number of residuals to be calculated and
analyzed, can be reduced. Indeed, the estimation of the mode
σ(k) at time k can be performed taking into account that
all the modes at times k′ < k have already been estimated
and so are assumed to be known. Such a consideration
motivated the introduction of the concept of (λ)–Backward
Discernability.

C. (λ)–Backward Discernability and permanent estimation

The property of (λ)–Backward Discernability allows to
deliver at time k, the mode σ(k − λ), being the modes
σ(k − i) (1 + λ ≤ i ≤ h) already estimated. The quantity
λ is an integer such that λ ∈ {1, . . . , h}. (λ)–Backward
Discernability stands as an extension of the so-called Back-
ward Discernability introduced in [3]. Indeed, Backward
Discernability corresponds to the case when λ = 0. More
formally, (λ)–Backward Discernability obeys the following
definition.

Definition 5: A mode i is (λ)–Backward Discernible from
another mode j, if there exists an integer λ such that, in an
observation window [k − h, k], for every sequence σh−λ of
length h−λ, and for any two sequences σ′1 and σ′2 of length
λ, σh−λiσ′1 is discernible from σh−λjσ′2.

It is clear that discernability implies (λ)–Backward Discern-
ability. Conditions for guaranteeing (λ)–Backward Discern-
ability are provided in the following proposition.

Proposition 4: For a given input sequence uk−h,k, two
modes i and j are (λ)–Backward discernible on an observa-
tion window [k − h, k] of length h+ 1, for almost all initial
conditions xk−h iff, for every sequence σh−λ of length h−λ
and for any two sequences σ′1 and σ′2 of length λ delivered
by (3), at least one of the following conditions are satisfied
for all i, j ∈ J , i 6= j

Ωσh−λiσ′1Oσh−λjσ′2 6= 0 (13)

Ωσh−λiσ′1((Tσh−λjσ′2 − Tσh−λiσ′1)uk−h,k

+ (T ′σh−λjσ′2
− T ′σh−λiσ′1)) 6= 0

(14)

Proof 3: The proof is a straightforward consequence of
the consideration of both Definition 5 of (λ)–Backward
Discernability and (8)-(9) of Theorem 1.

Definition 6: For a given input sequence uk−h,k, system
(3) is (λ)–Backward Discernible if, for every pairs of modes
(i, j) ∈ J 2, the mode i is (λ)–Backward Discernible from
the mode j.

When (λ)–Backward Discernability is satisfied, the estima-
tion of the mode σ(k − λ) at time k can be performed
according to the following proposition.

Proposition 5: Assume that (3) is (λ)–Backward Discern-
able. Let σh−λ be a sequence of length h−λ. Let S̄σh−λ ⊂ S
be the set of integers s ∈ S such that σh−λiσ′ differ one
another for all for all i ∈ J and for any sequences σ′ of
length λ. The active mode σ∗(k − λ) in the interval of time
[k − h, k] is the unique mode σ(k − λ) of the sequence σs
with s ∈ S̄σh−λ such that the corresponding residual fulfills

rh,σs = 0 (15)

with

rh,σs = Ωσs(yk−h,k − Tσsuk−h,k − T ′σs),

where Ωσs is the solution of ΩσsOσs = 0.
Proof 4: The proof follows along the same lines of rea-

soning as in the proof of Proposition 1 except that s ∈ S
is replaced by s ∈ S̄σh−λ , that is, for a given subsequence
σh−λ of length h−λ, only the residuals for which the mode
σ(k − λ) differs one another are considered, the rest of the
sequence of length λ+ 1 being disregarded.
The relevance of Proposition 5 lies in that only the residuals
of the sequences σh−λiσ′ (σ′ ∈ J λ) with σh−λ ∈ J h−λ
resulting from the estimation at time k−1 have to be checked
by the detectors. That allows to reduce the number of tests:
Jλ+1 sequences instead of Jh+1 sequences. Let us recall
that λ ≤ h.

When (λ)–Backward Discernability is considered, a se-
quence of length respectively equal to h−λ must be known.
It has been previously stressed that (η, ω)–discernability
allows to estimate with Proposition 5 the active subsequence
σ∗[η,h−ω] and can be complemented by shifting in time the
procedure until a sequence of length h− λ is known. Then,
we can proceed to the permanent estimation based on a
receding horizon technique for k > h+ ω + η − 1.

III. SPECIFICITY FOR TIME-DELAYED SYSTEMS

As previously stressed, because of the restriction due to
the specific structure of the state space matrices of (3), it can
be suspected that some of the properties of discernability
are no longer satisfied. This is precisely shown in what
follows. All the proofs are based on the search for particular
sequences for which the properties are not satisfied.

1) Preliminary result: The following lemma is recalled
from [3].

Lemma 1: Given a vector Y ′ and a matrix O, being X
unknown, it holds that

Y ′ ∈ R(O)⇔ ∃X |Y ′ = OX ⇔ (OO† − 1)Y ′ = 0 (16)

Proposition 6: Condition Ωσs2Oσs1 6= 0 is equivalent to

rank(
[
Oσs1 Oσs2

]
) > rank(Oσs2 ) (17)



where
[
Oσs1 Oσs2

]
denotes the horizontal concatenation

of Oσs1 and Oσs2 .

Proof 5: If (17) is not satisfied, it is equivalent to
rank(

[
Oσs1 Oσs2

]
) = rank(Oσs2 ) since it is clear that

rank(
[
Oσs1 Oσs2

]
) < rank(Oσs2 ) can never occur. This

means that Oσs1 ∈ R(Oσs2 ). From (16) of Lemma 1, we
get that

Oσs1 ∈ R(Oσs2 )⇔ (Oσs2O
†
σs2
− 1)Oσs1 = 0 (18)

And yet, according to Proposition 3.3 in [6], R(Oσs2O
†
σs2
−

1) = ker(Oσs2 ). Therefore, since by definition ker(Oσs2 ) =
Ωσs2 , (18) implies that Ωσs2Oσs1 = 0. That completes the
proof.

2) Discernability:
Proposition 7: For system (1), discernability and (0)–

Backward Discernability (that is Backward Discernability)
are not fulfilled.

Proof 6: Consider the two particular sequences σs1 =
σs[k−h,k−1]

i (i ∈ J ) and σs2 = σs[k−h,k−1]
j (j ∈ J ). For

(3), the matrix Cσ(k) does not depend on σ(k). Therefore,
the matrices O, T , and T ′ defined as in (5) only depend on
σs[k−h,k−1]

. Consequently, Tσs1 = Tσs2 and T ′σs1 = T ′σs2 ,
which implies that (9) is not fulfilled.
Besides, since (0)–Backward Discernability is a special
case of discernability, since Backward Discernability is not
fulfilled, discernability is not fulfilled either. That completes
the proof.
Since neither discernability nor (0)–Backward Discernability
are satisfied, the whole sequence σs[k−h,k] cannot be esti-
mated. Let us focus on the less restrictive property, namely
the (η, ω)–discernability. We recall that such a property
reflects the ability of discriminating, and so estimating, the
subsequences σ∗[k−h+η,k−ω].

3) (η, ω)–Discernability:
Proposition 8: System (1) is not (η = 0, ω = 1)–

discernible.
Proof 7: (0, 1)–discernability is not satisfied if and only

if neither (10) nor (11) in Proposition 2 is satisfied.
Let us consider the two particular sequences σs1 =
(0, 0)(0, 0) · · · (0, 0) and σs2 = (1, 0)(0, 0) · · · (0, 0) of
length h+ 1. Let us note that the condition σs1 [k−h,k−1] 6=
σs2 [k−h,k−1], as required in Proposition 2, is well satisfied.
The respective observability matrices denotedOσs1 andOσs2
read

Oσs1 =


C

CA(0,0)

...
CA(0,0)

h

 =


C 0 · · · 0

C(A+ G) 0 · · · 0
C(A+ G)2 0 · · · 0

...
...

...
C(A+ G)h 0 · · · 0



Oσs2 =


C

CA(1,0)

...
CA(0,0)

h−1A(1,0)



Oσs2 =


C 0 0 · · · 0
CA CG 0 · · · 0

C(A+ G)A C(A+ G)G 0 · · · 0
...

...
...

...
C(A+ G)h−1A C(A+ G)h−1G 0 · · · 0


Denote with V1 the first column of Oσs1 , and V2, V ′2 the first
and the second column of Oσs2 respectively. It is clear that
V1 = V2 + V ′2 . As a result,

rank([Oσs1 Oσs2 ]) = rank(Oσs2 ) (19)

According to Proposition 6, it is equivalent to

Ωσs2Oσs1 = 0 (20)

On the other hand, since Dσ(k), Bσ(k) and Eσ(k) do not
depend on τ(k), it holds that D(0,0) = D(1,0), B(0,0) =
B(1,0) and E(0,0) = E(1,0). As a result, from the definitions
of T and T ′ given in (5), we have that Tσs1 = Tσs2 and
T ′σs1 = T ′σs2 which implies that

Ωσs2 ((Tσs1 − Tσs2 )uk−h,k + (T ′σs1 − T
′
σs2

)) = 0 (21)

As a result, from (20) and (21), it holds that Proposition 2 is
not satisfied and the sequences σs1 is not (0,1)–discernible
from σs2 . That completes the proof.

4) (λ)–Backward Discernability:
Proposition 9: If Uk remains unchanged between two

consecutive discrete times k and k + 1, system (1) is not
(λ = 1)–Backward Discernible.

Proof 8: Let us consider the sequences σs3 = σh−λi(0, 0)
and σs4 = σh−λj(0, 0) of length h + 1 with σh−λ =
(0, 0)(0, 0) · · · (0, 0), i = (0, 0) and j = (0, 1). It suffices
to show that conditions (13) and (14) of Proposition 4 are
not satisfied for σs3 and σs4 .
For both sequences σs3 and σs4 , it holds that τ(k) = 0 for
all k. Since the observability matrix Oσ[k−h,k] exclusively
depends on τ(k), Oσs3 = Oσs4 and then ker(Oσs3 ) =
ker(Oσs4 ) which implies that

Ωσs4Oσs3 = 0 (22)

On the other hand, it holds that A(0,0) = A(0,1), D(0,0) =
D(0,1) and E(0,0) = E(0,1) since Aσ(k), Dσ(k) and Eσ(k) do
not depend on τ ′(k). From the definitions of T and T ′ given
in (5), we have that T ′σs3 = T ′σs4 . Thus, (9) becomes

Ωσs4 ((Tσs3 − Tσs4 )uk−h,k) 6= 0 (23)

with

Tσs3 − Tσs4 =


0 0 0
...

...
...

0 0 0
0 C(B(0,0) −B(0,1)) 0



=


0 0 0 0
...

...
...

...
0 0 0 0
0 CB −CB 0





Substituting Tσs3 − Tσs4 into (23) yields

Ωσs4
[

0 CBUk−1 − CBUk−2
]T 6= 0 (24)

Hence, if Uk−1 = Uk−2, from (22) and (24), we infer that
neither (13) nor (14) of Proposition 4 is satisfied and the
sequence σs3 is not (1)–Backward Discernible from σs4 .
That completes the proof.

IV. EXAMPLE

Let us consider (1) with the particular setting

A =

[
−0.21 0.1

0 1

]
,G =

[
0.25 0

0 −0.21

]
,

B =

[
1.5 0
1 0.8

]
, C =

[
1 3

2.5 0

]
,

E =

[
1

0.3

]
, D = 0

The delays fulfill τ(k) ∈ {0, 1, 2} (α = 2), τ ′(k) = 0 for all
k (α′ = 0).

This linear delayed discrete-time system is rewritten into
the form (3) with

xk =

 Xk

Xk−1
Xk−2

 , uk = Uk, yk = Yk

and the switching rule σ is defined as σ : k ∈ N→ σ(k) ∈ J
with J = (α+ 1)(α′+ 1) = 3 as the number of modes. The
corresponding state space matrices read

A1 =

 A+ G 0 0
1 0 0
0 1 0

 , A2 =

 A G 0
1 0 0
0 1 0

 ,
A3 =

 A 0 G
1 0 0
0 1 0

 , Bi =

 B0
0

 , Ei =

 E0
0

 ,
Ci =

[
C 0 0

]
, Di = 0 ∀ i ∈ {1, 2, 3}

where σ(k) = 1 is associated to (τ, τ ′) = (0, 0), σ(k) = 2
is associated to (τ, τ ′) = (1, 0), and σ(k) = 3 is associated
to (τ, τ ′) = (2, 0).
The smallest detection horizon h which satisfies (7) is h = 3.
• Initial estimation

The property of (η, ω)–discernability is checked using (10)
since (11) is never verified because B1 = B2 and E1 = E2.
After having performed the test, it holds that (10) is satisfied
for η = 2 and ω = 1 which means that (2, 1)–discernability
is fulfilled.
• Permanent estimation

Since (14) is never verified because B1 = B2, E1 = E2 and
C1 = C2, conditions (13) are checked to test (λ)–Backward
Discernability. It holds that (13) is fulfilled for λ = 1.
Therefore, the permanent estimation can be performed by
the detector which delivers the active mode σ∗(k − 1) for
k > h+ω+η−λ−1 = 4. The detector successfully recovers
the unknown delay as depicted on Figure 1 (bottom).

Fig. 1. Top: active sequences τ∗. Middle: reconstructed sequences τ .
Bottom: error τ − τ∗

V. CONCLUSION

We have presented an approach to estimate time-varying
delays of discrete-time linear and affine systems. The
problem has been turned into a mode detection problem for
switched affine systems. Conditions on discernability have
been particularized to this special context.
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