A discontinuous-skeletal method for advection-diffusion-reaction on general meshes

Abstract : We design and analyze an approximation method for advection-diffusion-reaction equa-tions where the (generalized) degrees of freedom are polynomials of order $k\ge0$ at mesh faces. The method hinges on local discrete reconstruction operators for the diffusive and advective derivatives and a weak enforcement of boundary conditions. Fairly general meshes with poly-topal and nonmatching cells are supported. Arbitrary polynomial orders can be considered, including the case $k=0$ which is closely related to Mimetic Finite Difference/Mixed-Hybrid Finite Volume methods. The error analysis covers the full range of Péclet numbers, including the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain. Computational costs remain moderate since the use of face unknowns leads to a compact stencil with reduced communications. Numerical results are presented.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2015, 53 (5), pp.2135-2157. 〈10.1137/140993971〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01079342
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : dimanche 27 mai 2018 - 13:07:56
Dernière modification le : jeudi 21 juin 2018 - 14:12:07
Document(s) archivé(s) le : mardi 28 août 2018 - 12:39:53

Fichier

adho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Antonio Di Pietro, Jerome Droniou, Alexandre Ern. A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2015, 53 (5), pp.2135-2157. 〈10.1137/140993971〉. 〈hal-01079342v3〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

56