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Abstract

The problem of fusing beliefs in the Dempster-Shafer behebry has attracted consid-
erable attention over the last two decades. The classicalpBier's Rule has often been
criticised, and many alternative rules for belief combimatave been proposed in the lit-
erature. We show that it is crucial to consider the naturenefdituation at hand and to
select the appropriate fusion operator as a function therethis paper we present the cu-
mulative rule and the averaging rule of belief fusion, whiepresent generalisations of the
subjective logic consensus operator for independent apdndient opinions respectively.

The generalised operators are applicable to the combimatigeneral basic belief assign-
ments (bbas). These rules, which can be directly derivad trlassical statistical theory,

produce results that correspond well with human intuition.

Key words: Belief Theory, Subjective Logic, Fusion, Dempster’'s Rule

1 Introduction

Belief theory has its origin in a model for upper and lowerabilities proposed by
Dempster in 1960. Shafer later used the same fundamentagivark as a model
for expressing beliefs [1]. The main idea behind the thedtyetief functions is to
abandon the additivity principle of probability theorg.ithat the sum of probabil-
ities on all pairwise disjoint possibilities always equafee. Instead belief theory
gives observers the ability to assign belief masses to drgeswf a state space, i.e.
to non-disjoint possibilities including the whole statase itself. The advantage of
this approach over classical probabilistic modelling &t timcertainty about subset
probabilities, e.g. due to missing evidence, can be exiyliexpressed. Uncertainty
can for example be expressed by assigning belief mass toibe of singletons, or
to the whole state space itself. Consistency is preserveddyiring that the sum
of all belief masses always is one. The difference betweebagtility additivity
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and belief mass additivity is that for probabilities thetesamust all be mutually
disjoint, whereas for belief masses the states can be pyanig Shafer’s book [1]

describes many characteristics of belief functions, beittho main elements are 1)
a flexible way of expressing beliefs, and 2) a method for fy&ieliefs, commonly

known as Dempster’s Rule.

There are well known examples where Dempster’s rule praglooanter-intuitive

results, especially in case of strong conflict between tloeingument beliefs. Moti-
vated by this observation, numerous authors have propdeedative methods for
fusing beliefs, e.qg. [2,3,4,5,6,7,8,9]. An overview ofib&Ffusion rules that have
been proposed in the literature is provided in [10]. Thedesrexpress different
behaviours with respect to the results of fusing belief$,Have in general been
proposed with the same basic purpose in mind: to combine élefb into a single

belief that reflects the two possibly conflicting beliefs ifaa and equal way.

However, situations that may seem similar at first glancebeavery different when
examined more closely, and will therefore require difféigrerators. For example,
the right operator for modelling the strength of a chain esghinciple of the weak-
est link. The right operator for modelling the strength o€y swimming team is
the average strength of each member. Applying the weakestreer principle to
assess the overall strength of the relay team might repraseapproximation, but
it is incorrect in general, and would give very unreliabledtictions. Similarly, ap-
plying the principle of average strength of the links in aintlta assess the overall
strength of the chain might represent an approximationi mitncorrect in general
and could be fatal if life depended on it. The observatiorheke simple examples
tells us that it is crucial to properly understand the sitrasit hand in order to find
the correct model for analysing it.

In our view researchers in the belief theory community hawe paid sufficient
attention to analysing the actual situation to be modeliedrder to determine
whether Dempster’s rule or any other rule can be correctplieg. Instead, re-
searchers have often tried to assess the merits of fusicatope based solely on
algebraic properties, such as commutativity and asswitiativhich do not repre-
sent sufficient criteria for judging an operator’s applitibto a particular situa-
tion. For example, no matter how solid the theoretic basisife average operator
is, it will never represent a correct model for the strendth chain.

In this article we present two belief fusion operators chlee cumulative and
averaging rules of combining beliefs. These rules do natessgnt an alternative
or competitor to Dempster’s rule because they are appbkcabtiifferent types of
situations than Dempster’s rule.

The termscumulative ruleand averaging rulehave explicitly been chosen in or-
der to have descriptive names for the types of situationshiciwthey apply. The
cumulative rule of combination is applicable to situatiovisere independent be-



lief functions are combined as a function of accumulatiorthef evidence. The
averaging rule of combination is applicable to situatiorisere dependent belief
functions are combined as a function of the average of traeece. This is differ-
ent from Dempster’s rule, where beliefs are combined by atisad conjunction.
It can be shown that non-normalised conjunction correspooanultiplication of
belief functions, and normalised conjunction correspdds series of stochastic
constraints [11] represented by the argument belief fonsti This difference will
be illustrated by examples below.

The cumulative and averaging rules can be applied to the ic@tibn of general
belief functions, and represents a generalisation of cativeland averaging fusion
of opinions in subjective logic[5,12,13,14]. The cumulatiule itself is then simply
equivalent to the additive combination of Dirichlet dibtrtions, and the averaging
rule is simply equivalent to the average of Dirichlet distitions. This also provides
an equivalence mapping between Dirichlet distributions laglief functions [15].
In this way, belief fusion in the form of the cumulative an@eaging rules is firmly
based on classical statistical theory.

2 Theory of Belief Functions

In this section several concepts of the Dempster-Shaferyhef evidence [1] are
recalled in order to introduce notations used throughaaiatticle. The ternframe

of discernmenis used in belief theory with the equivalent meaning of stpice
from probability theory. A frame denoted Ity = {6;; i = 1,---k} represents a
finite set of exhaustive and exclusive possible values foata sariable of interest.
The termsstateselement®r outcomesvill be used to denote the state variable. The
frame can for example be the set of six possible outcomesrofvihg a dice, so
that the (unknown) outcome of a particular instance of thmgwhe dice becomes
the state variable. A bba (basic belief assignmgntienoted byn, is defined as a
belief distribution function from the powerse® to [0, 1] satisfying:

m(@) =0 and > m(f)=1. (1)

zCO

Values of a bba are calldztlief massessach subset C © such thatn(x) > 0is
called a focal element @.

From a bban can be derived a set of non-additive belief functiBies 2° — [0, 1],
defined as:

Bel(z) £ > m(y) VerCoO. 2
0#yCa

1 Calledbasic probability assignmeint [1], andBelief Mass Assignme(BMA) in [16,5].



The quantityBel(z) can be interpreted as a measure of one’s total belief coeunitt
to the hypothesis that is true. Note that functions: and Bel are in one-to-one
correspondence [1] and can be seen as two facets of the saogegbinformation.

A few special classes of bba can be mentioned. A vacuous bba:(fa) = 1,
i.e. no belief mass committed to any proper subseébof Bayesiarbba is when
all the focal elements are singletons, i.e. one-elemergetalofo. If all the focal
elements are nestable (i.e. linearly ordered by inclusibeh we speak about a
consonanbba. Adogmaticbba is defined by Smets as a bba for whie{®) = 0.
Let us note, that trivially, every Bayesian bba is dogmatic.

The powerset of the fram@ is defined a2® = {z;;z; C ©}. We will define the
state spac& as a special representation of the powerséd.dlore precisely, the
setX is defined as:

X =29\0 3)

meaning that all proper subsets @fare elements oX. By consideringX as a
frame in itself, a general bba dh becomes a particular bba on called aDirich-

let bba A belief mass on a proper subset®@fthen becomes a belief mass on a
singleton ofX. In addition we definen(X) = m(©). In this way, a Dirichlet bba
on X derived from a general bba d@, is characterised by having mutually dis-
joint focal elements, except the whole fram¥eitself. This is formally defined as
follows.

Definition 1 (Dirichlet bba) Let X be a frame f discernment. A bba where the
only focal elements ar& and/or singletons ok, is called a Dirichlet belief mass
distribution function, or Dirichlet bba for short.

Fig.1 below illustrates a possible Dirichlet bba &n where the shaded circles
around singletons and the shaded ellipse aroXimdpresent belief masses on those
subsets. The focal elements in this exampleXye, x; andzy.

Figure 1. Example Dirichlet bba, characterised by beliesea on singletons and

The number of elements i is | X| = 2/°/ — 2 when excluding). For example,
Fig.1l illustratesX as having cardinality 6, meaning that it is the powerset of a
ternary frame of discernment. The subset®ofind the elements ok carry the
same belief masses, so is natural to make the correspondgssaple as possible.
The following example defines a possible correspondencedeest subsets ab



and elements ok ;

xr1 — 04, Ty < 01 U b, X+— 0.
[L'2<—>02, .Z'5<—>91U63, (4)
T3 > 03, Te —— O U b3,

The number of focal elements of a Dirichlet bba &ncan be at mostX| + 1,
which happens when every element as welKais a focal element.

The name “Dirichlet” bba is used because bbas of this typeguevalent to Dirich-
let probability density functions under a specific mapp#dijective mapping be-
tween Dirichlet bbas and Dirichlet probability density &tions is defined in [15],
and is also described in Sec.4 below. Our approach is différem that of Walley’s
Imprecise Dirichlet Model [17] which interprets the sitigais of frame ignorance
and frame certainty in the Dirichlet model as lower and ugpebability in the
belief model.

3 The Dirichlet Multinomial Model

The cumulative and averaging rules of combination, to beriteed in detail in the
following sections, are firmly rooted in the classical Bagasnference theory, and
are equivalent to addition and averaging of multinomialestaations respectively.
For self-containment, we briefly outline the Dirichlet matimial model below,
and refer to [18] for more details.

3.1 The Dirichlet Distribution

We are interested in knowing the probability distributiareothe disjoint elements
of a frame based on observed instances of these elemenssdmtbinary frames,
it is determined by the Beta distribution. In the generaleciass determined by
the Dirichlet distribution, which describes the probapildistribution over ak-
component random variabjgz;), i = 1,...k with sample spacé), 1]*, subject

to the additivity criterion:
k

ZP(%) =1. %)

i=1

Note that for any sample from a Dirichlet random variableas isufficient to de-
termine values fop(z;) for any k — 1 elements of {1,...,k}, as this uniquely
determines the value of the remaining variable.



The Dirichlet distribution with prior captures a sequenteloservations of thé
possible outcomes with positive real observation variable$z;), i = 1...k,
each corresponding to one of the possible outcomes. In ¢odesive a compact
notation we define a vectgf = {p(x;) | 1 < i < k} to denote thé-component
random probability variable, and a vector= {r; | 1 < i < k} to denote the
k-component random observation variapler;)]r_; .

In order to distinguish between tleepriori information and thea posterioriev-
idence, the Dirichlet distribution must be expressed wiibranformation repre-
sented as a base rate vecioover the frame as well as the non-informative prior
weightC'. Eq.(6) represents this Dirichlet Distribution with Prior

T (; (r(a:i)+a(a:i)0)> k
— [[plasy=reeoct ()

f@lra) =

=8

(2

The vectorp represents first order probability variables over the elgmef X
satisfying Eq.(5), whereas the densfiffy | 7", @) represents the probability of spe-
cific sets of values for the first-order variables. Since th&t-brder variableg’
are continuous, the second-order probability’ | 7, @) for any given value of
p(x;) € [0,1] is vanishingly small and therefore meaningless as suck. anly
meaningful to computé?” f(p(x;) | 7, @) for a given intervalp,, p,] and levelr;,

or simply to compute the expectation valuepdt;). As will be shown below, this
provides a sound mathematical basis for accumulating asichging evidence.

Given the Dirichlet distribution of Eq.(6), the probabjlixpectation of any of the
k random variables can now be written as:

_ r(z;) + a(x;)C
C+¥r r(x)’

E(p(x;) | 7,d) (7)

Eq.(6) is useful, because it allows the determination ofpitedability distribution
with arbitrary amounts of observation evidence, even witlamy observations.

The non-informativeprior weightC' is set toC' = 2 when a uniform distribution
over binary frames is assumed. Selecting a larger valu€'fanll result in new
observations having less influence over the Dirichlet thistron. A distribution is
non-informative when it only reflects knowledge of the frarmed does not reflect
any observation evidence.

It can be noted that it would be unnatural to require a unifdistribution over
arbitrary large frames because it would make the sengitivinew evidence arbi-
trarily small. For example, requiring a uniforenpriori distribution over a frame



of cardinality 100, would forc&” = 100. In case an event of interest has been
observed 100 times, and no other event has been observetgrined probability
expectation of the event of interest will still only be abc%utwhich would seem
totally counter-intuitive. In contrast, when a uniformtdilsution is assumed in the
binary case, and the same 100 observations are analysedkriied probability
expectation of the event of interest would be close to 1, @stion would dictate.
The value ofC' determines the approximate number of observations of apkat
element in the frame needed to influence the probability egpien value of that
element from 0 to 0.5

It can be noted that according to Walley’s IDM (Imprecisei€htet Model) [17]
the upper and lower probability for a statg are obtained by setting(x;) = 1
anda(z;) = 0 respectively. The lower probability is thus based on a zeselate,
and the upper probability is based on a base rate equal tdlomepper and lower
probabilities are then interpreted as the upper and lowantt® for the relative
frequency of the outcome. While this is an interesting jptetation of the Dirichlet
distribution, it can not be taken literally. According taghmodel, the upper and
lower probability values for an outcome are defined as:

IDM Upper probability: - P(r;) = i(§i+f | o
i=1 T \Li

— r(z:)

SO+ Zi‘c:l r(w;)

IDM Lower probability:  P(z;)

(9)

wherer(x;) is the number of observations of outcomeg andC' is the weight of
the non-informative prior probability distribution. It saasily be shown that these
values can be misleading. For example, assume an urn cmgt&mned balls and 1
black ball, meaning that the relative frequencies of redldadk balls are(red) =
0.9 andp(black) = 0.1. Thea priori weight is set ta”' = 2. Assume further that an
observer picks one ball which turns out to be black. AccaydmEq.(9) the lower
probability is thenP (black) = % It would be incorrect to literally interpret this
value as the lower bound for the relative frequency becdusieviously is greater
than the actual relative frequency of black balls. This ep@nshows that there is
no guarantee that the actual probability of an event is eié interval defined by
the upper and lower probabilities as described by the IDMe fEnms “upper” and
“lower” must therefore be interpreted as rough terms forrggsion, and not as
absolute bounds.

The traditional approach in Bayesian analysis is to ingdrgne combination of
the base rate vectaf and thea priori weight C' as representing specifecpriori
information such as provided by a domain expert.



3.2 \Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging besauit is a density function
overk — 1 dimensions, wherg is the frame cardinality. For this reason, Dirichlet
distributions over ternary frames are the largest that caedsily visualised on
paper.

With k& = 3, the probability distribution has 2 degrees of freedom,thedadditivity
equationp(x;) + p(z2) + p(x3) = 1, which is an instantiation of Eq.(5), defines a
triangular plane as illustrated in Fig.2.

Figure 2. Triangular plane

In order to visualise probability density over the triaraguplane, it is convenient
to lay the triangular plane horizontally in the X:Y-plan@gdavisualise the density
dimension along the Z-axis.

Let us consider the example of an urn containing balls thaheae the inscription
x1, To OF x3 (i.e. k = 3). Let us first assume that no other information than the
cardinality of the frame is available, meaning that,) = r(x) = r(z3) = 0, and
a(x1) = a(xe) = a(zs3) = 1/3. Then Eq.(7) dictates that the expected probability
of picking a ball of any type is equal to the base rate prolighivhich is % Thea
priori Dirichlet density function is illustrated in Fig.3.a.

Let us now assume that an observer has piekedltimes,z, once and:; once, i.e.
r(z1) = 6, r(z2) = 1, r(z3) = 1. By assuming a prior weight' = 2 as before,
the a posterioriexpected probability of picking a ball witly can be computed as
E(p(21)) = 2. Thea posterioriDirichlet density function is illustrated in Fig.3.b.

We reuse the example of the urn containing balls with theripgonsxy, x5, and
x3, but this time we assume a binary partitionfinto {z, 7, }, i.e. wherer, =
x9 U x3. The base rate of picking a ball with inscriptien is set toa(z,) = % as
before because the urn still contains balls of three diffetypes, and the grouping
of statesr, andzs is purely technical.

Let us again assume that an observer has picked (with retyre)times, and
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fo|r.a fo|7r.a)
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p(fl)l

1
p(z1)
(a) Prior Dirichlet distribution " (b) Posterior Dirichlet distribution

Figure 3. Visualisinga priori anda posterioriDirichlet distributions

{5 Or z3} twice, i.e.r(x;) = 6 andr(z,) = 2.

Since the frame has been reduced to binary, the Dirichlétilalision is reduced
to a Beta distribution which is simple to visualise. Tagriori anda posteriori
density functions are illustrated in Fig.3.2.

p(xl) 0.6 0.8 1 0 0.2 DAp(:Bl)
(a) Prior Beta distribution (b) Posterior Beta distribution

L L
0 02 0.4 06 0.8 1

Figure 4. Visualising prior and posterior Beta distribugo

The a posterioriexpected probability of picking a ball with inscriptian can be
computed with Eq.(7) aB(p(z1)) = %, which is the same as before the coarsen-
ing, as illustrated in Fig.3.b This shows that the coarsgdioes not influence the
probability expectation value of specific events.

4 Mapping Between Dirichlet Distribution and Belief Distri bution Functions

In this section we will define a bijective mapping betweenidbilet probability
distributions described in Sec.3, and Dirichlet bbas diesdrin Sec.2.



Let X = {z;; i = 1,---k} be a frame where each singleton represents a possible
outcome of a state variable. It is assumed thiaepresents the powerset of a frame
of discernmen® according to Eq.(eq:powerset). Letbe a general bba oA and
therefore a Dirichlet bba o, and letf(p' | 7, @) be a Dirichlet distribution over

X.

The bijective mapping betweem and f(p' | 7, d) is based on simple intuitive
criteria specified below. The mathematical expressionsgherbijective mapping
can be directly derived from the criteria.

As first criterion we require equality between the pignigtiabability valueso(z;)
derived fromm, and the probability expectation valuBsp(zx;)) of f(p'| 7, ). For
all z; € X, this constraint is expressed as:

_ r(z;) + a(x;)C
C+ Zle r(x)

p(r:) = E(p(z:) | 7,@) <= m(x:) + a(z:)m(X) (10)

We also requiren(z;) to be an increasing function of z;), andm(X) to be a
decreasing function of"_, r(z;). In other words, the more evidence in favour of
a particular outcome, the greater its belief mass. Furtbegnthe less evidence
available in general, the more vacuous the bba (i.e. theared X )). These in-
tuitive requirements together with Eq.(10) imply the bijee mapping defined by
Eq.(11).

For m(X) #0:
) — o orlm) Cm(z;
) = G r(es) = S (11)
A

Next we consider the case of zero uncertainty. In ea&&) — 0, then necessar-
ily > m(x;) — 1, andX¥, r(z;) — oo, meaning that at least some, but not
necessarily all, of the evidence parametérs) are infinite.

We definen(x;) as the the relative degree of infinity between the corresipgrid-
finite evidence parametergxz;) such that"*  n(z;) = 1. When infinite evidence
parameters exist, any finite evidence parametes) can be assumed to be zero in
any practical situation because it will hayer;) = 0, i.e. it will carry zero weight
relative to the infinite evidence parameters. This leadkédijective mapping de-
fined by Eq.(12).

10



In casen(z;) = 1 for a particular evidence parametelr;), thenr(z;) = oo and
all the other evidence parameters are finite. In ¢dsg) = 1/iforall j = 1...1,
then all the evidence parameters are all equally infinite.

5 Deriving the Cumulative Rule of Belief Fusion

The cumulative rule is equivalent goposterioriupdating of Dirichlet distributions,
and is based on the bijective mapping described in the pus\section.

Assume a process with possible outcomes defined by the fradiscernmen®.
Let X = {z;; ¢ = 1,---k} represent the powerset 6f according to Eq.(3). Let
agents4 andB observe the outcomes of the process over two separate tnndge
assuming that they apply the same base rate veédim©. Let the two observers’
respective observations be expressedaandrz. The Dirichlet distributions re-
sulting from these separate bodies of evidence can be egutesf (p'| 74, @) and

f(ﬁ‘ FB,J)

The fusion of these two bodies of evidence simply consist®ofor addition of"4
andrz. In terms of Dirichlet distributions, this can be expresasd

f(P'| Taop, @) = f(P'| Ta, @) © f(P'| 7', 4d)
= f(0| (Fa+7B),d) .

(13)

The symbol ¢” denotes the cumulative fusion of two observersand B into a
single imaginary observer denoted4s B. All the necessary elements are now in
place for presenting the cumulative rule for belief fusion.

Theorem 1 (Cumulative Fusion Rule)

Letm 4 andmp be bbas respectively held by ageAtand B over the same frame of
discernmen®. Let X = {z;; i = 1,-- -k} represent the powerset 6f according
to EQ.(3). Letm 4,5 be the bba such that:

11



Casel: For ma(©)#0 VvV mg(®)#0:

_ ma(@)mp(©)+mp(z)ma(©)
MaoB(Ti) = 1(6)Tm (@) —ma(©)ms (@)

(14)

B ma(©)mp(6)
maop(©) = mA(®)+mg(®)72A(9)mB(@)

Casell: For ms(©) =0 A mp(©)=0:

A_ 7 mp(0)
maon ()= v ma(x;) +vPmp(z;) v —mAlgg;% A (©)m50)

where{ ™20 . (15)
B_ ma(©)

y im —aall)
_ ma(©)—0 Ma(©)+mp(0)
Maop(©)=0 m;‘%@%ﬁo

Thenm ,p is called the cumulatively fused bbamf, andmp, representing an
imaginary agenfA ¢ B]’s bba, as if that agent represented bottand B. By using
the symbolé’ to designate this belief operator, we defimg,z = m4 & mp.

In Case I, and~? are relative weights satisfying + 72 = 1. The default
values are/! = % = 0.5.

The proof below provides details about how the expressiothicumulative rule
is derived.

Proof 1 Letm, andmpg be Dirichlet bbas. The mapping from Dirichlet bbas to

Dirichlet distributions is done according to the right hasdles of Eq.(11) and
Eq.(12), expressed as:

my — f('| 7a, @)

(16)

mB'%f(ﬁ‘FBﬁa)

These Dirichlet distributions can now be fused according¢o(13), expressed as:

f@ra,a@)® f(P| 7, a) = f(F'| (Fa+7B),d) (17)

Finally, the result of Eq.(17) is mapped back to a (cluster)ddlet bba again using
EqQ.(11). This can be written as:

fP| (Fa+7B),d) — Maon (18)

By inserting the full expressions for the parameters in @dy, (17) and (18), the

12



expressions of Eqgs.(14) and (15) in Theorem 1 emerge.

It can be verified that the cumulative rule is commutativesoagtive and non-
idempotent. The non-idempotence means that cumulativerfud two equal ar-
gument bbas will result in a different bba. In Case Il of Theorl (Bayesian bbas,
which can also be described as dogmatic Dirichlet bbashdkeciativity depends
on the preservation of relative weights of intermediatelltsswhich requires the
additional weight variable. In this case, the cumulative rule is equivalent to the
weighted average of probabilities.

It is interesting to notice that the expression for the cuativé rule is independent
of the a priori weight C. That means that the choice of a uniform Dirichlet dis-
tribution in the binary case in fact only influences the magdietween Dirichlet
distributions and Dirichlet bbas, not the cumulative ragelf. This shows that the
cumulative rule is firmly based on classical statisticallgsia, and not dependent
on arbitrary choices of prior.

The consensus operator [5,12,16] is a special case of thelative rule, and
emerges directly from Theorem 1 by assuming a binary frame.

6 Deriving the Averaging Rule of Belief Fusion

The averaging rule is equivalent to averaging the evidehDéhlet distributions,
and is based on the bijective mapping between the belief aiderce notations
described in Sec.4.

Assume a process with possible outcomes defined by the frardsaernment

©. Let X = {x;; i = 1,---k} represent the powerset 6f according to Eq.(3).

Let two sensorsd and B observe the same outcomes of the process, i.e. over the
same time period, assuming that they apply the same baseeGitwd to ©. Let

the two sensors’ respective observations be expressédasdz. The Dirichlet
distributions resulting from these separate bodies ofeaéd can be expressed as

f(ﬁ‘ FA76) andf(ﬁ‘ FB@)

The averaging fusion of these two bodies of evidence simpigists of the average
vector value of”4 andr’z. In terms of Dirichlet distributions, this is expressed as:

f(D| Taop, @) = f(P'| Ta,@) @ f(P'| 7B, @)

o (19)
:f(ﬁ| (%)7&’) .

The symbol %" denotes the averaging fusion of two observdrand B into a
single imaginary observer denoted&sB.

13



Theorem 2 Averaging Fusion Rule
Letm, andmpg be bbas respectively held by agertsaind B over the same frame

©.LetX = {x;; i = 1,-- -k} represent the powerset 6faccording to Eq.(3). Let
m .5 be the bba such that:

Casel: For ma(©)#0 VvV mg(®)#0:

Maop(a;) = ™AL ’Jj?a?%ﬁ?a)’ —

_ 2mA(®)mp(©)
maop(0) = S e a6

Casell: For ms(©)=0 A mp(©)=0:

A_ 7 mp(©)
Maop(r:) = v malz;) +~vPmp(z;) v —mj(lg;w A (©) s (©)
where mz(6)=0 o (20
=l e
o 0)—0 MA mp
s (©)=0 oy

Thenmy,p is called the averaged bba of 4 andm g, representing the averaging
fusion of the bbas off and B. By using the symbol¥’ to designate this belief
operator, we definer 4.5 = ma®msp.

It can be verified that the averaging fusion rule is commugatand idempotent,
but not associative. The non-associativity means thabgueg fusion of three ar-
gument bbas will produce different results depending orcivhwo bbas are fused
first. The cumulative rule represents a generalisation®ttinsensus rule for de-
pendent opinions [12].

In Case I, and~? are relative weights satisfying + 72 = 1. The default
values are/! = % = 0.5.

The proof below provides details about how the expressiothi® averaging rule
is derived.

Proof 2 Let m, andmpg be Dirichlet bbas. The mapping from Dirichlet bbas to
Dirichlet distributions is done according to the right hasdles of Eq.(11) and
Eq.(12), expressed as:

ma — (7| Ta, @) (21)

—

mp — f(P'| T, )

The average of these Dirichlet distributions can now be e according to
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Eq.(19), expressed as:

@ Fa )@ f (| 7s,a@) = f(F] (Fa272),q) (22)

Finally, the result of Eq.(22) is mapped back to a Dirichlbalagain using Eq.(11).
This can be written as:

T4+ TR

1 (2

)7 d) = M4oB (23)

By inserting the full expressions for the parameters in &49, (22) and (23), the
expressions of Egs.(20) and (20) in Theorem 2 emerge.

7 Examples

In this section, we will illustrate by examples the resuftagplying the cumulative
and averaging rules, as well as Dempster’s rule of fusingfselEach example is
chosen to illustrate that it is crucial to select the appadprrule for modelling a
specific situation.

To make the presentation self contained, we also includei¢fiaitions of Con-
junctive Rule and of Dempster’s Rule below:

Definition 2 (The Conjunctive Rule) .

[maemg|(z) = > malyymp(z) VaCX. (24)

yNz=x

This rule is referred to as the conjunctive rule of combmator the non-normalised
Dempster’s rule. If necessary, the normality assumpiidf) = 0 can be recovered
by dividing each mass by a normalisation coefficient. Thalteg operator known
as Dempster’s rule is defined as:

Definition 3 (Dempster’s Rule) .

(ma @ m](z) = [ma@mp](z)

= T [maomp](0) Ve CX, xz#0 (25)

The use of Dempster’s rule is possible onlyif, andm g are not totally conflicting,
i.e., if there exist two focal elementsandz of m 4 andmp satisfyingy N z # 0.
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7.1 Zadeh's Example

This well known example was put forward by Zadeh [19] to shbat Dempster’s
rule can produce counter-intuitive results when appligolidicular situations.

The averaging rule produces results well in line with intiitwhen applied to this
example, as will be shown below.

Suppose that we have a murder case with three suspects; Patérand Mary,
and two witnessedl’, andWg who give highly conflicting testimonies. The ex-
ample assumes that the most reasonable conclusion abdikellygenurderer can
be obtained by fusing the beliefs expressed by the two wseweslable 1 gives the
witnesses’ belief masses in the case of Zadeh's examplehencesulting belief
masses after applying Dempster’s rule. The abbreviatiQi®’,;“AR” and “DR”
stand for Cumulative Rule, Averaging Rule, and DempsteuteRespectively.

Wi  Wp CR AR DR
m(Petej =|0.99  0.00/ 0495 0495  0.00
m(Pau) =|001 001] 0010 0010  1.00
m(Mary) =|0.00 099 0495 0495  0.00
m(@) =|0.00 000/ 0.000 0000 0.00

Table 1
Zadeh'’s example (averaging situation)

In case of Bayesian bbas such as in Zadeh’s example, the ativeuiule and the
averaging rules are equivalent, and represent the weightadge of probabilities.

The question now arises whether Zadeh’s example representsiulative, an av-
eraging or a conjunctive situation. Said differently, irsedhe testimonies can be
considered as statistical evidence which is accumulatedgithe trial, then the cu-
mulative rule should be applied. In case the testimonieslgtze weighted against
each other to produce a balanced opinion, then the averagiaghould be ap-
plied. In case the testimonies can be considered as twoehfféogical statements
that are to be conjunctively combined as a function of thespective belief values,
then Dempster’s rule should be applied. In our view, an adegmodel for the
court case in Zadeh’s example should reflect how a judge oryayould weigh
the testimonies against each other, which implies thattbeaging rule is the best
alternative.
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7.2 Zadeh's Example Modified

Fusion of highly conflicting beliefs is problematic when gppg Dempster’s rule
as in the original Zadeh’s example. Many authors [20] explhis by saying that
problem to certain degree can be remedied by discountingetitenonies before
being fused, in order to reduce their degree of conflict. &@pigroach is illustrated
by theModified Zadeh'’s examp[@1] below.

By introducing a small amount of uncertainty in the witnesgestimonies (see
Table 2), the cumulative and averaging rules produce eéifigout still very similar

results. Dempster’s Rule now produces almost the sametsemsithe cumulative
and averaging rules, but which are very different from thibggoduced in the

original Zadeh’s Example.

Wa Wg CR AR DR
m(Petey = 0.98 0.00) 0.4925 0.4900 0.4900
m(Pau) = 0.01 0.01, 0.0100 0.0100 0.0150
m(Mary) = | 0.00 0.98| 0.4925 0.4900 0.4900
m(©) =10.01 0.01, 0.0050 0.0100 0.0050

Table 2
Modified Zadeh’s example (averaging situation)

The introduction of a small amount of ignorance in the bbas sudficient to make
Dempster’s rule produce intuitive results. Although it d@argued that witness
testimonies should always be considered with a degree d@rtaioty, it is prob-
lematic that Dempster’s rule breaks down when the argunizast bre certain as in
the case of Zadeh'’s original example. The discontinuithefresults demonstrates
that Dempster’s rule is inappropriate in this situatione ™orrect model for both
the original and the modified Zadeh’s example is the avetagile because it does
not produces any discontinuity between the two situatiand,because testimonies
of witnesses having observed the same murder should bedevedias dependent
statistical evidence.

7.3 Fusing Independent Sensor Evidence

This example will illustrate the fusion of cumulative eviae.

Assume that a GE (Genetical Engineering) process can pediiiceggs that are
either Male (M) or Female (F), and that two sensors observetlven Male and

Female eggs are produced. For the purpose of independesterie assumed that
the sensors observe the processes at different time pewbdsh means that none
of the eggs observed by the first sensor are also observeeé kgtond sensor. The
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frame has two element& = {M, F} and so does the corresponding powerset
which can be expressed As= 2°\0 = {M, F}.

Assume that the observations by the two sensors producéatiiaon-conflicting
beliefs as given in the Table 3 below over the two time periods

Sa  Sp |CR AR DR
m(M) =10.99 0.99| 0.994975 0.99 0.9999
m(F) =1]0.00 0.00] 0.00 0.00 0.00
m(©) =1]0.01 0.01| 0.005025 0.01 0.0001

Table 3
Fusion of independent beliefs from two sensors (cumulaiitetion)

Applying the cumulative rule and Dempster’s rule to thedeebgeresults in a reduc-

tion in uncertainty, and a convergence towards the largdsfbmass of the sensor
outputs. Applying the averaging rule preserves the valfiiseoinput observation

bbas, because both are equal.

Intuitively, fusion should reduce the ignorance becauseeravidence is taken into
account in this situation. The averaging rule can therdberdismissed because it
does not reduce the ignorance.

In case of the cumulative rule, the input beliefs are eqaivistio each sensor having
observed 198 Male eggs(M) = 198), and no Female eggs(F) = 0), with the
uncertainty computed a8 4.5(0) = 2/(r(M) 4+ r(F) + 2) = 0.01. The output
beliefs is equivalent to the observation2e{ M) = 396 Male eggs, with the uncer-
tainty computed as:(0) = 2/(396 + 2) = 0.005025. The output uncertainty of
the cumulative rule is thus halved, which is what one wouldeex in the case of
cumulative fusion.

In case of Dempster’s rule, the uncertainty is reduced tgtbeuct of the input
uncertainties computed as:

[ma © mp)(0) = ma(©) mp(8) = 0.0001 (26)

i.e. by a factor ofl /100 which represents a very fast convergence. In fact, when
considering that the amount of evidence has only been ddubleeduction in
uncertainty by a factor of /100 is too fast when considering this as a cumulative
situation. When fusing two equal sensor outputs, one shexgdct the uncertainty

to be reduced by/2, because the double amount of observations have been made.

The difference in convergence i.e. the rate of uncertaedyction, is noteworthy,
and clearly illustrates that Dempster’s rule in fact is rlecable to this situation,
even in the case of non-conflicting beliefs. This is becansekample describes a
cumulative situation, and that it would be meaningless tdehd with a conjunc-
tive fusion rule.
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7.4 Conjunctive Fusion of Beliefs

In this example we consider the case of a loaded dice, where{1,2,3,4,5,6} is
the set of possible outcomes. An informant has special keagéd about the loaded
dice, and an observer is trying to predict the outcome ofthrg the dice based on
hints from the informant.

First the informant provides hint which says that the dice will always produce an
even number. The observer translates this into the belisma({2,4,6}) = 1.
Then the informant provides hiit which says that the dice will always produce a
prime number. The observer translates this into the belsefsm ({2, 3,5}) = 1.

Table 4 shows the results of applying the cumulative, avegagnd Dempster’s
rule to these bbas.

ma mp| CR AR DR

m({2,4,6}) =|1.00 000/ 050 050  0.00
m({2,3,5}) =|000  1.00f 050 050  0.00
m({2})) =|0.00 000/ 000 000  1.00

m(©)  =]000 000l 000 000 000

Table 4
Fusion of hints about loaded dice (conjunctive situation)

The two hints are sufficient to determine tkat is the only possible outcome. This
result is obtained by conjunctive combination of the inputience, as dictated by
Dempster’s rule. The conjunctive approach of DR is appsetgrin this situation
because the input evidence applies to different and ortmagocal sets, which
would make it problematic to apply either the cumulativeweraging rules.

The correct answer could be obtained by applying a norntalisesion of the cu-
mulative rule [22], but this approach should be considesegidahoc. The situation
is clearly conjunctive in nature, which means that Demfssteate or the conjunc-
tive rule is appropriate.

8 Discussion

The cumulative and averaging rules of belief fusion makessible to use the the-
ory of belief functions for modelling situations where este is combined in a
cumulative or averaging fashion. Such situations couldipusly not be correctly
modelled within the framework of belief theory. It is wortbtiting that the cumu-
lative, averaging rules and Dempster’s rule apply to diffetypes of belief fusion,
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and that, strictly speaking, is meaningless to compare pleeiormance in the same
examples. The notion of cumulative and averaging beligbfuas opposed to con-
junctive belief fusion has therefore been introduced ireotd make this distinction

explicit.

There is however considerable confusion regarding thacgiplity of Dempster’s
rule, which e.qg. is illustrated by applying Dempster’s n@é¢he court case situation
in Zadeh'’s example. Often the problem is to identify whichdaldest fits a partic-
ular situation. The court case of Zadeh’s example intuifivequires an averaging
approach, the fusion of independent evidence from senkatsrteasure the same
phenomenon intuitively requires a cumulative approact,lagical conjunction of
evidence intuitively requires a conjunctive approach asugh Dempster’s rule.

To be more specific about the applicability of Dempster'srihe two bbas to
be fused are required to be orthogonal. Being orthogonahstet the bbas are
obtained by deliberately considering different subsethefframe. This is for ex-
ample the case in the application of Dempster’s rule in tamé&work of Kohlas’
theory of hints [23]. In the example of the loaded dice frons.3el, the informant
deliberately provides only a part of the truth when giving thints, and each hint
focuses on a specific subset.

The following scenario will illustrate using the cumulatiand the averaging fu-
sion rules, as well as Dempster’s rule. Assume again thati@éeps can produce
Male (M) or Female (F) eggs, and that in addition, each eggheesve genetical
mutation 1 or 2 independently of its gender. This constgtite quaternary frame

© = {M1,M2, F1,F2}. Sensors IA and IB simultaneously observe whether each
egg is M or F, and Sensor Il observes whether the egg has mutatr 2.

Assume that Sensors IA and IB have derived two separate bgasding the gender
of a specific egg, and that Sensor Il has produced a bba regaitdi mutation.

Because Sensors IA and IB have observed the same aspectasieaulsly, the
bbas should be fused with the averaging rule. Sensor Il hasrebd a different
and orthogonal aspect, so the output of the AR fusion and liaedd Sensor I

should be combined with Dempster’s Rule. This is illustdateFig.5.

This result from fusing the two orthogonal beliefs with Destgg’s Rule can now
be considered as a single observation. By combining bdtiefs multiple obser-
vations it is possible to express the most likely status tfriieggs as a predictive
belief. We are now dealing with two different situations afhimust be considered
separately. The first situation relates to the state of angdgg that the sensors have
already observed. The second situation relates to thelpjessate of eggs that will
be produced in the future. A bba in the first situation is basedhe sensors as
illustrated inside Observation 1 in Fig.5. The second sibnaelates to combining
multiple observations, as illustrated by fusing the bsliedbm Observation 1 and
Observation 2 in Fig.5.
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Figure 5. Applying different types of belief fusion accardito the situation

In order to fuse observations, the bba for each observatigst bre normalised to
carry the weight corresponding to a single Bayesian obenarhis is done by
multiplying all belief masses on proper subset®okith the factor\ expressed as:

m(©) + C(1 — m(©))

A:
2C

(27)

The belief mass o is then increased to compensate for the decreased belief
masses on the proper subset$ofThis produces the normalised bba:

v m(x}) = Adm(z;) (28)
m/(©) =m(0)+ (1 —\)(1 —m(O)

Table 5 provides a numerical example that relates direatlly¢ situations of Fig.5.
Table entries with zero value are omitted. For simplicitisiassumed that Obser-
vation 2 produces the same beliefs as observation 1.

From Table 5 it can be seen that most likely egg in Observétiag Male with
mutation 1, which is supported with belief magd/1) = 0.7.

To proceed from the results of DR to the values of Obs.1, timepedation of the
normalisation facton is required. By using Eq.(27) and settiog= 2 we get\ =
0.498125. By using Eq.(28) the values in the column of Obs.1 can be coea)
which represents the predictive bba resulting from onemasen. For simplicity
the bba of Obs.2 is set identical to that of Obs.1. It is thessfiide to fuse the two
observations with the cumulative rule, as expressed byighémnost column, to get
a more accurate predictive bba of future observations.

It can be observed that the application of Dempster’s rulianénexamples above

did not require any normalisation. In that case Dempstet&sis equivalent to the
conjunctive rule of Def.2 could have been used.
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S;ta SiB AR Si DR Obs.1 Obs.2 CR
m({M1,M2}) | 0.90 0.80 0.875 0.0875 0.0436 id. 0.0583
m({F1,F2) 0.05 0.05 0.050 0.0050 0.0025 id. 0.0033
m({M1,F1}) 0.80 0.0600 0.0299 id.  0.0400
m({M2,F2}) 0.10 0.0075 0.0037 id.  0.0050
m({M1}) 0.7000 0.3487 id.  0.4667
m({M2}) 0.0875 0.0436 id. 0.0583
m({F1}) 0.0400 0.0199 id. 0.0267
m({F2}) 0.0050 0.0025 id. 0.0033
m(0) 0.05 0.15 0.075 0.10 0.0075 0.5056 id. 0.3384
Table 5

Application of different types of belief fusion accordingthe situations in Fig.5

9 Conclusion

Different situations require different types of beliefifus. We have described the
cumulative and the averaging belief fusion rules which canded for belief fusion
in situations where Dempster’s rule is inadequate. The svonules represent gen-
eralisations of the corresponding fusion operators foniopis used in subjective
logic, and have been derived from classical Bayesian aisalysough a bijective
mapping between Dirichlet distributions and belief fuons.

This simple mapping positions belief theory and statistlo@ory closely and firmly
together. This is important in order to make belief theoryenaractical and easier
to interpret, and to make belief theory more acceptableamthin stream statistics
and probability communities.
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