
HAL Id: hal-01078759
https://hal.science/hal-01078759

Submitted on 30 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Validation of Barriers and Worksharing
Constructs in OpenMP Applications

Emmanuelle Saillard, Patrick Carribault, Denis Barthou

To cite this version:
Emmanuelle Saillard, Patrick Carribault, Denis Barthou. Static Validation of Barriers and Work-
sharing Constructs in OpenMP Applications. IWOMP, Sep 2014, Salvador, Brazil. pp.73 - 86,
�10.1007/978-3-319-11454-5_6�. �hal-01078759�

https://hal.science/hal-01078759
https://hal.archives-ouvertes.fr

Static Validation of Barriers and Worksharing

Constructs in OpenMP Applications

Emmanuelle Saillard1, Patrick Carribault1, and Denis Barthou2

1 CEA, DAM, DIF

F-91297 Arpajon, France
2 Bordeaux Institute of Technology, LaBRI / INRIA

Bordeaux, France

Abstract. The OpenMP specification requires that all threads in a team execute

the same sequence of worksharing and barrier regions. An improper use of

such directive may lead to deadlocks. In this paper we propose a static analysis to

ensure this property is verified. The well-defined semantic of OpenMP programs

makes compiler analysis more effective. We propose a new compile-time method

to identify in OpenMP codes the potential improper uses of barriers and work-

sharing constructs, and the execution paths that are responsible for these issues.

We implemented our method in a GCC compiler plugin and show the small im-

pact of our analysis on performance for NAS-OMP benchmarks and a test case

for a production industrial code.

1 Introduction

OpenMP is a popular parallel programming model for shared memory machines. While

OpenMP aims at making parallel programming easier, there are a number of improper

uses of worksharing constructs and barriers that are not statically detected by compilers

and may lead to deadlock or unspecified behavior. Indeed, the OpenMP specification

requires that all threads of a team must execute the same sequence of worksharing con-

structs and barriers [16]. However in practice no error occurs when all threads of a team

do not execute exactly the same barrier. That is why we authorize threads synchroniza-

tions with different barriers and defined two verbosity levels (0 and 1) defining soft and

hard barriers verifications. Throughout the rest of the paper, examples are presented

with verbosity level 0.

To show the difficulty to enforce this constraint in OpenMP codes, consider the mo-

tivating examples in Figure 1. In function f of Listing 1.1, each thread may or may

not encounter the single construct line 9, depending on the control flow (line 6). Ac-

cording to the OpenMP specification, all threads in a team should encounter the same

single, or none of them. However, compiling this code and executing it does not lead

to a syntactic error but to a deadlock. Indeed, if the result of the conditional is not the

same among all threads, the first barrier executed will be for some threads the implicit

barrier line 12 (end of single) while for others, it will be the explicit barrier line 14.

Then the first group of threads will stop at the explicit barrier line 14 while the second

group will stop at the barrier related to the end of the parallel region. Finally, the first

set of threads will be released and eventually deadlock at this last barrier. Note that if

Listing 1.1.

1 vo id f () {
2 i f (. . .)

3 {
4 #pragma omp parallel

5 {
6 i f (. . .)

7 {
8 /∗ . . . ∗ /

9 #pragma omp single

10 {
11 /∗ . . . ∗ /

12 }
13 }
14 #pragma omp barrier

15 /∗ . . . ∗ /

16 }
17 }
18 }

Listing 1.2.

1 vo id f () {
2 /∗ . . . ∗ /

3 #pragma omp barrier

4 r e t u r n ;

5 }
6

7 i n t main () {
8 i n t r ;

9 #pragma omp parallel private (r)

10 {
11 r = . . . ;

12 i f (r == 0)

13 f () ;

14 }
15 exit (0) ;

16 }

Fig. 1. Examples with Deadlock Situations

we modify this example by adding an else statement with another single, the code

is still potentially erroneous since all threads should encounter the same single. A

more complex case appears Listing 1.2. A deadlock can occur at the end of the parallel

region of function main because of the conditional line 12. Depending on the control

flow the barrier in f may be not encountered by all threads. The error is more difficult

to detect and an interprocedural analysis is required. This illustrates the fact that the

machine state does not help to identify the cause of deadlocks (in these two examples,

conditionals).

This paper proposes a new compile-time technique to detect potential improper uses

of worksharing constructs and barriers in applications parallelized with OpenMP. The

main advantage of our method is to highlight the statements responsible for the exe-

cution path potentially leading to future deadlocks or unspecified behaviors. This con-

tribution is an adaptation and transposition of the work presented in [12] for checking

MPI applications with respect to barriers. The OpenMP application is checked function

per function, using intra-procedural analysis. Each function of a program is said to be

correct if all threads of the same team (entering the function or created in the function)

have the same sequence of worksharing regions and depending of the verbosity level,

the same sequence of barriers (verbosity 1) or the same number of barriers (verbosity

0). An inter-procedural analysis complements the analysis for checking the whole ap-

plication. This paper makes the following contributions:

– Analysis of barriers and worksharing constructs that may lead to deadlocks, identi-

fication of the control-flow that may be responsible for these situations;

– Consideration of the OpenMP specification and the practice through two verbosity

levels;

– Full implementation inside a production compiler; experimental results on different

benchmarks and applications.

The outline of the paper is the following. Section 2 provides a summary of exist-

ing debugging tools for OpenMP programs. Section 3 defines the problem statement,

describes the program representation we use and presents our compile-time analysis.

Section 4 details experimental results before concluding in Section 5.

2 Related Work

OpenMP applications are prone to concurrency errors such as data races and dead-

locks. Debugging tools generally check the correctness of OpenMP programs either at

compile-time or during execution of a program, both methods having advantages and

inconveniences. This section summarizes some existing tools to detect data races and

deadlocks in OpenMP applications.

The well-defined semantics of OpenMP makes static analyses common to check

the correctness of OpenMP applications. Several static approaches exist: First we can

mention the OpenMP Analysis Toolkit [9] (OAT) that uses symbolic analysis to detect

concurrency errors. It relies on the ROSE compiler infrastructure to encode every paral-

lel region into Satisfiability Modulo Theories (SMT) formulae. Those formulae are then

solved with a SMT-solver like Yices [17]. OAT terminates its analysis by instrumenting

the source code with fault injection technique to confirm the reported errors. OmpVer-

ify [1] is a static tool integrated in Eclipse IDE using the polyhedral model to detect

data races in OpenMP parallel loops. This tool is restricted to program fragments called

Affine Control Loops but it has the advantage of reporting accurate errors to the user.

Lin [8] describes a concurrency analysis technique to detect whether two statements

will not be executed concurrently by different threads in a team. The method is an intra-

procedural analysis based on phase partioning using an OpenMP Control Flow Graph

(OMPCFG) that models the transfer of control flow in an OpenMP program. Similarly,

Zhang et al. [18] use a concurrency analysis to detect unaligned barriers in OpenMP

C programs. This inter-procedural method consists in four phases: A CFG construction

to model the various OpenMP constructs, a barrier matching to find threads barriers

that synchronize together, a program division into phases (sequence of basic blocks

separated by barriers) and an aggregation of phases with matching barriers. Any two

basic blocks from the same aggregated phase are said to be concurrent. Although quite

close to our analysis this work differs from us in several points. Unlike Zhang et al.,

our analysis is language independent and verifies woksharing-construct placements in

a program. To detect possible deadlocks we use the graph representation defined in [8].

Potential errors are automatically returned to the user with the line of the erroneous

conditionals by a simple analysis of the OMPCFG. Thus the user knows exactly what

can cause a deadlock and correct it. For the verification of the whole program Zhang

et al. export a barrier tree when we only need an integer defining the minimal number

of possible barriers encountered in a function. Then a simple callgraph traversal points

out the possible sources of deadlocks in the whole program. However both methods

could complement each other. Detection can also be done by compilers like GCC when

lowering the OpenMP constructs to GOMP function calls [14]. Indeed, GCC issues a

warning for wrong nested parallelism, typically a barrier in a single region. Like all

static tools, our method has the advantage of not requiring execution of the program but

can produce false positives.

Among dynamic tools we can mention the Adaptative Dynamic Analysis Tool [6]

(ADAT) and RaceStand [5, 10] for focused data races detection and Intel Thread Checker

[11, 4] and Sun Thread Analyzer [13] for both data races and deadlocks detection.

ADAT is a data races detection tool using classification and adaptation mechanisms. The

tool creates a pseudo-instrumented source code and an Engine Code Property Selector

(ECPS) table and then transforms the pseudo-instrumented source code into an exe-

cutable by using the ECPS table information. With a C compiler supporting OpenMP,

the instrumented source code is compiled and executed to detect data races. RaceStand

by GNU utilizes an on-the-fly dynamic monitoring approach to detect data races and

has recently improved its check with a dynamic binary instrumentation technique based

on Pin software framework. This tool detects the existence of races and locates races be-

tween two accesses not causally preceded by other accesses also involved in races (first

races) for each shared variable in a program. Intel Thread Checker and Sun Thread

Analyzer both require an application instrumentation and trace references to memory

and synchronization operations during the application execution. Sun Thread Analyzer

necessicates program recompilation with the Sun compilers. To find data races the pro-

gram must be executed with two or more threads. Unlike Sun Thread Analyzer, Intel

Thread Checker does not depend on the number of threads used. It dynamically detects

data races using a projection technology which exploits relaxed OpenMP programs.

More precisely, the projection technology checks the data dependency of accesses to

shared variables using sequentially traced information. But Intel Thread Checker does

not consider OpenMP programs specifications and can therefore report false positives.

Li et al. present in [7] an online-offline model to test the correctness of every OpenMP

parallel region. The online correctness testing model is used to find parallel regions with

incorrect execution results (not corresponding to serial execution results), identify all

places that caused errors (directives used improperly or located wrongly) and correct

them. Then the offline correctness testing model tests the correctness of regions with

corrected directives. Compared to dynamic tools that detect a deadlock when it occurs,

our static analysis prevents programs from deadlocking (the program is stopped when-

ever a deadlock situation is detected). Moreover our method is not limited to the input

dataset of a run. Indeed, even if dynamic tools return no false positive, they can miss

errors as they are correlated to one execution of a program.

We proposed in [12] a combining method to detect misuse of MPI collective opera-

tions in MPI programs. MPI processes must have the same sequence of collective oper-

ations otherwise a deadlock may occur. Restriction on MPI collective operations is the

same as restrictions on barriers and worksharing regions in OpenMP programs. Thus we

adapted this work to detect potential deadlocks in OpenMP programs. Potential dead-

locks due to wrong synchronizations as well as worksharing regions are automatically

detected in each function of a program and then errors considering the whole program

are reported by an inter-procedural analysis. To our knowledge our analysis is the first

intra- and inter-procedural analysis that verifies that all OpenMP tasks encounter the

same worksharing regions.

3 Checking OpenMP Directives and Control Flow

In OpenMP programs, the threads of a team can synchronize through the #pragma omp

barrier directive or at an implicit barrier at the end of worksharing regions (unless

a nowait clause is specified). Worksharing constructs distribute the execution of the

associated region among the threads of a team [16]. Worksharing constructs are loop,

sections, single and workshare constructs. The OpenMP specification gives some re-

strictions to barriers and worksharing constructs. Indeed, each barrier/worksharing re-

gion must be encountered by all threads in a team or by none at all, unless cancellation

has been requested for the innermost enclosing parallel region ([16] Sections 2.7, p.53

and 2.12.3, p.124). However, due to the control flow inside an OpenMP program, the

threads may execute different execution paths with different numbers of barriers and

worksharing regions. Such behavior can lead to a deadlock or unspecified behaviors.

The principle of the static analysis we propose is the following. For each function

of the code, we check that for all threads entering the function and for all teams cre-

ated within it, the same number of barriers are executed, whatever the execution path

taken by the threads. If the number of barriers may depend on the control flow, the

control structures responsible for this are shown with a warning. This is a conservative

approach, since we do not check that the conditional of an if statement for instance is

dependent on the ID of the threads. Moreover, we check that worksharing constructs

may not be conditionally executed, potentially leading to unspecified behaviors. This

intra-procedural analysis on barriers and worksharing constructs is complemented by a

simple inter-procedural analysis: User-defined functions are subsumed by the number

of worksharing constructs and barriers executed by the entering threads. This captures

all potential improper uses of barriers and worksharing constructs.

The program to analyze is represented using the OMPCFG intermediate represen-

tation, briefly described in the following section. Then the intra- and inter-analyses are

presented.

3.1 Intermediate Representation: OMPCFG

The control-flow graph (CFG) is an intermediate representation of code, used by almost

all compilers. The CFG is a directed graph where nodes are basic blocks (straight se-

quence of code) and edges are potential flow of control between nodes. Lin [8] extended

the notion of CFG to a representation for parallel OpenMP programs, called OMPCFG.

Each node of the OMPCFG represents a basic block (basic nodes) or an individual block

containing an OpenMP directive (directive nodes). In the OMPCFG, implicit barriers

are made explicit and each combined parallel worksharing construct is separated into

a nowait worksharing construct nested in a parallel region. Moreover the OMPCFG

has a single Entry and single Exit nodes. New edges are inserted between basic nodes

and directive nodes according to OpenMP semantics. As a result, the master directive

is represented as a conditional. Table 1 lists the OpenMP directives and their corre-

sponding directive node in the OMPCFG. Note that Lin also adds edges from the end

construct directive to the begin construct directive nodes denoted as construct edges.

These edges are not considered here as they do not reflect any control flow.

Table 1. Directive nodes in the OMPCFG

Directive name Control flow
Worksharing

construct

parallel, critical, atomic, section, barrier, ordered,
linear

task, taskwait, taskyield

master if/else

for, single if/else ∗

sections, workshare switch/case ∗

Figure 2 shows examples of OMPCFG. All directive nodes containing a barrier

are represented as thick nodes and all directive nodes containing a worksharing con-

struct are colored in gray. Directive nodes containing a parallel construct are con-

sidered as barriers but are not considered in our Algorithms. Out of clarity, implicit

barriers at the end of worksharing and parallel regions are not designated by barriers

but by region-name end.

void f()

{

#pragma omp parallel

{

#pragma omp single

{

/*...*/

}

/*...*/

}

}

(a) Source code

Entry

2 - parallel begin

3 - single begin

4

6 - single end

7

8 - parallel end

Exit

(b) OMPCFG

Entry

2 - parallel begin

2

3 - barrier 4 - barrier

5

6 - barrier

7

8 - parallel end

Exit

(c) OMPCFG with barriers

Fig. 2. Example of a simple code (a) with its corresponding OMPCFG (b) and an OMPCFG

containing barriers (c)

This representation is the base of our compiler analysis. GCC uses a graph repre-

sentation similar to the OMPCFG from version 4.2.

3.2 Intra-Procedural Analysis

This section details the static verification of barriers and worksharing constructs for

each function of a program. We define two levels of verbosity for barriers verification:

level 0 that returns warnings only if there may be an execution error and level 1 that

returns warnings in strict accordance with the specification.

For the verbosity level 0, we identify barrier statements that synchronize together.

To that purpose, we introduce a number, the sequential order, counting the number of

barriers traversed before reaching a barrier. This number is assigned to each node in the

OMPCFG. Two nodes with different sequential order are sequentially ordered thanks

to barriers. This number is 0 for nodes before the first barrier (including the node with

the first barrier), 1 for nodes reached after one barrier and so on. When multiple paths

exist, nodes can have multiple numbers, at most the number of barriers in the function.

Loop backedges are removed to have a finite numbering. A function is not correct if

there are nodes with multiple orders. These nodes correspond to possible control-flow

divergence leading to deadlocks. In Zhang et al. [18], this notion of sequential order

corresponds to phases, computed through an inter-procedural liveness analysis and a

barrier aggregation step. While both methods can be used for our goal, our approach is

simpler, more adapted to the verification of barriers. The computation of the execution

order uses an algorithm adapted from the algorithm 1 in our previous work [12] on

MPI verification. This algorithm detects possible control-flow divergence leading to a

deadlock in a MPI barrier. MPI barriers are numbered by so-called execution ranks

(similar to sequential order here). MPI barriers of same execution rank r are put into a

set Cr,c as matching MPI barriers. c is used to differenciate MPI collective operations

names. In our case, only barriers are considered so the c is useless and only Cr sets

are created. Algorithm 1 is an adaptation of this method for OpenMP barriers, from

line 6 to line 12. Barriers with multiple sequential orders are put in the set Cr with

r corresponding to their maximal sequential order. For example the OMPCFG Figure

2(c) contains three explicit barriers nodes 3, 4 and 6 and one implicit barrier node 8. The

sequential order for nodes 3 and 4 is 0, for node 6 , 1 and for node 8, 2. The algorithm

computes C0 = {3,4}, C1 = {6} and C2 = {8}.
For the verbosity level 1, we verify each barrier is encountered by all threads of a

team. This is described from line 14 to line 16 in Algorithm 1.

The algorithm takes the OMPCFG of the current function and the verbosity level

as input parameters and outputs a message error for conditional nodes that may lead

to a deadlock in a barrier (set S). The core of the algorithm is based on the post-

dominance frontier [2], used in a previous paper in the context of MPI collectives

verification [12]: The postdominance frontier of a node u of the OMPCFG (denoted

as PDF(u)) is the set of all nodes v such that u postdominates a successor of v but

does not strictly postdominate v. If≫ denotes the postdominance relation, PDF(u) =
{v | ∃ w ∈ SUCC(v),u≫w and u 6≫ v}. In other words all paths from w to the exit node

go through u. On the contrary v is not postdominated by u so there exists a path from v

to the exit node that does not go through u. This concept is extended to a set of nodes N:

PDF(N) =
⋃

u∈N PDF(u) and to the notion of iterated postdominance frontier PDF+

defined as the transitive closure of PDF , when considered as a relation [2]. If barriers

with the same sequential order n have a non-empty PDF+ set, then some threads may

not perform the nth synchronization. Due to the representation of all worksharing con-

structs (as if/else or switch), barriers inside these worksharing constructs are detected

as incorrect.

Algorithm 1 OpenMP Intra-procedural Control-flow Analysis

1: function FUNCTION VERIFICATION(f ,υ) ⊲ f : a function of the application

2: ⊲ υ: level of verbosity

3: Compute G = (V,E) the OMPCFG of f

4: S← /0, S′← /0 ⊲ Output sets: Conditional nodes

5: if υ = 0 then ⊲ level 0 of verbosity

6: Remove loop backedges in G and Compute sequential order of all nodes

7: for n = 0..max(sequential order (G)) do

8: for barriers of sequential order n do

9: Cn←{u ∈V |u of order n}
10: S← S∪PDF+(Cn)
11: end for

12: end for

13: else ⊲ level 1 of verbosity

14: for u ∈V s.t. u contains an explicit barrier do

15: S← S∪PDF+(u)
16: end for

17: end if

18:

19: for u ∈V s.t. u contains a worksharing construct do

20: S′← S′∪PDF+(u)
21: end for

22: Output nodes in S′ and S as warnings

23: end function

The lines 19 to 21 of the algorithm detect if worksharing constructs may not be

executed by all threads of a team. For each node u containing a worksharing construct,

we compute the iterated postdominance frontier of u. If the PDF+(u) is not empty then

some threads may execute the construct while others may avoid it. The set of nodes

detected are put in the set S′ for warnings.

Lemma 1. Algorithm 1 is correct if it detects all deadlock situations due to barrier

and worksharing regions.

Proof. The levels of verbosity enable a strict verification of barriers in compliance with

the specification. In that purpose Algorithm 1 detects if all threads of a team have strictly

the same sequence of barriers. A soft verification is also possible. The algorithm then

verifies all threads of a team encounter the same number of barriers. The proof has been

done in [12]. Then Algorithm 1 computes the set S′ of control-flow nodes that have

execution paths with different number or type of worksharing constructs from the node

to the Exit node. We prove that nodes in S′ correspond exactly to the nodes that lead to

a deadlock.

As an example, the first OMPCFG Figure 3 contains one explicit barrier (node 8),

two implicit barriers (nodes 7 and 10) and one worksharing construct: single (node

5). Algorithm 1 computes sequential orders. Node 7 is of sequential order 0, node 8 is

of sequential orders 0 and 1 and finally node 10 is of sequential orders 1 and 2. Thus

Entry

2

3 - parallel begin

4

5 - single begin

6

7 - single end

8 - barrier

9

10 - parallel end

11

Exit

(a)

Entry

2

3 - parallel begin

4

5 - barrier

6

7 - parallel end

Exit

(b)

Entry

2 - parallel begin

3

4 - do begin

5 - barrier

6

7 - do end

8

9 - parallel end

Exit

(c)

Fig. 3. Functions f OMPCFG of Listing 1.1 ((a)) and main OMPCFG of Listing 1.2 after function

f replacement ((b), see Algorithm 2) and an example of an OMPCFG with a loop ((c))

we have C0 = {7}, C1 = {8} (node 8 is in C1 as it has multiple sequential orders) and

C2 = {10}. PDF+(C1) = /0 and PDF+(C2) = /0 but PDF+(C0) = {4}. Node 4 is the

only node in the iterated postdominance frontier of node 7 as the conditional node 2

is outside the parallel region. Then the conditional node 4 is returned as the possible

cause of a deadlock in a barrier. For node 5, PDF+(5) = 4. To sum up for Listing

1.1, a warning is issued for the conditional located in node 4 as potentially leading to

different barriers and worksharing constructs sequence among threads. The OMPCFG

Figure3(b) contains one explicit barrier node 5 and one implicit barrier node 7. The

algorithm computes C0 = {5}, C1 = {7} and PDF+(C0) = {4}. Last, the OMPCFG

Figure 3(c) contains one worksharing construct node 4, one explicit barrier node 5,

two implicit barriers nodes 7 and 9 and a loop (composed of nodes 4, 5, 6, 7). First

Algorithm 1 removes the loop backedge from node 7 to node 4. Then sequential orders

are computed: C0 = {5}, C1 = {7} and C2 = {9}. A warning is issued for the conditional

node 4 as PDF+(C0) = {4}. For the loop construct node 4, the iterated postdominance

frontier is empty.

3.3 Inter-Procedural Analysis

This section describes the analysis for the whole application code. We assume the ap-

plication is not using recursion, meaning the callgraph of the application has no cycle.

The method iterates through the callgraph, in reverse topological order. It starts with

functions that do not call other functions in the code, then callers of these functions, and

so forth. After the previous analysis of Algorithm 1, each function retains the minimal

number of barriers executed by the team of threads entering the function (excluding the

barriers executed by teams created inside the function), as well as the number of work-

sharing constructs executed by this same team. These numbers are denoted nbarrier
for the number of barriers, nd for worksharing constructs (among for, worksharing,

sections, single). They are obtained through a simple traversal of the OMPCFG of

the function. When a function g is called from a function f , g is replaced by as many

barriers and worksharing constructs as these values. For worksharing constructs, only

the number of constructs matters for the analysis. Indeed, we verify each callee function

with worksharing constructs are not depending on the control flow in caller functions.

Then the analysis Function verification is called on f . These steps are described

Algorithm 2 OpenMP Inter-Procedural Analysis

1: function CODE VERIFICATION(CG,υ) ⊲ CG: call graph ⊲ υ: level of verbosity

2: Sort CG in reverse topological order

3: for f ∈CG do

4: for g a callee in f do

5: Compute nd(g) for d =barrier and worksharing constructs ⊲ nd : minimal

number of directives d executed by entering threads

6: Replace g in f by nd(g) empty worksharing constructs and nbarrier(g) barriers.

7: end for

8: Compute Function verification(f ,υ)
9: end for

10: end function

in Algorithm 2.

(a) (b)

Fig. 4. Callgraph of Listing 1.2 (a) and BT from NASPB-OMP (b)

Figure 4 shows callgraphs of Listing 1.2 and BT from the NAS parallel bench-

marks OpenMP. Nodes colored in gray are first nodes considered by Algorithm 2. In

the example of the Listing 1.2 callgraph, Algorithm 2 computes nworksharing(f) = 0 and

nbarrier(f) = 0 which are the minimal numbers of barriers and worksharing constructs

in function f. Function f is then replaced by these numbers in main.

4 Experimental Results

Our analysis is implemented in a GCC 4.7.0 plugin, avoiding the whole compiler re-

compilation. An adaptation of the plugin is required to work with newer version of

GCC. The plugin is located in the middle of the compilation chain as a new pass in-

serted inside the compiler pass manager after generating CFG informations and before

OpenMP directives transformation. The location has the advantage of being language

independent allowing a verification of applications written in C, C++ and Fortran. The

pass applies Algorithm 1. The implementation of Algorithm 2 is currently under de-

velopment. This section presents experimental results on the NAS parallel Benchmarks

OpenMP (NASPB-OMP) [15] v3.2 using class B and HERA [3], a large multi-physics

2D/3D AMR hydrocode platform. Even if the test case used by HERA is parallelized

with MPI+OpenMP, only the correctness of OpenMP barriers and worksharing con-

structs have been checked. The number of lines and the language of each benchmark is

presented Table 2. All experiments were conducted on Tera 100, a supercomputer with

a peak performance of 1.2 PetaFlops. Tera 100 hosts 4,370 compute nodes for a total

of 140,000 cores. Each compute node gathers four eight-core Nehalem EX processors

at 2.27 GHz and 64 GB of RAM. All performance results were computed and averaged

with BullxMPI 1.1.16.5.

Our analysis issues warnings for barriers and worksharing constructs potentially not
encountered by all threads of a team. The name of the OpenMP directive with potential
improper use and the line of the conditional leading to this situation are returned to
the programmer. The following example shows what a user can read on stderr when
compiling Listing 1.1 with our plugin.

in function ’f’:

example.c: warning: STATIC-CHECK: #pragma omp single line 9 is

possibly not called by all threads because of the condition line 6

Table 2 shows the number of barriers and worksharing constructs found in each

benchmark and the number of nodes in the sets S and S′ generated by Algorithm 1

with the two verbosity levels. For all these nodes, the control flow does not depend on

thread ID and therefore functions are correct. A data-flow analysis could be done to

complement our analysis to reduce the number of false positives. Indeed, a check on

the conditionals in S∪S′ could help the plugin to detect control flow not depending on

threads ID and avoid false positives. This is left for future work. The table also presents

first results for the inter-procedural analysis by giving the number of functions executed

in parallel with a non null minimal number of barriers or worksharing constructs. These

functions may be replaced by their callee functions in the source code to report errors

considering the entire program.

The compile-time overhead obtained when compiling the applications and activat-

ing our plugin is shown Figure 5. The overhead remains acceptable as it does not exceed

0.25% for NASPB-OMP and 10% for HERA (caused by the size of the code, it takes

52,3 minutes to compile HERA with the plugin).

Table 2. Static Results for each benchmark (F=FORTRAN)

Benchmark
NASPB-OMP

HERA
BT CG DC EP FT IS LU LU-HP MG SP UA

Language F F C F F C F F F F F C++

lines 3,835 1,204 3,295 294 1,336 940 3,921 3,875 1,497 3,309 8,375 827,739

explicit barriers 0 0 0 0 0 2 3 0 0 0 0 92

worksharing 31 18 0 1 8 5 37 37 15 35 77 1,622

Verbosity 0

nodes in 0 0 0 0 0 0 0 0 0 0 0 564

S∪S′ Verbosity 1

0 0 0 0 0 0 0 0 0 0 0 587

functions with
3 3 0 0 0 0 8 4 2 3 15 398

(nbarrier +nd) 6= 0

0.01

0.1

1

10

BT CG DC EP FT IS LU LU−HP MG SP UA HERA

O
v
e

rh
e

a
d

 i
n

 %

Fig. 5. Overhead of average compilation time for NASPB-OMP and HERA

5 Conclusion and Future Work

In this paper we propose an adaptation of our previous work on MPI to detect improper

uses of barriers and worksharing constructs in OpenMP applications. The method we

propose statically detects if all threads entering a function and created in it have the

same sequence of barriers (or the same number of barriers) and worksharing constructs.

It issues warnings for the statements responsible for the execution path leading to pos-

sible deadlocks or unspecified behaviors. Compared to existing work, in particular the

method of Zhang et al. [18], our technique is fast (introducing little overhead) and able

to scale to large applications. For future work, we plan to complement our method by a

data-flow analysis, reducing the number of false positives detected by our approach.

Acknowledgments

This work is (integrated and) supported by the PERFCLOUD project. A French FSN

(Fond pour la Société Numérique) cooperative project that associates academics and

industrials partners in order to design then provide building blocks for a new generation

of HPC datacenters.

References

1. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P., Wonnacott, D.:

ompVerify: Polyhedral Analysis for the OpenMP Programmer. In: Proceedings of the 7th

International Conference on OpenMP in the Petascale Era. pp. 37–53. IWOMP’11 (2011)

2. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing static sin-

gle assignment form and the control dependence graph. In: ACM TOPLAS. pp. 13(4):451–

490 (1991)

3. Jourdren, H.: HERA: A hydrodynamic AMR Platform for Multi-Physics Simulations. In:

Plewa, T., Linde, T., Weirs, V.G. (eds.) Adaptive Mesh Refinement - Theory and Applica-

tions. pp. 283–294. Springer (2003)

4. Kim, Y.J., Daeyoung, K., Jun, Y.K.: An Empirical Analysis of Intel Thread Checker for

Detecting Races in OpenMP Programs. In: Lee, R.Y. (ed.) ACIS-ICIS. pp. 409–414. IEEE

Computer Society (2008)

5. Kim, Y.J., Park, M.Y., Park, S.H., Jun, Y.K.: A Practical Tool for Detecting Races in OpenMP

Programs. In: Malyshkin, V.E. (ed.) PaCT. LNCS, vol. 3606, pp. 321–330. Springer (2005)

6. Kim, Y.J., Song, S., Jun, Y.K.: ADAT: An Adaptable Dynamic Analysis Tool for Race De-

tection in OpenMP Programs. In: ISPA. pp. 304–310. IEEE (2011)

7. Li, J., Hei, D., Yan, L.: Correctness Analysis based on Testing and Checking for OpenMP

Programs. Fourth ChinaGrid Annual Conference, IEEE (2009)

8. Lin, Y.: Static Nonconcurrency Analysis of OpenMP Programs. In: Mller, M.S., Chapman,

B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP. LNCS, vol. 4315, pp. 36–

50. Springer (2005)

9. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D.J., Yang, Z.: Symbolic Analysis of Con-

currency Errors in OpenMP Programs. In: ICPP. pp. 510–516. IEEE (2013)

10. Meng, Y., Ha, O.K., Jun, Y.K.: Dynamic Instrumentation for Nested Fork-join Parallelism in

OpenMP Programs. In: Proceedings of the 4th International Conference on Future Genera-

tion Information Technology. pp. 154–158. FGIT’12, Springer-Verlag (2012)

11. Petersen, P., Shah, S.: OpenMP Support in the Intel Thread Checker. In: Voss, M. (ed.)

WOMPAT. LNCS, vol. 2716, pp. 1–12. Springer (2003)

12. Saillard, E., Carribault, P., Barthou, D.: Combining Static and Dynamic Validation of MPI

Collective Communications. In: EuroMPI ’13. pp. 117–122 (2013)

13. Terboven, C.: Comparing Intel Thread Checker and Sun Thread Analyzer. In: Bischof, C.H.,

Bcker, H.M., Gibbon, P., Joubert, G.R., Lippert, T., Mohr, B., Peters, F.J. (eds.) PARCO.

Advances in Parallel Computing, vol. 15, pp. 669–676. IOS Press (2007)

14. GOMP site, gcc.gnu.org/projects/gomp

15. NASPB site, http://www.nas.nasa.gov/software/NPB

16. OpenMP API v4.0, http://www.openmp.org/

17. Yices: An SMT solver, http://yices.csl.sri.com

18. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory programs

with textually unaligned barriers. In: Adve, V.S., Garzarn, M.J., Petersen, P. (eds.) LCPC.

LNCS, vol. 5234, pp. 95–109. Springer (2007)

