
HAL Id: hal-01078613
https://hal.science/hal-01078613

Preprint submitted on 29 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entropy of regular timed languages
Eugene Asarin, Nicolas Basset, Aldric Degorre

To cite this version:
Eugene Asarin, Nicolas Basset, Aldric Degorre. Entropy of regular timed languages. 2014. �hal-
01078613�

https://hal.science/hal-01078613
https://hal.archives-ouvertes.fr

Entropy of regular timed languages⋆,⋆⋆

Eugene Asarina,∗, Nicolas Bassetb,1, Aldric Degorrea

aLIAFA, University Paris Diderot and CNRS, France
bDepartment of Computer Science, University of Oxford, UK

Abstract

For timed languages, we define size measures: volume for languages with a fixed finite number of events,
and entropy (growth rate) as asymptotic measure for an unbounded number of events. These measures can
be used for quantitative comparison of languages, and the entropy can be viewed as information contents
of a timed language. For languages accepted by deterministic timed automata, we give exact formulas
for volumes. We show that automata with non-vanishing entropy (“thick”) have a normal (non-Zeno,
discretizable etc.) behavior for typical runs. Next, we characterize the entropy, using methods of functional
analysis, as the logarithm of the leading eigenvalue (spectral radius) of a positive integral operator. We
devise a couple of methods to compute the entropy: a symbolical one for so-called “11⁄2-clock” automata,
and a numerical one (with a guarantee of convergence).

Keywords: timed automata, timed languages, entropy

Contents

1 Introduction 2
1.1 Our main problem: size of timed languages . 2
1.2 Classical works: entropy of regular languages . 3
1.3 On techniques used . 4
1.4 Our main results on entropy of timed languages. 4
1.5 Our second problem: ruling out pathologies in timed automata 4
1.6 Related work . 5
1.7 Paper organization . 5

2 Problem statement 5
2.1 Geometry, volume and entropy of timed languages . 5
2.2 Bounded deterministic timed automata . 6
2.3 Three examples . 7

2.3.1 Rectangles . 7
2.3.2 A product of trapezia . 8
2.3.3 Our favorite example . 8

2.4 Preprocessing timed automata . 8
2.5 Recurrent equations on volume functions . 10
2.6 Other volumes, same entropy . 10

⋆The support of Agence Nationale de la Recherche under the project EQINOCS (ANR-11-BS02-004) is gratefully acknowl-
edged.

⋆⋆This article is partially based on conference papers [1–5].
∗Corresponding author
URL: www.liafa.univ-paris-diderot.fr/~asarin (Eugene Asarin), www.liafa.univ-paris-diderot.fr/~nbasset

(Nicolas Basset), www.liafa.univ-paris-diderot.fr/~adegorre (Aldric Degorre)
1The author performed most of this work at LIGM, University Paris-Est Marne-la-Vallée and CNRS, France.

Preprint submitted to Information and Computation February 17, 2014

3 The thin-thick alternative and its consequences 11
3.1 Thinness, simplices and examples . 11
3.2 Point to point reachability: algebraic characterization . 12

3.2.1 Monoid of orbit graphs . 12
3.2.2 Adding clock resets . 13
3.2.3 Orbit graphs and reachability . 13
3.2.4 Other particular cycles . 13

3.3 Linear Lyapunov functions and sub-exponential volume . 14
3.4 Pumping lemma for long thick paths . 16
3.5 Characterizing thick automata . 17

4 Operator approach 18
4.1 Linear operators and finite automata . 18

4.1.1 Two decompositions . 19
4.1.2 Spectral gap and its consequences . 20

4.2 The operator associated to a TA . 20
4.2.1 The functional space of a TA . 20
4.2.2 Defining the operator Ψ . 21
4.2.3 Characterization of the entropy of a TA . 21

4.3 Exploring the operator . 21
4.3.1 Path operators and their kernel form . 21
4.3.2 Two decompositions again . 22

4.4 Spectral gap . 23

5 Computing the entropy 26
5.1 Iterative procedure . 26
5.2 Case of “11⁄2-clock” automata . 27

5.2.1 Computing the entropy of the running example symbolically 27
5.2.2 The theory of 11⁄2-clock BDTA . 28

6 Conclusions and further work 30

Appendix A Proof of Proposition 4 30

Appendix B Sketch of proof of Theorem 6 32

Appendix C Proof details for Theorem 7 33
C.1 Proof of Lemma 25 . 33
C.2 Proof of Lemma 28 . 35
C.3 Proof of Lemma 30 . 36
C.4 Proof of Lemma 32 and Corollary 33 . 38

Appendix D Proof details for Theorem 9 38
D.1 Proof sketch of Lemma 34 . 38
D.2 Proof of Lemma 36 . 39

1. Introduction

1.1. Our main problem: size of timed languages

Since early 90s, timed automata and timed languages are extensively used for modelling and verification
of real-time systems, and thoroughly explored from a theoretical standpoint. However, two important, and
closely linked, aspects have never been addressed before our first related papers: quantitative analysis of

2

the size of these languages and of the information content of timed words. In this paper, we formalize and
solve these problems for deterministic timed automata.

Recall that a timed word describes a behavior of a system, taking into account delays between events.
For example, 2a3.11b means that an event a happened 2 time units after the system start, and b happened
3.11 time units later. A timed language, which is just a set of timed words, may represent all such potential
behaviors. Our aim is to measure the size of such a language. For a fixed number n of events, we can
consider the language as a subset of Σn × Rn (that is of finitely many copies of the space Rn). A natural
measure in this case is just Euclidean volume Vn of this subset. When the number of events is not fixed, we
can still consider for each n all the timed words with n events belonging to the language and their volume
Vn. It turns out that in most cases Vn asymptotically behaves as 2nH for some constant H that we call
entropy of the language.

We believe that exploration of entropy of timed languages is theoretically and practically appealing for
several reasons.

• Symbolic dynamics approach (including the entropy-based analysis) to finite automata has made its
proofs in theory of languages, theory of codes etc. Porting it to an important new class of infinite-state
automata: timed ones, is a natural research problem.

• The information-theoretic meaning of H can be stated as follows: for a small ε, if the delays are
measured with a finite precision ε, then using the words of the language L with entropy H one can
transmit H+ log(1/ε) bits of information per event.

In [1] we formalize this idea in terms of Kolmogorov complexity. In [6] we relate H to the capacity
estimation of a time-based information transmission channel.

• In model-checking of timed systems, it is often interesting to know the size of the set of all behaviors
violating a property or of a subset of those presented as a counter-example by a verification tool. In
the same context of verification, when one overapproximates a timed language L1 by a simpler timed
language L2 (using, for example, some abstractions as in [7]), it is important to assess the quality of
the approximation. Comparison of entropies of L1 and L2 provides such an assessment.

• Entropy analysis provides new insights into traditional topics of the theory of timed automata: Zeno
behaviors, pumping lemmata, discretization etc. These insights, developed below, were also recently
used by some authors in [8, 9].

• Last but not least, the main technical tool in entropy analysis, a positive integral operator associated
to a timed automaton, seems to be an important and useful characteristic of the automaton. We have
already successfully applied it to several problems: computing generating functions of timed languages
[10], finding a natural probability distribution on a given timed automaton [11], and, more surprisingly,
counting sets of permutations defined by regular expressions and randomly generating their elements
[12].

In this paper, we explore and solve the following problem: given a timed language accepted by a de-
terministic timed automaton, find the volume Vn of the set of accepted words of a given length n and the
entropy H of the whole language.

1.2. Classical works: entropy of regular languages

Our problems and techniques are inspired by works concerning the entropy of finite-alphabet languages
(cf. [13, 14]). There the cardinality of the set Ln of all elements of length n of a prefix-closed regular
language also behaves as 2nH for some entropy H. The characterization of the entropy is based on the
Perron-Frobenius theory for positive matrices.

Let us sketch how it works. Given a finite deterministic automaton with state set Q, let Ln(q) be
the language of n-letter words recognized from state q. Consider the |Q|-dimensional vector xn whose
coordinates are cardinalities of Ln(q), q ∈ Q. It is easy to see that:

xn = Anx0, (1)

3

where A is the adjacency matrix of the automaton. Under some additional hypotheses (strong connectedness,
aperiodicity), by Perron-Frobenius theorem for positive matrices, all the components of xn grow as ρn where
ρ = ρ(A) is the spectral radius of the matrix A (which coincides with its maximum eigenvalue). Hence, the
entropy can be computed as follows (all the logarithms in this paper are base 2):

H = log ρ(A). (2)

1.3. On techniques used

In this paper, we extend the technique sketched above to timed automata. For a deterministic timed
automaton A, we define a timed language Ln(q,x) of all the timed words (with n events) accepted from the
state (q,x). We denote by vn(q,x) the volume of this language (now it is a function on Q × Rn), and we
generalize Eq. (1) as follows

vn = Ψnv0, (3)

but now the role of the adjacency matrix is played by some positive matrix integral operator Ψ associated
to the timed automaton.

The analog of Perron-Frobenius theory for such operators is much more involved than for matrices, and
we have to use some advanced functional analysis from [15, 16] to explore properties of Ψ useful for study
of the entropy; the most important of them being a spectral gap.

1.4. Our main results on entropy of timed languages.

First, we show that volumes Vn of a language of a deterministic timed automaton are rational numbers,
which can be computed using (3). Next, in Thm 5, we characterize entropy of such a language by an analog
of Eq. (2):

H = log ρ(Ψ).

Third, using spectral properties of the operator, we devise an iterative numerical procedure (cf. Table 1) for
entropy computing for all deterministic timed automata, and prove its exponential convergence (Thm 8).
Finally, for a subclass of those automata (so-called “11⁄2-clock” automata) we give a symbolic algorithm
(cf. Table 3) representing the entropy via explicit equations involving trigonometric functions and exponents,
and prove its correctness.

1.5. Our second problem: ruling out pathologies in timed automata

An amazing theoretical application of the entropy of timed languages is related to a well-known, but not
yet sufficiently understood issue of pathological and “normal” behaviors of timed automata. Indeed, timed
automata using exact continuous clocks, exact guards and resets are a beautiful mathematical object and a
useful model of real-time systems. However, from the very beginning of research on timed automata, it was
clear that they are in several aspects too precise, which leads sometimes to strange artifacts, mathematical
pathologies or unrealistic models. Several lines of research have partially elucidated these issues.

Thus, the state space of a timed automaton being infinite, some long (or infinite) runs never revisit the
same state. For this reason, as stated in [17], usual pumping lemmata do not hold, and should be replaced
by rather involved analogues. In a run, infinitely many events can happen during a finite amount of time,
or two events can happen again and again with the time interval between them tending to 0. Such a run
reminds of Zeno’s aporias and is often called a Zeno run, see [18] and reference therein. Such pathological
runs do not support well discretization of clocks, see [19, 20].

In order to rule out bad behaviors, restricted classes of timed automata, and alternative semantics were
considered by several authors. Thus, in [21, 22], a tube language semantics is introduced. In a pioneering
paper [23] a robust semantics, based on small imprecisions is considered. It reappears in a different flavor
as implementability, see [24, 25], and in another version in [26]. With the same objective to rule out bad
behaviors, restrictions are often put on all the cycles in the automaton, by requiring that each cycle takes
at least one time unit (strongly non-Zeno condition), or resets all the clocks (progress cycle condition), or
even resets all the clocks at one and the same transition (regeneration condition). This kind of conditions

4

appears in most of the cited literature – and will be replaced in this article by a somewhat subtler condition
of existence of a forgetful cycle, that is a cyclic path allowing forgetting the clock values.

We propose a unifying approach to most of these issues for deterministic timed automata. We classify
each automaton either as thin or as thick : it is thin when the entropy of its language equals −∞ (that is
the volume Vn decays faster than any exponent), and thick otherwise. It turns out that:

In thin automata all the infinite trajectories are, in some weak sense Zeno; the digitization of long tra-
jectories is difficult, since it requires very a small discretization step.

In thick automata most of trajectories are non-Zeno and behave well under digitization; such automata
have a forgetful cycle, and most trajectories visit such a cycle (this can be seen as a sort of pumping
lemma).

This dichotomy between thin and thick automata is stated in Thms 2 and 4. The proof of these results
uses together with “timed” techniques inspired by [23, 26], the monoid version of Ramsey’s theory, namely
Simon’s factorization forests theory [27].

1.6. Related work

This work builds on previous research and ideas concerning timed automata, information theory, entropy
of regular languages, functional analysis, monoid theory etc. However, as far as we know, the only previous
work considering volume of timed languages is [28], where heuristic estimations of volume are used to guide
the state-space exploration in model-checking.

In [29, 30], probabilities of some timed languages and densities in the clock space are computed. Our
formulae for fixed-length volumes can be seen as specialization of these results to uniform measures. As
for languages of unbounded length, they use stringent condition of full simultaneous reset of all the clocks
at most every k steps, and under such a condition, they provide a finite stochastic class graph that allows
computing various interesting probabilities. Here we use a much weaker hypothesis (thickness or existence
of a forgetful cycle), and obtain only the entropy. Integral formulas for densities in probabilistic timed
automata, similar to ours for volumes, are presented in [31, 32]. In [32] probabilities of LTL properties of
one-clock timed automata (over infinite timed words) are computed using Markov chains techniques. We
expect that our techniques based on positive operators will be useful for the analysis of timed probabilistic
Petri nets and automata, as in articles cited above.

1.7. Paper organization

This paper is organized as follows. In Sect. 2 we define volumes of fixed-length timed languages and
entropy of unbounded-length timed languages and explore their basic properties. In Sect. 3 we present
the dichotomy between thin and thick timed automata. In Sect. 4 we associate to a timed automaton a
functional space and a positive operator Ψ. Next, we characterize the volume and the entropy in terms of
this operator. On a more technical side, we explore spectral properties of Ψ. The latter properties play a
central role in Sect. 5, where we give two procedures for computing the entropy of a timed regular language
based on the spectral radius of Ψ. We conclude the paper by some final remarks in Sect. 6.

2. Problem statement

2.1. Geometry, volume and entropy of timed languages

A convex polytope in Rn is the set defined by finitely many linear inequalities; a polytope is a finite union
of convex ones. For a measurable P ⊂ Rn, we denote its volume (i.e. its finite or infinite Lebesgue measure)
by VolP ; of course all the polytopes are measurable.

A timed word of length n over an alphabet Σ is a sequence w = t1a1 . . . tnan, with ai ∈ Σ, ti ∈ R and
0 ≤ ti. Here ti represents the delay between the events ai−1 and ai (this definition rules out timed words
ending by a time delay).

5

A timed language L is a set of timed words. For every timed language L and word w = w1 . . . wn ∈ Σn,
we define PL

w = {(t1, . . . , tn) | t1w1 . . . tnwn ∈ L}. The language L is called measurable whenever all the PL
w

are measurable. In this case, for a fixed n, we define the n-volume of L as follows:

Vn(L) =
∑

w∈Σn

VolPL
w .

In other words, we sum up, over all the possible words w of n discrete events, the volumes of the corresponding
sets of delays in Rn.

We just associated with every measurable timed language a sequence of n-volumes Vn. We will show
in Sect. 2.5 that, for languages of deterministic timed automata, Vn is a computable sequence of rational
numbers. However, we would like to find a unique real number characterizing the asymptotic behavior of Vn
as n→∞. Typically, Vn depends approximately exponentially on n. We define the entropy of a language as
the rate of this dependence. Formally, for a measurable timed language L we define its (volumetric) entropy
as follows:

H(L) = lim sup
n→∞

logVn
n

.

Remark 1. Many authors consider a slightly different kind of timed words: sequences (a1, d1), . . . , (an, dn),
where ai ∈ Σ, di ∈ R and 0 ≤ d1 ≤ · · · ≤ dn, with di representing the date of the event ai. This definition is
in fact isomorphic to ours by a change of variables: t1 = d1 and ti = di − di−1 for i = 2..n. It is important
for us that this change of variables preserves the n-volume, since it is linear and its matrix has determinant
1. Therefore, choosing date (di) or delay (ti) representation has no influence on language volumes (and
entropy). Due to the authors’ preferences (justified in [33]), delays will be used in the sequel.

2.2. Bounded deterministic timed automata

We assume that the reader is acquainted with timed automata; otherwise, we refer her or him to [34] for
details. Here we only fix notations and briefly recall the definitions. We fix a natural constant M , which
upper bounds all the constants in the automaton.

A clock is a variable ranging over R≥0 (non-negative reals). A clock constraint g ∈ GC over a set of
clocks C is a conjunction of finitely many inequalities of the form x ∼ c or x ∼ y, where x and y are clocks,
∼∈ {<,≤,=,≥, >} and c ∈ 0..M . A clock reset r ∈ RC is determined by a subset of clocks B ⊂ C, it resets
to 0 all the clocks in B and does not modify the values of the others.

A timed automaton (TA) is a tuple A = (Q,Σ, C,∆, q0, F). Its elements are respectively the finite set
of locations, the finite alphabet, the finite set of clocks (let its cardinality be d), the transition relation, the
initial location, and the final condition. A state of A is a pair (q,x) of a control location q ∈ Q and a vector
of clock values x ∈ Rd. Elements of ∆ are transitions, i.e. tuples (q, a, g, r, q′) ∈ Q × Σ × GC × RC × Q
denoting the possibility, at location q when the clock vector satisfies the guard g, to read the label a, apply
the clock reset r and then go to location q′. An element of F has a form (q, g) ∈ Q ×GC meaning that an
accepting run can terminate by a transition to q with clocks respecting the clock constraint g.

A run of A along a path π = δ1 . . . δn ∈ ∆n has the form

(qi0 ,x0)
t1a1−−−→ (qi1 ,xi1)

t2a2−−−→ · · ·
tnan−−−→ (qin ,xn),

where, for all j ∈ 1..n, δj = (qij−1
, aj, g, r, qij) ∈ ∆,

• xj−1 + tj1 |= g with 1 denoting the vector (1, . . . , 1),

• and xj = r(xj−1 + tj1).

In this case, we use the notation x1
t1...tn,π
−−−−−→ xn to say that such a run exists.

When qi0 = q0 is the initial state, x0 is 0 and F contains a couple (q, g) with qin = q and xn satisfying
g, then the timed word t1a1 . . . tnan is said to be accepted by A. The set of all such words is the language
L(A) accepted by A. For such a timed regular language, the sets PL

w are polytopes, and hence any timed

6

p

a, x ∈ [2, 4]/x := 0

b, x ∈ [3, 10]/x := 0

p q

a, x ∈ [0, 4]

b, x ∈ [2, 4]/x := 0

p q

a, x ∈ [0, 1]/x := 0

b, y ∈ [0, 1]/y := 0

p

a, x ∈ [0, 1]/y := 0

b, y ∈ [0, 1]/x := 0

p a, x ∈ [0, 1] p q

a, x ∈ [0, 1]/x := 0

b, y ∈ [1, 2]/y := 0

Figure 1: Six simple timed automata: first line – A1,A2,A3, second line – A4,A5,A6

regular language is measurable and its volumes and entropy are well-defined; we will write Vn(A) (or even
Vn) instead of Vn(L(A)).

Several convex polytopes are naturally associated with a path in a timed automaton. Given a path and

two clock vectors, a polytope of all the timings of the path can be defined: Pπ(x,x
′) = {t | x

t,π
−−→ x′}.

If we are not interested in clock values at the end of the path (resp. any clock value), we get a polytope
depending only on the path and clock values at the beginning of the path (resp. depending only on the path):

Pπ(x) = {t | ∃x′,x
t,π
−−→ x′} (resp. Pπ = {t | ∃x,x′,x

t,π
−−→ x′}). The other way around, if we do not care

about timing, we get the reachability predicate: Reach(π) = {(x,x′) | ∃t,x
t,π
−−→ x′}. All these polytopes are

cross-sections or projections of the universal polytope of the path: Ωπ = {(x, t,x′) | x
t,π
−−→ x′}.

A TA is deterministic if for any two transitions with the same source and the same label, the guards are
disjoint. It is bounded whenever every guard upper bounds at least one clock.

In the rest of the paper, we compute volumes and entropy for regular timed languages recognized by
deterministic timed automata. Moreover, if some guards in the automaton were unbounded, the volume
would be infinite, which is beyond the reach of our approach. Thus we concentrate on Bounded Deterministic
Timed Automata (BDTA).

Remark 2. Most of known techniques to compute entropy of untimed regular languages work on deter-
ministic automata. In fact, these techniques count paths in the automaton, and only in the deterministic
case their number coincides with the number of accepted words. The same is true for volumes in timed
automata.

2.3. Three examples

To illustrate the problem consider the languages recognized by BDTA A1,A2,A3 on the first line of
Fig. 1 (the three others will be considered later). Two of them can be analyzed directly, using definitions
and common sense. The third one resists naive analysis, it will be used to illustrate more advanced methods
throughout the paper.

2.3.1. Rectangles

Consider the timed language recognized by A1 of Fig. 1 and defined by the expression ([2, 4]a+ [3, 10]b)
∗
.

7

s2 4

2

4
t

Figure 2: Timings (ti, si) for A2.

For a given untiming w ∈ {a, b}n containing k letters a and n − k letters b, the set of possible timings
is a rectangle in Rn of a volume 2k7n−k (notice that there are Ck

n such untimings). Summing up all the
volumes, we obtain

Vn(A1) =

n∑

k=0

Ck
n2

k7n−k = (2 + 7)n = 9n,

and the entropy H(L1) = log 9 ≈ 3.17.

2.3.2. A product of trapezia

Consider the language defined by the automaton A2 on Fig. 1, that is containing words of the form
t1as1bt2as2b . . . t2kas2kb such that 2 ≤ ti + si ≤ 4. For an even n = 2k, the only possible untiming is (ab)k.
The set of timings in R2k is a Cartesian product of k trapezia 2 ≤ ti+si ≤ 4. The surface of each trapezium
equals S = 42/2 − 22/2 = 6, and the volume V2k(A2) = 6k. For an odd n = 2k + 1, the language is empty
and V2k+1(A2) = 0. Thus the entropy H(A2) = log 6/2 ≈ 1.29.

2.3.3. Our favorite example

The language recognized by the automaton A3 on Fig. 1 contains the words of the form t1at2bt3at4b . . .
with ti+ti+1 ∈ [0, 1]. Notice that the automaton has two clocks that are never reset together. The geometric
form of possible timings in Rn is defined by overlapping constraints ti + ti+1 ∈ [0, 1].

It is not so evident how to compute the volume of this polytope. A systematic method is described below
in Sect. 2.5. An ad hoc solution would be to integrate 1 over the polytope, and to rewrite this multiple
integral as an iterated one. The resulting formula for the volume is

Vn(A3) =

∫ 1

0

dt1

∫ 1−t1

0

dt2

∫ 1−t2

0

dt3 . . .

∫ 1−tn−1

0

dtn.

This gives the sequence of volumes:

1;
1

2
;
1

3
;
5

24
;
2

15
;
61

720
;
17

315
;
277

8064
; . . .

In the sequel, we will also compute the entropy of this language. We should remark here, that this sequence
of polytopes, their volumes and growth rate were considered in a different (combinatorial) context in [35].

2.4. Preprocessing timed automata

In order to compute volumes Vn and entropy H of the language of a BDTA, we first transform this
automaton into a normal form, which can be considered as a (timed) variant of the region graph defined in
[34]. We recall that a subset of Rd defined by a clock constraint is called a zone. Smallest (by inclusion)
zones are called regions.

We say that a BDTA A = (Q,Σ, C, δ, q0, F) is in a region-split form if the following properties hold:

B1. Each location and each transition of A is visited by some accepting run.

8

B2. For every location q ∈ Q, a unique clock region rq (called entry region of q, its dimension is denoted by
dq) exists, such that the set of clock values with which q is entered is exactly rq. For the initial location
q0, its entry region is the singleton {0}.

B3. The guard g of every transition δ = (q, a, g, r, q′) ∈ ∆ is just one clock region. All the clock values
satisfying g are time-reachable from rq.

Notice, that B2 and B3 imply that r(g) = rq′ for every δ.

Proposition 1. Given a deterministic BDTA A, a region-split TA A′ accepting the same language can be
constructed2.

Proof (sketch). Let A = (Q,Σ, C,∆, q0) be a TA and let Reg be the set of its regions. The region-split
automaton A′ = (Q′,Σ, C,∆′, q′0) can be constructed as follows:

1. Split every location q into sublocations corresponding to all possible entry regions. Formally, just take
Q′ = Q×Reg.

2. Split every transition from q to q′ according to two clock regions: one for the clock values when q is
left, another for clock values when q′ is entered. Formally, for every δ = (q, a, g, r, q′) of A, and every
two clock regions r and r′ such that r′ is reachable from r by time progress, and r′ ⊂ g, we define a
new transition of A′

δ′rr′ = ((q, r), a,x ∈ r′, r, (q′, r(r′))) .

3. Take as initial state q′0 = (q0, {0}).

4. Remove all the locations and transitions not reachable from the initial state or not co-reachable from
the final set of states. �

We could work with the region-split automaton, but it has too many useless (degenerate) states and
transitions, which do not contribute to the volume and the entropy of the language. This justifies the
following definition: we say that a region-split TA is fleshy if the following holds (and punctual otherwise):

B4. For every transition δ, its guard g has no constraints of the form x = c in its definition.

Proposition 2. Given a region-split TA A accepting a language L, a fleshy region-split TA A′ accepting a
language L′ ⊂ L with Vn(L

′) = Vn(L) and H(L′) = H(L) can be constructed.

Proof (sketch). The construction is straightforward:

1. Remove all punctual transitions.

2. Remove all the locations and transitions that became unreachable (or not co-reachable).

Inclusion L′ ⊂ L is immediate. Every path in A (of length n) involving a punctual transition corresponds to
the set of timings in Rn which is degenerate (its dimension is smaller than n), hence it does not contribute
to Vn. �

From now on, we suppose w.l.o.g. that the automaton A is in a fleshy region-split form (see Fig. 3).

2The guards of original automaton are bounded w.r.t. some clock. Hence, the same holds for smaller (one-region) guards of
A′, that is infinite-size regions never occur as a guard.

9

p
x = 0

q
x ∈ (0, 1)

(0, 1)
q

x ∈ (1, 2)
q

x ∈ (2, 3)
q

x ∈ (3, 4)

(1, 2)
(2, 3)

a, x ∈ (3, 4) b, x ∈ (2, 3)/x := 0

b, x ∈ (3, 0)/x := 0

p
x ∈ (0, 1)
y = 0

q
x = 0

y ∈ (0, 1)

a, x ∈ (0, 1)/x := 0

b, y ∈ (0, 1)/y := 0

p
x = 0
y = 0

a, x ∈ (0, 1)/x := 0

Figure 3: Fleshy region-split forms of automata A2 and A3 from Fig. 1. An entry region is drawn at each location.

2.5. Recurrent equations on volume functions

Given a BDTA A, we want to compute its entropy based on its n-volumes Vn. In order to obtain
recurrent equations on these volumes, we need to take into account all possible initial locations and clock
configurations. For every state (q,x), let L(q,x) be the set of all the timed words corresponding to the
runs of the automaton starting at this state, let Ln(q,x) be its sublanguage consisting of its words of length
n, and vn(q,x) the volume of this sublanguage. Similarly we define for a path π starting in a region r,
vπ(x) = Vol(Pπ(x)).

By definition of runs of a timed automaton, we obtain the following language equations:

L0(q,x) = ε if q is final; L0(q,x) = ∅ otherwise;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈∆

⋃

τ :x+τ∈g

τaLk(q
′, r(x+ τ)).

Since the automaton is deterministic, the union over transitions (the first
⋃

in the formula) is disjoint.
Hence, it is easy to pass to volumes:

v0(q,x) = 1F (q,x);

vk+1(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g

vk(q
′, r(x + τ)) dτ, (4)

where 1F is the indicator function of the final states F . We remark that for a fixed location q, and within
every clock region, as defined in [34], the integral over τ : x+ τ ∈ g can be decomposed into several

∫ u

l
with

bounds l and u either constants or of the form c − xi with c an integer and xi a clock variable. These
equations hold for any state (q,x), but we will consider volume functions and Eqs (4) restricted to the set
S =

⋃
q∈Q{q} × rq of entry states. These formulas lead to the following structural description of vn(q,x),

which can be proved by a straightforward induction.

Lemma 3. The function vn(q,x) restricted to a location q and a clock region can be expressed as a polyno-
mial of degree n in coordinates of x, with rational coefficients.

Hence, one should obtain, by symbolic integration, for k = 0..n, polynomial functions vk : S → R; and
finally compute vn(q0, 0).

Theorem 1. For a BDTA A, the volume Vn is a rational number, computable from A and n by iterating
Eq. (4).

2.6. Other volumes, same entropy

In the following, we will need two alternative volumes yielding equivalent characterizations of the entropy,
which do not depend on initial nor final states of the timed automaton.

10

• The first one is in terms of volumes Vπ of polytopes Pπ associated to paths π ∈ ∆∗: Vπ
def
= Vol(Pπ).

By summing over all paths π of length n we obtain a new sequence of volumes: V̂n
def
=
∑

π∈∆n Vπ .

• The second one is in terms of volume functions taking into account the initial clock vector: v̂n(q,x)
def
=∑

π∈∆n, starting in q vπ(x) (here the clock vector x belongs to rq). The norm of such a function is defined
as its supremum over all x and q.

Proposition 4. Sequences of volumes Vn, of volumes V̂n and of norms of volume functions ‖v̂n‖ have the
same growth rate (coinciding with the entropy):

H(L(A)) = lim sup
n→∞

(log Vn)/n = lim
n→∞

(log V̂n)/n = lim
n→∞

(log ‖v̂n‖)/n,

in particular the limits (finite or infinite) always exist.

The proof can be found in Appendix A.

3. The thin-thick alternative and its consequences

In this section we study the dichotomy, we mentionned in Subsect. 1.5, between thin automata, with
entropy −∞, and thick automata, with entropy > −∞. To that purpose, we introduce the key notion of
forgetful cycle, the existence of which is, as we will show, a necessary and sufficient condition for thickness.

Ruling out pathological (i.e. thin) automata is crucial, not only in the subsequent sections of this paper
(Thms 6-7, Lem. 25-27), but also in other works by us and by other authors. For instance, we can men-
tion papers about frequency analysis [36], robustness [9] and quantitative discretization of timed languages
(problem defined and motivated in [1], and solved in [4]). In the latter, thickness turns out to be a necessary
and sufficient condition for discretizability.

Our “pathological” behaviors can be seen, in some weak sense, as Zeno runs: clock constraints along a
pathological infinite path become narrower and narrower, so that there is no fixed radius such that a ball
of that radius could be included in the polytope of each of its prefixes. For this paper, the most important
consequence is that the volumes of the prefixes have a subexponential growth (hence H = −∞).

In “well behaving” automata, on the contrary, most paths (“most”, in the sense of contribution to
volume) tend to “forget” old clock constraints, thanks to visiting these forgetful cycles often enough. In
particular it is possible, for some fixed radius, to include a ball of that radius in the polytope of each prefix
of such a path. Consequently the volume of prefixes has exponential growth.

This section goes as follows: first we make simple observations on pathological behaviors and relate their
volumes to those of simplices. Then, inspired by Puri [23], we characterize reachability in algebraic terms,
introducing the monoid of orbit graphs. This eventually leads us to the definition of a forgetful path. After
this, we exhibit a Lyapunov function which decreases along all pathological runs. Next comes our pumping
lemma (Thm 2), where it is shown that sufficiently long paths with not too small volume (e.g. containing
a ball of radius η) necessarily contain a forgetful cycle.3 This result builds on a deep theorem from Simon
[27] (Thm 3), about factorization forests. Finally we conclude by stating the equivalences of Thm 4, which
justify that the rough dichotomy thin vs. thick is in fact a precise way to distinguish between “ill behaving”
and “well behaving” TA.

3.1. Thinness, simplices and examples

Our analysis of thin automata will start with a simple observation that the volume of k-dimensional
simplices tends to 0 faster than any exponent:

3Such a cycle can be iterated indefinitely, as in usual pumping lemma.

11

Proposition 5. We call simplices of “type 1” and of “type 2”, the sets of points t ∈ Rk respectively
satisfying the sets of inequalities 0 ≤ t1 + · · ·+ tk ≤ 1, ti ≥ 0 and 0 ≤ t1 ≤ · · · ≤ tk ≤ 1. Simplices of both
types have volume 1

k! .

The automata on Fig. 1 illustrate the concepts of thinness and thickness. On one hand, A5 and A6

are examples of automata having thin languages. The case of A5 is straightforward: its set of timings
{t1, . . . , tn |

∑
i≤n ti ≤ 1} is a simplex of type 1, thus L(A5) is thin. That of A6 is slightly more involved,

as its timing polytope is {t1, . . . , tn | ∀i, t2i + t2i+1 ≤ 1 ∧ t2i+1 + t2i+2 ≥ 1}. But we can make the following
change of variables: u2i+1 = 1 − t2i+1 and u2i = t2i, mapping the language polytope into the simplex
0 ≤ u1 ≤ · · ·un ≤ 1. This transformation preserves volumes, thus Vn(A6) = 1

n! . This is an example of
automaton that is thin although it satisfies the progress cycle condition (i.e. resetting all clocks along each
cycle, see below).

On the other hand, examples A3 and A4 are thick. Indeed their entropies can be computed symbolically
using techniques of 5.2 below, which give us respectively log 2

π and log log e. Note that A4 does not satisfy
the progress cycle condition.

3.2. Point to point reachability: algebraic characterization

In this subsection, we characterize the reachability relation of a BDTA in terms of an algebraic structure:
the monoid of orbit graphs. The key notion of forgetful cycle is then formulated as a reachability property.
Our analysis is less detailed than those in [37–39] and follows the lines of [23].

In this analysis, it is more convenient to work with closed sets of delays. Hence we also consider the
closed version Ā of a region-split automaton A, which is constructed by replacing every region and every
guard appearing in the definition of A by its topological closure. Seen as labeled graphs A and Ā are
isomorphic, and thus both automata have exactly the same discrete paths. For a path π of A, we denote by
π̄ its isomorphic image in Ā. Then the following holds:

Proposition 6. For a region-split BDTA A,

1. for all n ∈ N, Vn(A) = Vn(Ā) and
2. for any path π of A, Reach(π̄) = Reach(π).

3.2.1. Monoid of orbit graphs

For a location q ∈ Q, let us denote by V (q) = {s1, . . . , sp} the vertices of the closed region r̄q. Any point
x in the region is uniquely described by its barycentric coordinates λ1, . . . , λp, i.e. nonnegative numbers such
that

∑p
i=1 λi = 1; x =

∑p
i=1 λisi.

Given q, q′ ∈ Q, we call orbit graph a tuple (G, q, q′) where G is, if q = q′, a directed graph on V (q) or,
else, if q 6= q′, a directed graph on V (q)

⊎
V (q′) with edges in V (q)×V (q′). An edge from s to s′ symbolizes

the fact that the state (q′, s′) can be reached from the state (q, s).
Orbit graphs compose in the natural way: given (G1, q1, q

′
1), and (G2, q2, q

′
2) their product (G, q1, q

′
2) =

(G1, q1, q
′
1) · (G2, q2, q

′
2) is defined if q′1 = q2. There is an edge from s to s′′ in G if and only if there exists s′

such that (s, s′) and (s′, s′′) are edges of G1 and G2. Whenever q′1 6= q2, we define (G1, q1, q
′
1) · (G2, q2, q

′
2)

as equal to some special (absorbing) element 0. The set G of orbit graphs, augmented with 0 and a neutral
element 1 has a structure of finite monoid.

An orbit graph (G, q, q′) can be represented by its adjacency matrix M of size |V (q)| × |V (q′)|. The
matrix of a product of orbit graphs is then equal to the product of their matrices in the max-min algebra:
M(G1G2) =M(G1)⊗M(G2), where ⊗ is defined by

(A⊗B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : ∆∗ → G from paths to orbit graphs defined as follows. For a
transition δ between q and q′ in Ā, we define the orbit graph γ(δ) = (G, q, q′) with edges V (q) × V (q′) ∩
Reach(δ). For a (closed) path π = δ1 . . . δn, we define γ(π) = γ(δ1) · · · γ(δn) (it will be called the orbit graph
of the path π). For the empty path, we have γ(ε) = 1, and for any non-consecutive path γ(π) = 0.

For example, the orbit graphs of cycles ab and ba of A3 and A4 are complete, the orbit graphs of the
other running examples are given in Fig. 4.

12

3.2.2. Adding clock resets

For future use, we must enrich the monoid of orbit graphs by adding information on clock resets. Elements
of the monoidM are couples in G ×P(C) and, as before, the two special elements 0,1. The product onM
is defined as follows:

(O1, X) · (O2, Y) =

{
(O1 ·O2, X ∩ Y), if O1 ·O2 6= 0
0, otherwise.

For each π ∈ ∆∗, we denote by ν(π) the set of clocks not reset along the path π. We define the morphism
µ : ∆∗ →M as follows: µ(π) = (γ(π), ν(π)).

3.2.3. Orbit graphs and reachability

The orbit graph of a path γ(π) remarkably determines its reachability relation.

Lemma 7 (Puri [23]). Let x and x′ be two clock vectors with barycentric coordinates λλλ and λλλ′. Then
(x,x′) ∈ Reach(π) iff there exists a stochastic matrix P �M(γ(π)), such that λλλP = λλλ′.4

Here the matrix “inequality” A � B means that for all i, j, (Bij = 0)⇒ (Aij = 0).
The following particular case is of interest to us:

Proposition 8. γ(π) is complete iff Reach(π) = r̄q × r̄q′ , or equivalently iff Reach(π) = rq × rq′ .

In this case, we say that π is forgetful. The intuition is that the clock values reached after reading π are
independent of the clock values before reading it. We remark that the orbit graph of a forgetful cycle always
is an idempotent of the monoid of orbit graphs. Such elements of this monoid (and corresponding elements
ofM) will be referred to as forgetful idempotents.

Proof (of Prop. 8). We use Lem. 7 to show that γ(π) is complete iff Reach(π) = r̄q × r̄q′ . Suppose that
γ(π) is complete. For all x,x′, we denote by λλλ,λλλ′ the vectors with corresponding barycentric coordinates.
We define P as the matrix with rows equal to λλλ′, we have λλλP = λλλ′ and then (x,x′) ∈ Reach(π). We conclude
that γ(π) being complete implies that Reach(π) = r̄q × r̄q′ . The converse is trivial.

The second equivalent characterization is a consequence of Prop. 6. �

3.2.4. Other particular cycles

Two other kinds of cycles are often considered in the literature: in a progress cycle [23] (already mentioned
above), every clock is reset at some edge; in a regenerating cycle [30], there is an edge where all the clocks
are reset.

The condition of progress cycle can be seen as a weaker kind of forgetting: the state after such a cycle
is exactly determined by the delays of the cycle (see Lem. 11 below). Nevertheless the orbit graph of a
progress cycle is not always strongly connected (e.g. cycle ab of A2 depicted in Fig. 4); in that case, clock
values in starting states and ending states are still dependent. More precisely, we have the following strict
inclusions:

Proposition 9. progress cycles) forgetful cycles) regenerating cycles.

Proof. First inclusion: if a cycle π is not progressing, then there is one clock x, which is not reset along
that cycle. It is direct from the semantics of timed automata that the value of x cannot decrease along the
transitions of this cycle. Moreover, necessarily this clock is one of the non-zero clocks of the entry region
r of the starting location of π. Runs realizing π must start with clock x = x0 > ⌊x0⌋ and must end with
x = x1 ≥ x0. Thus Reach(π̄) 6= r̄× r̄.

Second inclusion: a regenerating cycle π necessarily traverses, after the full reset, a location q having
singleton {0} as its entry region. Let us call p the location where π starts. We define π1 and π2 such that

4An intuition behind this lemma could be as follows. A clock vector with barycentric coordinates λλλ in a region can be seen
as a probabilistic distribution over vertices of this region (with probabilities λλλ). The lemma says that this distribution, at each
cycle, evolves exactly as in some Markov chain.

13

π = π1 · π2, where π1 goes from p to q and π2 goes from q to p. Necessarily Reach(π1) = rp × {0} and
Reach(π2) = {0}× rp (due to the fundamental reachability property of the region abstraction, cf. [34]). The
accessibility relation of π is the composition of that of π1 and π2, i.e. rp × rq, thus π is forgetful.

In order to prove that the inclusions are strict, consider, in Fig. 1, the forgetful cycle labeled ab in A3,
which is not regenerating, and the progress cycle labeled ab in A6, which is not forgetful. �

A remark is in order: in most works using progress or regenerating cycles, all the cycles are required to
satisfy the considered property. In our work, existence of one forgetful cycle is sufficient to characterize
“non-degenerate” (i.e. thick) automata.

3.3. Linear Lyapunov functions and sub-exponential volume

The aim of this section is to prove Lemma 13 below. Informally, it states that the iteration of a non-
forgetful cycle yields a fast decreasing volume (and thus entropy equal to −∞). The proof of this lemma
involves Lyapunov functions and affine expansive functions defined as follows.

Given a cycle π, we say that f(x) ≥ 0 is a Lyapunov function for this cycle if for any (x,x′) ∈ Reach(π) it
holds that f(x′) ≤ f(x) (that is f decreases after every cycle π). An affine function g : Rn 7→ R is expansive
if it is of the form (t1, . . . , tm) 7→ C +

∑m
j=1 αjtj with |αj | ≥ 1 for some j ≤ m.

We need three lemmata to prove Lemma 13. Indeed the core of its proof will be in three steps:

step 1: Lyapunov functions exist for non-forgetful cycles (Lemma 10);

step 2: such a Lyapunov function can be expressed at each cycle as an expansive affine function of the
delays read along the cycle (Lemma 11);

step 3: inequalities involving expansive affine functions yield a fast decreasing volume (Lemma 12).

If a cycle is non-forgetful, and moreover its orbit graph is not strongly connected, then it is possible to
find a linear Lyapunov function:5

Lemma 10. For a cycle π, if γ(π) is not strongly connected then there exists a non-empty I (1..p such

that fI(x)
def
=
∑

i∈I λi is a Lyapunov function for π, where λλλ stands for barycentric coordinates of x.

Proof. Let (x,x′) ∈ Reach(π) and λλλ, λλλ′ the corresponding barycentric coordinates. We must show that∑
j∈I λ

′
j ≤

∑
i∈I λi. Let P be the matrix such that λλλP = λλλ′ (it exists by virtue of Lemma 7). There exists

a strongly connected component (SCC) I of γ(π) without incoming edges from other SCCs. After a change
of indices putting those of I before those of its complement J , the matrix P takes the following form:

P =

(
PI→I PI→J

0 PJ→J

)
.

If we decompose λλλ in (λλλI ,λλλJ) and λλλ′ in (λλλ′I ,λλλ
′
J) we get λλλIPI→I = λλλ′I , and we are done since

∑
j∈I λ

′
j =∑

j∈I

∑
i∈I λiPij =

∑
i∈I λi

∑
j∈I Pij ≤

∑
i∈I λi. �

In this lemma, as before, 1..p are indices of the vertices of the region where π starts (and ends). In fact
I corresponds to an initial strongly connected component of the orbit graph, i.e. an SCC without incoming
edges from other SCCs. According to the lemma, the state moves from the facet spanned by I towards other
vertices of the region and cannot come back (see Fig. 4).

The next lemma describes the same Lyapunov function fI(x) in terms of the timed word read along a
progress cycle π.

5The reader acquainted with Lyapunov functions will remark that, in contradiction to the custom, our Lyapunov functions
are linear. Nevertheless, they still serve to characterize a stability property: the tendency of a cyclic path to bring the clock
vector closer to some facet of a region. In our case, we consider it as a “bad” property.

14

λ1 λ2 λ1 λ3
0.6

10.3

λ2

0.2
0.8 0.1

Figure 4: Two non strongly connected orbit graphs, the first one is that of the cycle of A1, of the cycle ab of A2 and of
the cycles a and b of A4. States move from the initial SCC I to the final one. By choosing the convex combination of
paths given by the Markov chain on the second orbit graph we pass from state (λ1 = 0.2, λ2 = 0.5, λ3 = 0.3) to state
(λ′

1 = 0.46, λ′

2 = 0.02, λ′

3 = 0.52). The sum λ1 + λ2 can only decrease.

Lemma 11. If π is a progress path terminating in some p-dimensional region r, then the clock vector x
obtained after reading a timed word t × π (from any initial clock vector) is a function of t. Moreover, for
any non-empty I (1..p, there exists an expansive affine function g such that fI(x) = g(t).

Proof. Let m = |π|. We show that there exist coefficients α1, . . . , αm ∈ −p..p not all null and an integer
constant c such that

∑
i∈I λi = c+

∑m
j=1 αjtj .

Up to a reordering of the clocks and a fusion of equal clocks we can suppose that the region r̄ is

⌊x⌋+ {({x1}, . . . , {xp}) | 0 ≤ {x1} ≤ · · · {xp} ≤ 1} ,

where ⌊x⌋ = (⌊x1⌋, . . . , ⌊xp⌋).
Vertices of the region are s1 = ⌊x⌋+ (0, . . . , 0), s2 = ⌊x⌋+ (0, . . . , 1), sp+1 = ⌊x⌋+ (1, . . . , 1). Therefore

x =
∑

i∈I λisi = ⌊x⌋+(λp+1, λp+1+λp, . . . , λp+1+λp+ ..+λ2) and then for i ≥ 2 we have λi+(⌊xp+2−i⌋−
⌊xp+1−i⌋) = xp+2−i − xp+1−i. This last quantity is, in absolute value, the sum of all delays between resets
of clocks xp+2−i and xp+1−i. Therefore every λi (i ∈ 2..p) is of the form Ci ±

∑
tj with Ci ∈ Z. If 1 6∈ I

then
∑

i∈I λi is of the expected form. Otherwise, as λ1 = 1 −
∑

i≥2 λi, there exists J ⊂ 2..p such that∑
i∈I λi = 1 +

∑
i∈J ±λi; the sum is also of the expected form. Moreover, there is one non-zero coefficient

because
∑

i∈I λi is not constant (otherwise dimension of the region would be less than p). �

Lemma 12. Let P ⊂ [0,M]n. If there exist k indices 0 = i1 < · · · < ik ≤ n and k expansive affine functions
g1, . . . , gk such that for all (t1, . . . , tn) ∈ P :

1 ≥ g1(t1, . . . , ti1) ≥ g2(ti1+1, . . . , ti2) ≥ · · · ≥ gk(tik−1+1, . . . , tik) ≥ 0

then Vol(P) ≤ Mn−k

k! .

Proof. We describe an affine change of coordinates φ : (t1, . . . , tn) → (u1, . . . , un) with Jacobian deter-

minant modulus |J(φ)| ≥ 1 and such that Vol(φ(P)) ≤ Mn−k

k! . Then the conclusion follows immediately:

Vol(P) = |J(φ)|−1
Vol(φ(P)) ≤ Vol(φ(P)) ≤ Mn−k

k! .
For l ∈ 1..k, the function gl has the following form

gl(til−1+1, . . . , til) = cl +

il−il−1∑

j=1

αj,ltil−1+j with |αjl,l| ≥ 1 for some jl.

We can assume up to a permutation of coordinates (it does not change the volume) that jl = il. The change
of coordinates φ is defined as follows uil ← gl(til−1+1, . . . , til) for l ∈ {1, . . . , k} and the other coordinates
remain unchanged: ui ← ti.

15

Every vector (u1, . . . , un) ∈ φ(P) satisfies 0 ≤ ui1 ≤ · · · ≤ uik ≤ 1 and ui ∈ [0,M] for the other

coordinates. Therefore Vol(φ(P)) ≤ Mn−k

k! . It remains to prove that |J(φ)| ≥ 1.
The Jacobian matrix is lower triangular thus the Jacobian determinant is the product of the entries in the

diagonal. These entries are 1 (n− k times) and the αil,l for l ∈ 1..k. We are done: |J(φ)| =
∏k

l=1 |αil,l| ≥ 1.
�

Now we can state the key technical lemma of this section.

Lemma 13. Let π1, . . . , πk be k cycles of ∆∗ such that µ(π1), . . . , µ(πk) are all equal to a same non-forgetful

idempotent of M, then Vπ1···πk
≤ Mn−k

k! where n = |π1|+ · · ·+ |πk|.

Proof. We remark that an idempotent orbit graph (thus equal to its transitive closure) is complete if and
only if it is strongly connected. We will distinguish two disjoint kinds of non-forgetful idempotents, those
associated to non-progress cycles and those associated to progress cycles with non strongly connected orbit
graphs. In the former case some clock is not reset all along the path π1 · · ·πk, thus Pπ1···πk

is in a simplex
of type 1 and the volume satisfies the inequality to prove. In the latter case, π1, . . . , πk are progress cycles
with γ(π1) = · · · = γ(πk) a non strongly connected orbit graph. For l ∈ 1..k we denote by il the index of
the last transition of the lth cycle. By virtue of Lemma 10 there exists a set of indices I such that

1 ≥ fI(x0) ≥ fI(xi1) ≥ · · · ≥ fI(xik) ≥ 0.

Moreover, by Lemma 11 there exist expansive affine functions g1, . . . , gk (each one corresponding to a cycle)
such that fI(xil) = g1(til+1, . . . , til) for every l ∈ 1..k. Hence

1 ≥ g1(t1, . . . , ti1) ≥ g2(ti1+1, . . . , ti2) ≥ · · · ≥ gk(tik−1+1, . . . , tik) ≥ 0.

Hypotheses of Lemma 12 are satisfied, the conclusion follows. �

3.4. Pumping lemma for long thick paths

For a given real η > 0, we say that a path π is η-thick if Vπ ≥ η|π|. The following “pumping lemma”
will play the key role in characterization of thick automata below and can be interesting by itself.

Theorem 2 (pumping lemma). For every timed automaton A and every η > 0, there exists Nη such that
any η-thick path longer than Nη contains a forgetful cycle.

The rest of this section is devoted to the proof of this result. We use Simon’s theorem on factorization forests
to factorize paths and find some repeated idempotent. Then, absence of forgetful cycles yields repetition of
a non-forgetful idempotent along every path, which by Lemma 13 implies thinness.

A factorization forest of a word π is an unranked labeled tree with leaves labeled by the letters of π,
with root labeled by π and with two types of internal nodes:

• a binary node labeled by a word π1 · π2 with two children labeled by the words π1 and π2;

• an idempotent node labeled by a word π1 · · ·πk with all µ(πi) equal to a same idempotent and with
children labeled by the words π1, . . . , πk.

Theorem 3 (Simon [27]). If µ is a morphism from ∆∗ to a finite monoid M, then every word admits a
factorization forest of height at most h(M) = 9|M|.

We suppose that there are no forgetful cycles on a long path π and consider its factorization forest of
height at most h(M). When its length n grows up, the number of leaves also grows and since the height is
bounded, branching of nodes must get larger and larger. These hugely branched nodes are idempotent and
satisfy hypotheses of Lem. 13, thus their volume is very small, which implies that Vπ is also small. Lem. 14
below quantifies this “smallness” of Vπ as function of the length of π and height of its factorization forest,
and Thm 2 follows immediately thereof.

16

Let LVol be the function defined on paths by LVol(π) = logVπ − |π| logM . This function is subadditive
non-positive, i.e. LVol(π1 · π2) ≤ LVol(π1) + LVol(π2) ≤ 0. Let L(n, h) be the maximum of LVol(π) over
paths π of length n that do not contain forgetful idempotents and admit a factorization forest of height at
most h.

Lemma 14. For any height h, for any B > 0, there exists Nh,B ∈ N such that for all n ≥ Nh,B the
inequality L(n, h) ≤ −nB holds.

Proof. We will define Nh,B by induction on the height h. Let a be a factorization forest of height h with
n leaves and π1, . . . , πk the children of the root. Let K = n

2Nh−1,2B
. We distinguish two disjoint cases:

1. There are more than K subtrees having less than Nh−1,2B leaves.
2. There are less than K subtrees with less than Nh−1,2B leaves. Here the juicy part (sons with enough

leaves to satisfy induction hypothesis) has more than n
2 leaves.

• In the first case, the root is an idempotent node and we can apply Lem. 13:

LVol(π) ≤ log
Mn−k

k!
− n logM = −k logM − log k! ≤ −K logM − logK!,

which is upper bounded by −nB for n large enough.

• In the second case, for i ≤ k, we denote by ni the length of the path πi and by hi ≤ h− 1 the height
of its corresponding subtree. We can conclude using properties of LVol and the inductive hypothesis:

LVol(π) ≤
k∑

i=1

LVol(πi) ≤
k∑

i=1

L(ni, hi−1) ≤
∑

ni≥Nh−1,2B

L(ni, hi−1) ≤ −2B
∑

ni≥Nh−1,2b

ni ≤ −2B
n

2
= −nB.

�

To conclude the proof of Thm 2, given η > 0, let C = log(η/M) and h = h(M) the bound on height of
factorization forest. Using Lem. 14, we obtain that a path longer than Nh,C without forgetful idempotents
cannot be η-thick. �

3.5. Characterizing thick automata

In the theorem below we characterize thick automata with forgetfulness and give two other equivalent
characterizations of thickness. We say that there is a limit cycle along π if there exists a clock vector x and

a time sequence t such that x
t,π
−−→ x. Given ε > 0, in ε-discrete limit cycles all the components of x and t

should be multiple of ε.

Theorem 4 (characterizations of thickness). For a deterministic timed automaton in region split form,
the following conditions are equivalent and define thick automata:

1. H > −∞;
2. there exists a forgetful cycle;
3. there exists a limit cycle;
4. there exists an ε-discrete limit cycle with ε > 0.

Equivalence between 3 and 4 can be found in [39]. 2⇒ 3 is straightforward.

Proof (of 4⇒ 1). There exist (q0,x0)
(u1,w1)
−−−−−→ (q1,x1) · · ·

(ud,wd)
−−−−−→ (q0,x0) along some π ∈ ∆d with

u1, . . . , ud ∈ {ε, 2ε, . . . ,M − ε} and such that all the xi are not on the frontier of regions and have discrete
coordinates. First we can see that every clock has been reset at least once because any non-reset clock
would augment during the run, which contradicts its cyclicity. Then for each n > 0 the polytope Pπn is
described by a set of in equations of the form A <

∑k
i=j ti < B (with j − i ≤ d). Extending u periodically

permits to have a word in Pπn such that A + ε ≤
∑k

i=j ui ≤ B − ε for each of those inequations. Taking

ti ∈ (ui −
ε
d , ui +

ε
d) defines a hypercube included in Pπn with the volume greater than (2εd)nd. Then

H(A) ≥ log 2ε
d > −∞. �

17

Proof (of 1⇒ 2). We notice first that a thick automaton has long thick paths.

Lemma 15. If H > −∞, there exists η > 0 such that for all n big enough, there exists an η-thick path of
length n.

Proof. We use the characterization of the entropy in terms of V̂n =
∑

π∈∆n Vπ given in Prop. 4. Let

β = 2H−1. For n large enough, V̂n ≥ βn. Let π be one of the paths of ∆n of maximal volume, then
V̂n ≤ Vπ|∆|n and so if we pose η = β

|∆| we have Vπ ≥ ηn. �

Combining Lem. 15 with Thm 2 we find a required forgetful cycle. �

Sankur et al. [9] established that given a BDTA, existence of a reachable forgetful cycle in its fleshy
region-split form is PSPACE-complete. Hence, thickness of a BDTA is also a PSPACE-complete problem.

4. Operator approach

In this section, we develop an approach to volumes and entropy of languages of timed automata based
on functional analysis. First, in 4.1, we recall the analogue in the case of finite automata, their adjacency
matrices, their spectral properties and consequences on the size of their languages and their entropies. Then
we adapt this approach to timed automata: in 2.5 we have characterized volume functions vn : S → R+ by
a recurrent equation. Below, in 4.2.1 we identify a functional space C(S̄) containing these functions. Next,
we show that these volume functions can be seen as iterates of some positive integral operator Ψ on this
space, applied to the unit function (Sect. 4.2.2). This makes it possible to deduce in 4.2.3 the second main
theorem of this paper stating that the entropy equals the logarithm of the spectral radius of Ψ. Finally, we
explore the properties of Ψ and establish that this operator has a spectral gap, which is crucial for numerical
algorithms of Sect. 5.

4.1. Linear operators and finite automata

Here we recall a typical application of linear operators to finite automata and regular languages. More
details can be found in [13, 40].

Consider a deterministic finite automaton A = (Q,Σ, δ, q1, F), with states q1, q2, . . . , qs such that every
state is reachable from q1 and F is reachable from any state. Let L be the language accepted, and Ln

its sublanguage containing all its words of length n. In most cases, its cardinality |Ln| depends on n
exponentially, and the entropy of L (or of A) is defined as the growth rate of this cardinality: H(L) =

lim supn→∞
log |Ln|

n . We recall how this entropy (which is an important size, information and compressibility
measure) is related to linear operators.

Let Li,n be the set of all n-letter words accepted by A when starting at the state qi, and xi,n its
cardinality. From usual language equations

Li,0 =

{
{ε}, if qi ∈ F
∅, otherwise;

Li,n+1 =
⋃

(qi,a,qj)∈δ

aLj,n

one passes to equations on cardinalities

xi,0 =

{
1, if qi ∈ F
0, otherwise;

xi,n+1 =
∑

(qi,a,qj)∈δ

xj,n,

or, in vector notation, x0 = 1F and xn+1 = Axn, with the vector xn = (x1,n, . . . , xs,n) ∈ Rs and the s× s
adjacency matrix A = (ai,j) such that ai,j is the number of transitions in A leading from qi to qj . We
conclude with the explicit formula for cardinalities: xn = An1F . Thus size analysis of the automaton A is
phrased as iteration of the linear operator A on Rs. In particular, the entropy is the growth rate of the first
coordinate x1,n.

Exploration of the matrix A is simplified by non-negativity of its elements. Using Perron-Frobenius
theory, the entropy can be characterized as follows:

18

p

a, b, c

q

a, b

r

a, b, c

d d, e
p q

rs

a, b

a, b

a, b

a, b

Figure 5: Left: non-strongly connected automaton. Right: periodic automaton.

Proposition 16. It holds that H(A) = log ρ(A), where ρ(A) stands for the spectral radius, i.e. the maximal
modulus of eigenvalues of A.

4.1.1. Two decompositions

To insure that the iterations of A on any initial vector all have the same growth rate and converge to the
same direction, the automaton must be decomposed, first, into strongly connected components, then into
aperiodic components.

Examples: why to decompose. Consider first an example of the non-strongly connected automaton in Fig. 5,

left. It has three strongly connected components. The matrix is A =




3 1 0
0 2 2
0 0 3


 with two positive

eigenvalues (3, which is double, and 2), and three positive eigenvectors (those of the standard basis). When
we iterate the operator (i.e. compute Anx for some initial non-negative vector x), the growth rate can be
3n (e.g. if we start with x = (1, 1, 1)), which corresponds to the spectral radius, but it can also be 2n (if we
start with x = (0, 1, 0)).

The second automaton, on the right of Fig. 5, is strongly connected but periodic. It has four eigenvalues
with maximal modulus: 2; 2i;−2;−2i. Iterating the operator leads to a fast rotating sequence of vectors:

(1, 0, 0, 0)⊤, (0, 2, 0, 0)⊤, (0, 0, 4, 0)⊤, (0, 0, 0, 8)⊤, . . .

SCC decomposition. The automaton A, considered as a graph, can be decomposed into strongly connected
components. We will distinguish non-trivial components Ac (containing a cycle) from transient states
(i.e. single-state components without self-loops). For every Ac, we consider the corresponding matrix Ac

(which is a submatrix of A, i.e. the matrix is obtained by selecting rows, then columns corresponding to
states in Ac). Computation of the entropy of A reduces to those of Ac thanks to the following result.

Proposition 17. ρ(A) = maxc ρ(Ac) and thus H(A) = maxcH(Ac).

Thus, we can restrict ourselves to the study of operators of strongly connected automata, which constitutes
our first decomposition.

Periodic decomposition. Given a strongly connected automaton A, we define its period p as the greatest
common divisor of the lengths of its cycles. Then the following decomposition is possible (see e.g. [41]).

Proposition 18. The set Q can be split into p periodic components Q0, . . . , Qp−1 satisfying the following
properties:

1. any path visits cyclically in turn all the components Q0, . . . , Qp−1;
2. hence, any path of length p starts and ends in the same component;

3. there exists a natural b such that any two states within the same Qi are connected by some path of
length bp.

The space Rs is naturally split into a direct sum of subspaces Ei for i ∈ 0..p− 1 corresponding to periodic
components. Each Ei consists of vectors in Rs with coordinates vanishing outside of Qi. Operator A maps
each Ei to Ei−1 mod p; hence each Ei is invariant under Ap. We denote the restriction of Ap to Ei by A

p

i

(which is a submatrix of Ap).

19

Re

Im

λ ρ

Figure 6: Spectrum of an operator having a gap: the maximal eigenvalue ρ and a subset of the grey circle.

Proposition 19. For all i ∈ 0..p− 1, ρ(Ap

i) = ρ(Ap).

We conclude that for a strongly connected automaton ρ(A) = ρ(Ap)1/p = ρ(Ap

i)
1/p for any i ∈ 0..p − 1.

Thus we can concentrate our effort on the operator restricted to one periodic component: Ap

i .

4.1.2. Spectral gap and its consequences

Consider now the operator for one periodic component B = Ap

i . It has particular properties. In terms of
Perron-Frobenius theory it is irreducible. All its powers Bn with n ≥ b (with b as in Prop. 18) are matrices
with all positive elements. It follows from Perron-Frobenius theory that the operator B has a spectral gap
β ∈ (0, 1), in the following sense (see Fig. 6):

1. ρ(B) is a positive simple6 eigenvalue of B;

2. the rest of the spectrum of B belongs to the disk {z | |z| ≤ (1− β)ρ(B)};

Due to this gap, iterations of B on any positive vector behave in a very regular way, and numerical
computation of ρ(B) and of the eigenvector v becomes particularly easy.

Proposition 20. For any positive vector x:

• the vector Bnx converges in direction to v;

• the ratio |Bn+1x|/|Bnx| converges to ρ(B);

• the error in both cases converges in O((1 − β)n).

4.2. The operator associated to a TA

Now we examine the case of BDTA, where we can define an operator similar to the adjacency matrix of
a finite automaton.

4.2.1. The functional space of a TA

Here, the analogue to language cardinalities is the volume. Thus, in order to use the operator approach
we first identify the appropriate functional space containing the volume functions vn. We already know from
Lem. 3 that volumes are functions of S → R that are polynomial on each {q}×rq. This allows us to prolong
them by continuity to the set S̄ =

⋃
q∈Q{q} × r̄q, so they can be considered as elements of the space C(S̄).

We recall that C(S̄), endowed with the uniform norm ‖u‖ = supξ∈S̄ |u(ξ)|, is a Banach space.

We can compare two functions in C(S̄) pointwise, thus we write u ≤ v if ∀ξ ∈ S̄ : u(ξ) ≤ v(ξ). For a
function f ∈ C(S̄), we sometimes denote f(p, x) by fp(x). Thus, any function f ∈ C(S̄) can be seen as a
finite collection of functions fp defined on entry regions r̄p of locations of A.

6An eigenvalue λ is simple if its generalized eigenspace has dimension 1.

20

4.2.2. Defining the operator Ψ

Let us consider again the recurrent formula (4). It has the form vk+1 = Ψvk, where Ψ is the operator
on C(S̄) defined by the equation:

Ψf(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

x+τ∈g

f(q′, r(x+ τ)) dτ. (5)

We have also v0 = 1F . Hence vn = Ψn1F .

Proposition 21. The operator Ψ is a linear bounded positive operator on the Banach space C(S̄).

The problem of computing volumes and entropy is now phrased as studying iterations of the operator Ψ
on the functional space C(S̄). The theory of positive operators guarantees, that under some hypotheses, vn
is close in direction to a positive eigenvector v∗ of Ψ, corresponding to its leading eigenvalue ρ. Moreover,
the values of vn will grow/decay exponentially like ρn. The eigenvalue ρ and the corresponding eigenvector
can be computed using natural iterative procedures. In the sequel we apply this general scheme to the
operator Ψ, referring to the book [15] when a result concerning positive operators is needed.

4.2.3. Characterization of the entropy of a TA

We can now relate the entropy of a timed automaton to its operator.

Theorem 5 (entropy and spectral radius). For a BDTA, H = log ρ(Ψ), where ρ(Ψ) stands for the
spectral radius of Ψ.

Proof. By Prop. 4 we have:

H = lim
n→∞

(log V̂n)/n = lim
n→∞

(log ‖v̂n‖)/n.

Then we remark that v̂n = Ψn(1): indeed, the function 1 (constant, equal to 1 everywhere) is the
maximal function of norm 1 (we recall that ‖f‖ = 1 ⇔ sup(q,x)∈S |f(q, x)| = 1). Therefore for all n ∈ N,

‖Ψn‖ = supf :‖f‖=1 ‖Ψ
n(f)‖ = ‖Ψn(1)‖ = ‖v̂n‖. Using Gelfand’s formula ρ = limn→∞ ‖Ψn‖1/n, we conclude

that log ρ = limn→∞(log ‖v̂n‖)/n = H. �

4.3. Exploring the operator

Before establishing the existence of a spectral gap, we need to know a few more structural properties of
the operator.

4.3.1. Path operators and their kernel form

Equation (5) can be rewritten as:

(Ψf)q(x) =
∑

δ=(q,...,q′)∈∆

(ψδfq′)(x). (6)

where for δ = (q, a, g, r, q′) the operator ψδ acts from the space C(r̄q′) of continuous functions on the target
region to the space C(r̄q) on the source region. It is defined by the integral:

ψδf(x) =

∫

x+τ∈g

f(r(x + τ)) dτ.

Iterating (6), we obtain a formula for powers of operator Ψ

(Ψkf)q(x) =
∑

δ1...δk from q to q′

(ψδ1 . . . ψδkfq′)(x). (7)

21

For a path π = δ1 . . . δk ∈ ∆k starting in a state q and leading to a state q′, we define ψπ = ψδ1 . . . ψδk . This
operator acts from C(r̄q′) to C(r̄q).

Let D be the dimension of rq. When the path π satisfies the progress condition, for (x,x′) ∈ rp × rq
the polytope P (π,x,x′), is either empty or of dimension (n −D), and we denote by vπ(x,x

′) its (n −D)-
dimensional volume. We have the following representation of ψπ.

Theorem 6 (kernel form). When π is a progress path, the function vπ is a kernel for ψπ:

ψπ(f)(x) =

∫

rq

vπ(x,x
′)f(x′)dµq(x

′).

The kernel vπ is piecewise polynomial, strictly positive and continuous on Reach(π); it is zero outside of
Reach(π).

The measure µq(x
′) in the theorem is the dq-dimensional Lebesgue measure on rq, see Appendix B for more

details and the proof of the theorem.

Example 1. Let us apply the theorem to the cycle of label ab of the automaton A3 in Fig. 1. We have

x
t1at2b−−−−→ x′ if and only if (x, t1, t2, x

′) satisfies the set of inequations (I) = {0 < x < 1, 0 < t1, 0 < t2, x+ t1 <
1, t1 + t2 < 1} and x′ = t1 + t2. We instantiate (I) with t1 = x′ − t2, and obtain the set of inequations
(I ′) = {t2 < x′, 0 < t2, x + x′ − 1 < t2}. The kernel of ψab is vab(x, x

′) = Vol{t2 | (x, t2, x′) |= (I ′)} =

min(x′, 1− x). Thus ψab(f)(x) =
∫ 1

0
min(x′, 1− x)f(x′)dx′ = (1− x)

∫ 1

1−x
f(x′)dx′ +

∫ 1−x

0
x′f(x′)dx′.

Remark that this theorem ensures that for a forgetful path π, like the cycle in the above example,
vπ(x,x

′) > 0 for all (x,x′) in rp × rq.

4.3.2. Two decompositions again

Like in the discrete case (4.1.1), we decompose the automaton and the operator.

SCC decomposition. Given a region-split timed automaton A, it can be split into (non-trivial) strongly
connected components Ai and acyclic pathways between them. The entropy of a TA depends in a very
natural way on the entropies of its SCCs. The following result mimics Prop. 17.

Proposition 22. The entropy of the language of A equals the maximal entropy of the languages of its
non-trivial SCCs.

Proof. Let us denote by Hmax the maximal entropy of the SCCs and let it be reached on Ai. As all paths
of Ai are paths of A, we have V̂ Ai

n ≤ V̂ A
n , and thus, according to Prop. 4, Hmax = HAi

≤ H(A).
For the converse inequality, let us fix some σ > 0. By definition of entropy, there exists an A > 0 such

that in each subautomaton Ai we have for all n:

V̂n(Ai) ≤ A · 2
n(HAi

+σ) ≤ A · 2n(Hmax+σ).

Realizable paths of A are all included in the following finite union of path languages:
⋃

m≤|SCC|;
∑

m
k=0

lk≤|∆|; ∀k,ik:SCC

Wm,ℓℓℓ,i with Wm,ℓℓℓ,i =
⋃

n1,··· ,nm∈N

∆l0∆n1

i1
∆l1∆n2

i2
· · ·∆nm

im
∆lm .

Sets ∆i are subsets of ∆ used by corresponding Ai. For any m, any ℓℓℓ and any i, assuming
∑

k lk = l:

Vn(Wm,ℓℓℓ,i) ≤ |∆|
l

∏
∑

j nj=n−l

V̂nj
(Aij) ≤ |∆|

lA · 2(n−l)(Hmax+σ).

Since there is a finite number of choices of m, ℓℓℓ and i, there is thus another constant A′ > 0 such that
V̂n ≤ A′2n(Hmax+σ). As σ is arbitrary, this means H(A) ≤ Hmax. �

Thus, we can restrict ourselves to the study of operators of strongly connected automata, which consti-
tutes our first decomposition. Since the entropy of thin SCCs is −∞, we will only consider thick components.

22

Periodic decomposition. Given a strongly connected (region-split fleshy) timed automaton A, we define its
period p as the greatest common divisor of the lengths of its cycles. Then the location set Q can be split
into p periodic components Q0, . . . , Qp−1 as in Prop. 18.

The set of entry states S̄ is naturally split into components S̄i =
⋃

q∈Qi
{q} × r̄q and the Banach space

C(S̄) becomes a direct sum of subspaces Fi for i ∈ 0..p− 1 corresponding to periodic components. Each Fi

consists of functions in C(S̄) vanishing outside of S̄i. Operator Ψ maps each Fi to Fi−1 mod p; hence each
Fi is invariant under Ψ

p. We denote the restriction of Ψp to Fi by Ψp

i .

Proposition 23. For a strongly connected timed automaton, the spectral radius of Ψp coincides with spectral
radii of each Ψp

i .

Proof. We denote by 1i ∈ Fi the function equal to 1 within Qi and 0 outside. By Gelfand’s formula:

ρ(Ψp

i) = lim
k→∞

‖(Ψp

i)
k‖1/k = lim

k→∞
‖(Ψp

i)
k1i‖

1/k = lim
k→∞

‖Ψpk1i‖
1/k.

For any two i and j let d = i− j + p. We have that Ψd1i ∈ Fj , and ‖Ψd1i‖ ≤ ‖Ψ‖d. Hence, it holds that
Ψd1i ≤ ‖Ψ‖d1j . Thus, we obtain that

‖Ψpk1i‖ = ‖Ψ
2p−dΨp(k−2)Ψd1i‖ ≤ ‖Ψ‖

2p−d‖Ψ‖d‖Ψp(k−2)1j‖ = ‖Ψ‖
2p‖Ψp(k−2)1j‖.

Applying limk→∞(·)1/k to both sides of the inequality we get that ρ(Ψp

i) ≤ ρ(Ψ
p

j). Since the latter holds for

any i and j, the spectral radii for all the components ρ(Ψp

i) should be equal to each other.
As for the radius of Ψp, on one hand Ψp ≥ Ψp

0 and thus ρ(Ψp) ≥ ρ(Ψp

0). On the other hand, using again
Gelfand’s formula we obtain:

ρ(Ψp) = lim
k→∞

‖(Ψp)k‖1/k = lim
k→∞

‖(Ψp)k1‖1/k = lim
k→∞

max
i
‖Ψpk1i‖

1/k = max
i

lim
k→∞

(‖Ψpk1i‖)
1/k = ρ(Ψp

0).

�

We conclude that for a strongly connected timed automaton ρ(Ψ) = ρ(Ψp)1/p = ρ(Ψp

i)
1/p for any i ∈ 0..p−1.

Thus we can concentrate our effort on the operator restricted to one periodic component: Θ = Ψp

i .

4.4. Spectral gap

It is well-known that computation of the spectral radius of an operator (as well as other convergence
properties) is substantially simplified by the existence of spectral gap in the operator, as defined in 4.1.2.
Here we show that every periodic component of the operator Θ = Ψp

i with p the period of the automaton
has such a gap. This result will be used in the next section to ensure convergence of a numerical algorithm
for entropy computation.

Theorem 7 (spectral gap). For any region-split strongly connected thick timed automaton A, the operator
Θ has a spectral gap.

The proof of this result is quite technical, uses Perron-Frobenius theory for so-called acute operators as
in [15], and is based on the series of lemmata below, proved in Appendix C.

The idea of acuteness can be explained as follows. Let v be a non-zero vector in the functional space
C(S̄), and let h be a non-zero covector (a functional) in the dual space C∗(S̄). The angle α between them
can be naturally defined as follows:

cosα =
〈h, v〉

‖h‖ · ‖v‖
with 0 ≤ α ≤ π

(for h and v two vectors in Euclidean Rn this is the usual angle). For non-negative h and v, the angle is
always between 0 and π/2.

23

A linear positive operator A : C(S̄) → C(S̄) is called acute if applying it to any non-negative non-zero
h and v yields A∗h and Av forming an angle smaller than some fixed acute φ. Formally, we say that A is
acute with a cosine cosφ where φ ∈ (0, π/2) whenever

∀ non-zero h, v ≥ 0 : cosφ ≤
〈A∗h,Av〉

‖A∗h‖ · ‖Av‖
. (8)

We are interested in acuity since it is a sufficient condition for existence of a spectral gap:

Lemma 24 ([15], Thm 12.3). A positive acute operator A with cosine cosφ has a gap of at least β =
1− tanφ/2 (i.e. β = Ω(cosφ) whenever cosφ is small).

In order to prove that the operator Θ has a spectral gap we will first concentrate on two adjacent
forgetful paths π1 and π2, and prove that the angle between ψ∗

π1
h and ψπ2

v is acute, and its cosine admits
an exponential lower bound.

Lemma 25 (angle between two forgetful paths). Let π1 and π2 be forgetful paths of length n from p
to q and from q to r respectively. Let h ∈ C∗(rp) and v ∈ C(rr) be both non-negative and non-zero. Then,
for some α > 0 depending only on the automaton, the following inequality holds:

〈
ψ∗
π1
h, ψπ2

v
〉

∥∥ψ∗
π1
h
∥∥ · ‖ψπ2

v‖
≥ αn. (9)

The full proof of this lemma can be found in Appendix C.1, but now we give a very rough idea of it.
First we use the kernel form given by Thm 6 and obtain the following sufficient condition for (9):

∀x ∈ rp, ∀z ∈ rr,

∫
rq
vπ1

(x,y)vπ2
(y, z)dy

∫
rq
vπ1

(x,y)dy supy∈rq
vπ2

(y, z)
≥ αn.

Then, for each timed run following the path π1π2 from x ∈ rp to z ∈ rq, we consider separately its
first part, over path π1, and its second part, over π2. We transform the first part so that it reaches a
point inside some shrunk version r−q of the clock region at the end of π1, closer to its barycenter (it is
important that this transformation does not change too much the volumes). Then we change its second
part, making it start from the point of the shrunk region that would minimize path volumes over π2.
After this transformation, the integral corresponding to the numerator splits into a product of two factors∫
r
−
q
vπ1

(x,y)dy and miny∈r
−
q
vπ2

(y, z) proportional to the two factors of the denominator. Thus the fraction

simplifies and we get the required estimate.
Next we need a simple consequence of our decomposition into periodic components:

Lemma 26. In any periodic component of a strongly connected and thick automaton, there exists a natural
ℓ (multiple of the period), such that for every states p and q in this component there exists a forgetful path
θpq of length exactly ℓ.

Proof. Let σ be a forgetful cycle (its length is multiple of the period p), and let r be a state on this cycle
within the aperiodic component considered. By Prop. 18, 3, for some natural b, every two states in the
component are connected by a path of length bp. Thus we can go from p to r in bp steps, take the forgetful
cycle σ, and go from r to q in bp steps. Thus we obtain a forgetful path of length 2bp+ |σ| from p to q. This
terminates the proof (with ℓ = 2bp+ |σ|). �

We call a path π of length n good if its last n− ℓ transitions form a forgetful path (where ℓ comes from
the previous lemma). Of course, a good path is forgetful.

As we know from Eq. (7), restricted to one periodic component, the operator Θn admits the following
matrix representation:

(Θnf)p = ((Ψp

i)
nf)p =

∑

p
π
−→q,|π|=np

ψπfq,

24

where locations p and q belong to the periodic component Qi and f ∈ Fi. We will split it into two operators:
Θn = Φn + Ξn where Φn corresponds to good paths and Ξn to bad ones.

The following lemma states that the huge majority of paths are good.

Lemma 27 (size of good and bad paths). The volume of bad paths is smaller than any exponent, while
that of good ones is at least exponential:

• for every ι > 0 there exists N such that for all n > N it holds that ‖Ξn‖ < ιn;

• there exists ν > 0 and N such that for all n > N it holds that ρ(Φn) > νn.

Proof. The first item is an immediate corollary of Thm 2. For the second item, we notice that, by Gelfand’s
formula, ρ(Φn) = limk→∞ ‖Φk

n‖
1/k, and thus we have to find an exponential lower bound for Φk

n.
Let π be a forgetful cyclic path (which exists due to thickness), and let cp be its length. By Thm 4, there

exists an ε-discrete limit cycle along this path, let t be the corresponding time sequence. We notice that for
n large enough and arbitrary k any segment of length np in πnk will be good. Thus, πnk is a concatenation
of ck good paths of length np. On the other hand, operator Φck

n corresponds to all concatenations of ck
good paths of length np. Hence,

‖Φck
n ‖ ≥ ‖ψπnk‖ = ‖ψπnk1‖ = VolPπnk .

The latter polytope contains the ε/d-ball centered at tnk (i.e. the time sequence t repeated nk times), and
thus its volume is at least (2ε/d)cpnk. We conclude that

ρ(Φn) = lim
k→∞

‖Φck
n ‖

1/ck ≥ (VolPπnk)
1/ck

= (2ε/d)np. �

We know from Lem. 25 that operators corresponding to two adjacent forgetful paths form an acute angle.
It is possible to deduce that operator Φn (which is a sum of many operators of forgetful paths) is also acute:

Lemma 28 (good part is acute). The operator Φn is acute, and its cosine admits an exponential lower
bound: cosφ = Ω(γn) with some γ > 0.

We have thus decomposed the operator Θn into an acute operator Φn and a small operator Ξn. By
Lemma 24, Φn has a spectral gap. We need a result from perturbation theory to establish that the influence
of Ξn on the spectrum is negligible and thus Ψn

A also has a gap.
For an operator A having a gap β and spectral radius ρ, consider a ring on the complex plane: Γ =

{ζ|(1 − 3β/4)ρ ≤ |ζ| ≤ (1 − β/4)ρ} (see Fig. 7, right). By definition of the gap, all ζ in this ring do not
belong to the spectrum of A, thus the resolvent operator (A − ζ)−1 is well defined. Let δ be the maximal
norm of this resolvent:

δ = sup
ζ∈Γ

∥∥(A− ζ)−1
∥∥ .

Lemma 29 (small perturbation preserves spectral gap). Let A be a linear operator with gap β. Let
B satisfy ‖B‖ < δ−1. Then A+B also has a gap β/2.

This is a well-known fact of perturbation theory (see e.g. [16]). It turns out that for an acute operator the
parameter δ can be estimated.

Lemma 30 (resolvent norm for acute operators). Let A be a linear positive acute operator with cosine
cosφ and spectral radius ρ. Then the parameter δ defined above satisfies δ = O((cosφ)−6ρ−1).

Putting the previous lemmata together we obtain almost the required result.

Lemma 31. For a thick strongly connected BDTA A, there exists N such that for all n ≥ N the operator
Θn has a spectral gap.

25

Re

Im

ρ

Γζ

Figure 7: Finding δ; spectrum of the perturbed operator cannot cross the ring Γ.

Proof. Indeed, the operator Θn is decomposed as Φn + Ξn. Its forgetful part Φn is acute with c = O(αn)
by Lem. 28, and thus has a spectral gap β = Ω(αn) by Lem. 24. Thus, by Lem. 30, the parameter δ of Φn

satisfies δ−1 = Ω(α6nρ(Φn)), and thus, using Lem. 27, δ−1 = Ω(α6nνn). Using Lem. 27, for n large enough
we can guarantee that ‖Ξn‖ < δ−1; and by Lem. 29, Θn = Φn + Ξn has a spectral gap β/2 = Ω(αn). �

We have proved the gap property for the automaton operator in high powers: Θn for n ≥ N . Based on
the following lemma, we can deduce the same property for Θ.

Lemma 32. Let A be a positive operator. If both operators AN and AN+1 have gaps then operator A also
has a gap.

The statement of Thm 7 is now immediate.

Corollary 33. The spectral radius ρ(Ψ) is an isolated eigenvalue of Ψ.

5. Computing the entropy

The characterization of H in Thm 5 solves the main problem explored in this paper, but its concrete
application requires computing the spectral radius of an integral operator Ψ, and this is not straightforward.
In 5.1 we give an iterative procedure, which approximates the spectral radius and the entropy with a
guaranteed precision; in 5.2 we find an exact solution of this problem for a subclass of automata by reduction
to differential equations.

5.1. Iterative procedure

Let A be a positive aperiodic linear operator on C(S̄) with a gap larger than β. Our aim is to compute
its spectral radius. For this we iterate the operator:

g0 = 1; gn+1 = Agn

(whenever A is the operator of a BDTA, gn = vn). An approximation of the spectral radius can be
computed as ρn = ‖gn+1‖/‖gn‖. As stated in [15, (15.16)], for some constant C, the exponential error
estimate |ρn − ρ(A)| < C(1 − β)n holds. Combining with the results of Sect. 4 we obtain the algorithm to
compute the entropy of a timed automaton presented in Table 1. We summarize with the following result:

Theorem 8 (convergence). The algorithm in Table 1 computes the entropy of a BDTA with an exponen-
tially small error (w.r.t. the number of iterations n).

26

1. Transform A into the fleshy region-split form.

2. Decompose it into strongly connected components Ac.

3. For every thick Ac, find its operator Ψc and period pc.

4. Compute the sequence of functions gc,0 = 1; gc,n+1 = Ψpc
c gc,n.

5. Compute the approximations ρc,n = ‖gc,n+1‖/‖gc,n‖.

6. Compute H = maxc{log ρc/pc} ≈ maxc{log ρc,n/pc}.

Table 1: Iterative algorithm: approximating H

n gn(x) = v(ab)n(x) ‖gn‖ ρn−1 (log ρn−1)/2

0 1 1

1 1− x− (1− x)2/2 1/2 0.5 -0.5

2 (1− x)/3 + (1− x)4/24− (1− x)3/6 5/24 0.41667 -0.6315

3 2
15
(1− x)− (1− x)6/720 + (1− x)5/120 − (1− x)3/18 61/720 0.40667 -0.6490

4 17
315

(1− x) + (1− x)8/40320 − (1− x)7 /5040+

(1− x)5 /360− (1− x)3 /45 277/8064 0.40544 -0.6512

Table 2: Iterating the operator Ψ2 for A3 (H = log(2/π) ≈ −0.6515)

Example 2. Applying the method to the running example, we first restrict the study to the cycle ab, which
is the only non-trivial strongly connected component. Its period is 2 and thus we must compute Ψ2n(1) for
n = 0, 1, 2, . . . restricted to one periodic component p (or q). Table 2 contains the four first iterations of Ψ2.
In this table we present gn(x) = Ψ2n(1)(p, x) = ψ(ab)n(1)(x) = v(ab)n(x), its norm and ρn−1 = ‖gn‖/‖gn−1‖
(which is an approximation of ρ(Ψ2) = ρ(Ψ)2. This yields the following approximation of the entropy
H ≈ (log ρ3)/2 ≈ −0.6512, which is close to the true value (see 5.2.1 below) H = log(2/π) ≈ −0.6515.

5.2. Case of “11⁄2-clock” automata

We consider now the class of 11⁄2-clock automata which are defined as (fleshy region-split) timed automata
where the entry regions of all the locations have dimension at most 1 (a simple sufficient condition for being
11⁄2-clock is that in every transition, at most one clock is not reset). Volume functions of such automata
only have one scalar variable, which makes them easier to analyze by symbolic methods. In [42] a similar
approach is applied to a spectral analysis of a (slightly simpler) operator related to a combinatorial problem.

5.2.1. Computing the entropy of the running example symbolically

To get some intuition on computing the entropy of 11⁄2-clock automata, we consider first A3 of Fig. 1.
As before, we work on its fleshy region-split form, as presented on Fig. 3. By symmetry, the volume of a
path of length n ∈ N is the same function vn in both non-initial states. Thus vn is characterized by:

{
v0(x) = 1

vn+1(x) = (Ψvn)(x) =
∫ 1−x

0 vn(t)dt.

According to Thm 5, the entropy can be found as log ρ(Ψ), and by Cor. 33 ρ(Ψ) is the maximal eigenvalue
of Ψ. Let us write the eigenvalue equation:

λv(x) =

∫ 1−x

0

v(t)dt. (10)

Differentiating it twice w.r.t. x we get:

λv′(x) = −v(1− x); (11)

λ2v′′(x) = −v(x).

27

The solutions of the latter have the form v(x) = α sin(x/λ) + β cos(x/λ). Using (10) with x = 1 we find
v(1) = 0. We inject this in (11) for x = 0 and deduce α = 0. Thus v(x) = β cos(x/λ) and cos(1/λ) = 0.
Non-zero eigenfunctions of Ψ exist if and only if the differential equation has non-zero solutions, i.e. if and
only if λ = 2/((2k + 1)π) with k ∈ Z. The λ with highest modulus is 2/π and we can verify that indeed
v : x 7→ cos(xπ/2) satisfies (2/π)v = Ψv. Therefore ρ(Ψ) = 2/π, and the entropy of this automaton is
log(2/π).

5.2.2. The theory of 11⁄2-clock BDTA

As we will see below, the method hinted by the example can be generalized to all 11⁄2-clock BDTA: an
integral equation on eigenvalues can be transformed into a differential one and solved.

Theorem 9 (symbolic method for 11⁄2-clock BDTA). The algorithm in Table 3 yields a symbolic char-
acterization of the entropy of a 11⁄2-clock BDTA as the logarithm of the maximal root of a transcendental
equation.

Notice first that the set of entry states S is now a disjoint union of intervals and singleton points (regions
of dimension 1 and 0). Thus we split the set of locations Q into Q0 and Q1, with Qi the set of locations q
such that rq has dimension i.

It is convenient to choose as a scalar coordinate (ranging in (0, 1)) in each of the one-dimensional regions
rq the fractional part of a non-zero coordinate of x (which is the same for all non-zero coordinates of
x ∈ rq). In regions rq of dimension zero, we introduce a fictitious coordinate ranging in (0, 1). This change
of variables transforms any function f ∈ C(S̄) into a |Q|-dimensional vector of functions fq ∈ C(0, 1) such
that fq(x) = f(q,x), where x ∈ rq and x is the scalar coordinate of x as described above (by convention, fq
is a constant function for q ∈ Q0). We denote then by F = (fq)q∈Q the vectorial form thus obtained for f .
Using such a notation with scalar coordinates, we can give a more explicit form to the operator Ψ.

Lemma 34 (explicit form of Ψ for a 11⁄2-clock BDTA). There exist four integer square matrices,
(Dij)(i,j)∈{a,b}×{1,2}, such that Ψ (in scalar coordinates) has the following form:

(ΨF)(x) = Da1

∫ 1−x

0
F (t)dt + Db1

∫ 1

1−x
F (t)dt

+Da2

∫ 1−x

0 F (x+ t)dt + Db2

∫ 0

−x F (x + t)dt.
(12)

Elements of matrices D are the numbers of transitions of various types in the BDTA, as briefly described
in Fig. 8. More explanations can be found in Appendix D.1.

Computing the entropy of the language of the automaton using Thm 5 involves finding the leading
eigenvalue of Ψ, that is the greatest λ ∈ R such that for some non-zero function f ∈ C(S̄),Ψf = λf .
Equivalently we seek the greatest λ ∈ R such that some non-zero function F ∈ C(0, 1)Q satisfies

ΨF = λF. (13)

The first step toward solving this equation is to reformulate it as an equivalent integral equation on F and
its mirror function F̃ (the mirror of a function f , defined on (0, 1), is the function f̃ , also defined on (0, 1),

such that f̃(x) = f(1 − x)), where only x (and no more 1 − x) appears as upper bound of an integration
interval.

Lemma 35. F 6= 0 is an eigenfunction of Ψ if and only if Y =

(
F

F̃

)
is a solution of:

λY (x) = A

∫ x

0

Y (u)du +B

∫ 1

0

Y (u)du (14)

with A =

(
Db2 −Da2 Db1 −Da1

Da1 −Db1 Da2 −Db2

)
and B =

(
Da2 Da1

Db1 Db2

)
.

28

C0
q

C+
q

1

2
1

2

rq

a

a

b

b
C0

q : clocks null in rq

C+
q : clocks positive in rq

Figure 8: Classifying transitions in 11⁄2-clock automata. For guards of type a clocks in C+
q have a higher fractional part than

clocks in C0
q ; and for type b the opposite is true. Resets of type 1 reset all clocks in C0

q ; and those of type 2 reset all clocks in

C+
q . The coefficient (p, q) of matrix Dij is the number of transitions from p to q with guard of type i and reset of type j.

Proof. We start from characterization (13), use formula (12), and make a simple change of variables:

λF (x) = (ΨF)(x) = Da1

∫ 1−x

0

F (t)dt+Db1

∫ 1

1−x

F (t)dt+Da2

∫ 1

x

F (t)dt+Db2

∫ x

0

F (t)dt

= Da1

∫ 1

x

F̃ (t)dt+Db1

∫ x

0

F̃ (t)dt +Da2

∫ 1

x

F (t)dt +Db2

∫ x

0

F (t)dt.

Splitting the integrals
∫ 1

x
into

∫ 1

0
−
∫ x

0
permits to conclude that (13) is equivalent to the first |Q| lines of

(14):

λF (x) = (ΨF)(x) = (Db2 −Da2)

∫ x

0

F (t)dt+ (Db1 −Da1)

∫ x

0

F̃ (t)dt+Da2

∫ 1

0

F (t)dt+Da1

∫ 1

0

F̃ (t)dt.

To prove that (12) also implies the |Q| last lines of (14) it suffices to replace x by 1 − x in the reasoning
above, this changes index a into b and 1 into 0. �

The next lemma, proved in Appendix D.2, states that integral equation (14) can be rewritten as a differential
one with a couple of special additional conditions, involving a |Q| × |Q|-matrix defined as

Mλ =
(
Da1 +Db2 Da2 +Db1

) ∫ 0

− 1

2

exp
(u
λ
A
)
du

(
I
I

)
− λI. (15)

Lemma 36. The solutions Y of the integral equation (14) of the form

(
F

F̃

)
are exactly the solutions of the

differential equation λY ′ = AY satisfying Y (1/2) =

(
X
X

)
with X ∈ kerMλ.

We conclude with the characterization of the point spectrum of Ψ.

Corollary 37. The eigenvalues and eigenvectors of Ψ for a 11⁄2-clock BDTA are as follows:

• λ is an eigenvalue if and only if detMλ = 0;

29

• F is an eigenfunction if and only if F (x) =
(
I 0

)
exp

(
(x−1/2)A

λ

)(
X
X

)
with nonzero X ∈ kerMλ.

This gives a characterization for the entropy.

Corollary 38. The entropy of a 11⁄2-clock BDTA is the logarithm of the solution of detMλ = 0 with the
highest modulus (such a solution is always a real number).

Proof (of Thm 9). detMλ = 0 is a transcendental equation on λ that we know to have an isolated
maximal real solution ρ(Ψ) (due to Cor. 33), to be computed numerically. We can thus devise the algorithm
for computing H = log ρ(Ψ) depicted in Table 3. �

1. Transform A into the fleshy region-split form and check that it has 11⁄2clocks.
2. Compute the matrices A and B as in Lemma 35.

3. Compute exp ((x/λ)A), its integral, and build the matrix Mλ defined by (15).

4. Find the greatest root ρ (w.r.t. the unknown λ) of det(Mλ) = 0.

5. Return H(L(A)) = log ρ.

Table 3: Symbolic algorithm: computing H for 11⁄2clocks

6. Conclusions and further work

In this paper, we have defined size characteristics of timed languages: volume and entropy. The entropy
has been characterized as logarithm of the leading eigenvalue of a positive operator on the space of continuous
functions on a part of the state space. Properties of the operator have been analyzed, and based on these
properties two procedures have been suggested to compute the entropy.

Research in this direction is recent; nonetheless, based on the concepts presented in this paper, we
have obtained several other results. In [43, 44], dynamical systems are associated to timed languages, and
their entropy-like characteristics are related to the entropy of timed languages; in [1] the entropy of timed
languages is related to Kolmogorov complexity of timed words. These works suggest that this entropy is a
relevant information measure, which is confirmed in [6] where we sketch an application of entropy of timed
languages to transmission of timed data over a constrained channel. In [10] we adapted our methods to a
more precise size analysis of timed languages: characterization and computation of generating functions of
volumes.

Many questions still need to be studied. We are planning to explore practical feasibility of the procedures
described here and compare them to each other. We believe that, as usual for timed automata, they should
be transposed from regions to zones. Applications to information transmission and compression of timed
data will follow. Practical estimation of entropy remains a challenge. On the theoretical side, it would
be interesting to find the amount of information per time unit (in this paper, we measure information per
event). We believe that operator methods will be extensively used in research on timed and data automata,
and their probabilistic versions.

Appendix A. Proof of Proposition 4

We start with two technical lemmata, the first compares volumes of zones.

Lemma 39. If an n-dimensional zone A is a projection of an m-dimensional zone B then n!
m!Vol(A) ≤

Vol(B).

30

rpVol(rp) =
1
dp!

x

x

t

Vπ

Pπ = ∪x∈rpPπ(x)

Pπ(x)

vπ(x)

Zπ

Figure A.9: Three polytopes associated to a path.

Proof. We denote by Reg(Z) the set of regions of maximal dimension included in a zone Z. We have
Vol(Z) =

∑
r∈Reg(Z) Vol(r) =

1
dim(Z)! |Reg(Z)|. Every region of A is a projection of several regions of B,

thus |RegA| ≤ |RegB|, and the statement is now immediate. �

The second lemma permits to upper bound the volume of any polytope associated to a path π′ by the
volume of the polytope corresponding to its two-sided extension ππ′π′′.

Lemma 40. Let ππ′π′′ be a path of length n and k = |π|+ |π′′| then n!
(n+k)!Vπ′ ≤ Vππ′π′′ .

Proof. The proof is based on the following “folklore” result: for any path π the set of date vectors

P date
π = {(d1, . . . , dn) | (d1, d2 − d1, . . . , dn − dn−1) ∈ Pπ}, (A.1)

corresponding to delay vectors in Pπ, is a zone (with the same volume Pπ). The zone P date
π′ is a projection

of P date
ππ′π′′ and the statement follows from Lem. 39. �

Next we compare different volumes associated to a path in the lemma below, where µp(x) stands for the
Lebesgue measure on the region rp adapted to its dimensionality, see the following example.

Example 3. Let rq be defined by the clock constraint 0 = x1 < x2− 1 = x3− 1 < x4 − 2 < 1, then natural
coordinates in rq are x2 and x4; Lebesgue measure satisfies dµq(x) = dx2dx4 and thus

∫
rq
f(x)dµq(x) =

∫ 2

1

(∫ 3

x2+1 f(0, x2, x2, x4)dx4

)
dx2.

Lemma 41. If π is a path of length n starting in a region rp then

n!

(n+ dp)!
Vπ

(1)

≤

∫

rp

vπ(x)dµp(x)
(2)

≤
1

dp!
sup
x∈rp

vπ(x)
(3)

≤
1

dp!
Vπ .

Proof. Let us associate to any path π the polytope Zπ = ∪x∈rp{x}×Pπ(x) (see Fig. A.9). The inequality
to prove compares several volumes related to this polytope: Vπ is the volume of Pπ – projection of Zπ on t;
the function vπ(x) corresponds to the volume of Pπ(x) – the cross-section of Zπ for a fixed value of x; and
the integral of vπ is the volume of Zπ itself.

The inequality (3) comes from language inclusion: for all x ∈ rp, Pπ(x) ⊂ Pπ and thus, for their volumes
vπ(x) ≤ Vπ. The inequality (2) holds since 1

dp!
=
∫
rp

1dµp(x) is the volume of rp.

31

The inequality (1) follows from Lem. 39 applied to the n-dimensional zone P date
π (defined by (A.1))

and the n + dp-dimensional Zdate
π , which is obtained from the polytope Zπ by changing coordinates to

d−dp
, . . . , d−1, d1, . . . , dn linked to π as follows. The di for positive i are the dates of the zone P date

π . We
denote by x1 > x2 > · · · > xdp

the dp affinely independent clock values in rp. For i ∈ 1..dp we define
d−i = −xi < 0 (informally, d−i records the last date in the past when the clock xi was reset). �

Example 4. The polytope Zπ associated to the cycle ab of the running example is Zab defined by 0 < x < 1,
0 < t1, t2, x + t1 < 1 and t1 + t2 < 1. In that case d−1 = −x, d1 = t1 and d2 = t1 + t2. Thus,
(d−1, d1, d2) ∈ Zdate

ab iff −1 < d−1 < 0 < d1 < d2 < 1, and d1 − d−1 < 1.

Proof (of Prop. 4). The sequence log V̂n is sub-additive since for all n,m ≥ 0, V̂n+m ≤ V̂nV̂m. By
Fekete’s Lemma on sub-additive sequences [45] we deduce that (log V̂n)/n admits a limit in R̄ = [−∞,+∞]
and the first item is proved. It remains to prove two equalities:

lim sup
n→∞

(logVn)/n
(1)
= lim

n→∞
(log V̂n)/n

(2)
= lim

n→∞
(log ‖v̂n‖)/n.

The inequality (1,≤) follows from Vn =
∑

q0
π−→F

Vπ ≤
∑

π∈∆n Vπ = V̂n. In order to show the converse

inequality we choose for each location p ∈ Q a path π→p leading there from the initial state (q0,0) and a path
πp→ that leads from p to a final location (the length of such paths can be bounded by |Q|). For every path
π (from p to q, of length n), the path π̃ = π→pππq→ is accepting and, by Lem. 40, satisfies n!

(n+2|Q|)!Vπ ≤ Vπ̃ .

Summing over all the paths π of length n we obtain the inequality n!
(n+2|Q|)! V̂n ≤

∑
π∈∆n Vπ̃. On the other

hand, for fixed p and q, and for all π from p to q of length n, paths π̃ are accepting and distinct; thus∑
π∈∆n;p

π−→q
Vπ̃ ≤ Vn+i with i = |π→p| + |πq→| ≤ 2|Q|. Summing over all p and q we get

∑
π∈∆n Vπ̃ ≤

|Q|2maxi≤2|Q| Vn+i. Thus
n!

(n+2|Q|)! V̂n ≤ |Q|
2 maxi≤2|Q| Vn+i and taking lim supn→∞

1
n log(·) in both sides

gives the expected result (1,≥).
To prove the other equality, we sum in Lem. 41 over all paths π of length n and obtain: n!

(n+d)! V̂n ≤

|Q|‖v̂n‖ ≤ |Q|V̂n (we recall that d = |C| is the number of clocks). Finally, taking limn→∞ log(·)/n of each
term, we get, by the “squeeze theorem”, the required equality (2). �

Appendix B. Sketch of proof of Theorem 6

We will use a well-known result about (convex) polytopes.

Lemma 42. For any polytope Ω (in variables y, z), the volume v(a) of its cross-section by the family of
affine spaces y = a is a piecewise polynomial function of a continuous on its support7.

Proof (of Thm. 6, sketch). Let us fix a progress path π (i.e. a path resetting every clock) from p to q

of length n. We start with the following observation: whenever x
t,π
−−→ x′, each component x′ of x′ depends

on t in the following way: x′ = tlr(x′) + · · ·+ tn where lr(x′) is the index of the last reset of x′.
We can write ψπ(f)(x) as an integral over Pπ(x):

ψπ(f)(x) =

∫

Pπ(x)

f(x′)dt, (B.1)

where x′ is the clock vector obtained after reading (t, π) from x (i.e. such that x
t,π
−−→ x′).

To express ψπ in a kernel form we will proceed to a change of variables in this integral making dx′ explicit.
The new set of variables consists is (x̃′, t̃) with x̃′ = (x′1, . . . , x

′
dq
) the vector of dq affinely independent clocks

7Function v(a) is referred to as Radon transform of (the indicator function of) the polytope Ω and plays a central role in
tomography.

32

of the region rq; as for t̃, it is formed by all ti except those coming immediately after last resets of clocks on
π (i.e. except tlr(x′

j)
for j = 1..dq).

It is easy to see that (x̃′, t̃) = tJ for some matrix J with determinant 1. We notice that x̃′ is a natural
system of independent coordinates for rq; and t̃ is a natural system of independent coordinates for Ωπ(x,x

′)
(in particular, within rq the vector x̃′ determines the whole x′, and within Ωπ(x,x

′) the vector t̃ determines
the whole t).

Equation (B.1) can be rewritten using new variables as

ψπ(f)(x) =

∫

(x̃′,t̃)∈Pπ(x)J

f(x′)dt̃dx̃′ =

∫

x′∈rq

vπ(x,x
′)f(x′)dx̃′ with vπ(x,x

′) =

∫

(x̃′,t̃)∈Pπ(x)J

dt̃ =

∫

t∈Pπ(x,x′)

dt̃.

In other words, vπ(x,x
′) is the n − dq-dimensional volume of the polytope Pπ(x,x

′); and we obtain the
required kernel form of ψπ (indeed dx̃′ = dµq).

Given (x0,x
′
0) ∈ rp × rq, the set Pπ(x0,x

′
0) is the cross-section of Ωπ by the affine space of equations

x′ = x′
0 and x = x0. This set is an open polytope which is non-empty if and only if (x0,x

′
0) ∈ Reach(π).

Thus vπ(x0,x
′
0) > 0 on Reach(π) and is null outside of Reach(π). Moreover, due to Lem. 42, vπ is piecewise

polynomial and continuous on its support Reach(π). �

Appendix C. Proof details for Theorem 7

C.1. Proof of Lemma 25

In this proof, we will compare volumes using the following argument:

Lemma 43. If for two polytopes A,B ⊂ Rn a homothety h : x 7→ σx + (1 − σ)c satisfies h(A) ⊂ B, then
σn

Vol(A) ≤ Vol(B).

Below, we will obtain such homotheties using properties of runs of timed automata.
Whenever hypotheses of Lem. 25 satisfied, as π1 and π2 are forgetful, Thm 6 applies: the operators ψπi

,
i ∈ {1, 2}, admit kernels vπi

, which are strictly positive on Reach(πi).
Because of this, the following inequality is a sufficient condition (see [15]):

∀x ∈ rp∀z ∈ rr

∫
y∈rq

vπ1
(x,y)vπ2

(y, z)dy
(∫

y∈rq
vπ1

(x,y)dy
)
maxy∈rq vπ2

(y, z)
≥ αn.

We want to split this fraction into its left part (dealing with π1, handled in Prop. 45) and its right part
(dealing with π2, handled in Prop. 44) and then find a lower bound that directly stems from the properties
of volumes over π1 and π2. For this, we restrict the integration domain of the numerator to some “shrunk
region” rq,σ, and replace vπ2

by its minimum over y, yielding the following lower bound for the numerator:

(∫

y∈rq,σ

vπ1
(x,y)dy

)
min

y∈rq,σ
vπ2

(y, z).

More precisely, using notation {si | i = 0..dq} for the set of vertices of rq, we define, for σ > 0,

rq,σ
def
=
{∑dq

i=0 λisi

∣∣∣
∑dq

i=0 λi = 1 ∧ ∀i λi ≥ σ
}
. Remark that rq,σ 6= ∅ whenever σ ≤ 1

1+dq
. Thus in both

propositions below, we assume we already chose a fixed σ ≤ 1
1+d ensuring non-emptiness of rq,σ for all

regions rq of the automaton.
Note that vπ2

may vanish on the borders of Reach(π2), but the restriction of y to rq,σ ensures that
miny∈rq,σ vπ2

(y, z) exists and is positive by virtue of Thm 6.
Now it suffices to show the following:

33

∀x ∈ rp∀z ∈ rr

(∫
y∈rq,σ

vπ1
(x,y)dy

)
miny∈rq,σ vπ2

(y, z)
(∫

y∈rq
vπ1

(x,y)dy
)
maxy∈rq vπ2

(y, z)
≥ αn,

this new sufficient condition can, at last, be split in the following way:

∀x ∈ rp∀z ∈ rr

(
vπ1

(x, rq,σ)

vπ1
(x, rq)

)(
miny∈rq,σ vπ2

(y, z)

maxy∈rq vπ2
(y, z)

)
≥ αn.

First we look at the variations of the volume function of π2:

Proposition 44. miny∈rq,σ vπ2
(y, z) ≥ σn maxy∈rq vπ2

(y, z).

Proof. We choose ymin ∈ rq,σ and ymax ∈ r̄q such that miny∈rq,σ vπ2
(y, z) = vπ2

(ymin, z) and
maxy∈rq vπ2

(y, z) = vπ2
(ymax, z).

Let y0 ∈ Rdq be such that (1−σ)y0+σymax = ymin. Observe that, because ymin ∈ rq,σ, the barycentric

coordinates λ0i of y0 satisfy λ0i =
λmin

i −σλmax

i

1−σ > 0 and therefore y0 actually lies in rq. We can thus choose

t0 ∈ Pπ2
(y0, z) and define the homothety h2 : t 7→ (1− σ)t0 + σt.

Notice that if t ∈ Pπ2
(ymax, z), then h2(t) is necessarily a time vector going from ymin to z (the origin

of the convex combination of time vectors is the convex combination of the origins with same coefficients).
In other words, h2[Pπ2

(ymax, z)] ⊂ Pπ2
(ymin, z) and thus, by Lem. 43, we obtain: σn−drvπ2

(ymax, z) ≤
vπ2

(ymin, z) and a fortiori the sought inequality. �

We just showed that restricting the region rq to a smaller subset rq,σ ensures that variations of the
volume function on this set are small enough. Now we need to verify that the restriction to rq,σ does not
make vπ1

(x, rq,σ) too small in comparison to vπ1
(x, rq).

Proposition 45. vπ1
(x, rq) ≤ (1 − (1 + d)σ)nvπ1

(x, rq,σ).

Proof. Let c be the center of rq: c = 1
1+dq

∑dq

i=0 si (it is in rq,σ for all σ such that rq,σ 6= ∅).

We choose t0 in the interior of Pπ1
(x0, c) for some x0 ∈ rp (such a t0 exists because of forgetfulness)

and define the homothety h1 : t 7→ (1− γ)t+ γt0, for some γ. It follows that h1[Pπ1
(x)] ⊂ (1− γ)Pπ1

(x) +
γPπ1

(x, c).

We define the polytope P σ
π (x)

def
= {t ∈ R | x

t,π1

−−→ rq,σ} and remark that Vol(P σ
π (x)) = vπ1

(x, rq,σ).

Remark that Pπ1
(x) is the set of time vectors starting from x and going into rq = int(rq,0) = {

∑dq

i=0 λisi |

∀iλi > 0 ∧
∑dq

i=0 λi = 1}. It follows that h1[Pπ1
(x)] is a set of time vectors starting from x and going into

{
∑dq

i=0((1 − γ)λi + γ 1
1+dq

)si | ∀i λi > 0 ∧
∑dq

i=0 λi = 1}, which, provided that ∀i, (1 − γ)λi +
γ

1+dq
≥ σ (in

particular, for γ = (1 + d)σ), is included in {
∑dq

i=0 λisi | ∀i λi ≥ σ ∧
∑dq

i=0 λi = 1} = rq,σ . Then h1[Pπ1
(x)]

becomes a set of time vectors starting from x going into rq,σ, which means h1[Pπ(x)] ⊂ P σ
π (x), and by

Lem. 43: (1 − (1 + d)σ)nvπ1
(x, rq) ≤ vπ1

(x, rq,σ). �

Proof (of Lem. 25). Combining the inequalities established in Prop. 44 and 45, we find that the result
announced in Lem. 25 holds for α = σ − (1 + d)σ2. �

As this is true for all σ in [0, 1
1+d), this is in particular true for the σ that maximizes α, i.e. 1

2(1+d) . Thus

the best lower bound we can guarantee, under our approximations, for the cosine of the angle between ψ∗
π1

and ψπ2
is
(

1
4(1+d)

)n
.

34

C.2. Proof of Lemma 28

We first need to prove that the norm of Φnv in different locations does not change too much from location
to location.

Lemma 46. There exists β > 0 and N such that for all n > N and any non-negative and non-zero v ∈ C(S̄)
the following inequality holds:

min
p
‖(Φnv)p‖ /max

p
‖(Φnv)p‖ > βn.

Proof. First we find an upper bound for ‖(Φnv)p‖. Let ℓ be the constant from Lem. 26. Every good path
from p of length np can be decomposed into a prefix of length ℓ and a forgetful suffix of length np− ℓ. This
yields the following decomposition (here π ranges over paths of length ℓ from p to s, and ̟ over forgetful
paths of length np− ℓ from s):

(Φnv)p =
∑

s,π

ψπws, where ws =
∑

̟

ψ̟v.

The sum over s contains |Q| terms, let s0 be the index of the maximal one. Then

‖(Φnv)p‖ ≤ |Q|
∑

π

‖ψπws0‖ ≤ |Q|
ℓM ℓ‖ws0‖ = C1‖ws0‖,

with some constant C1 (here we used the facts that there are at most |Q|ℓ−1 possible π and that always
‖ψπ‖ ≤M ℓ). We conclude that for any p ∈ Q there exists s0 ∈ Q such that

‖(Φnv)p‖ ≤ C1‖ws0‖. (C.1)

Next we find a lower bound for ‖(Φnv)p‖. Let θ = θp1s0 be as in Lem. 26. For any choice of s0, we
have that (Φnv)p =

∑
s,π ψπws ≥ ψθws0 (a sum is greater than one term). Let now R be the region of s0,

and Rσ the shrunk region as in the proof of Lem. 25. Let x0 be the barycenter of the region of p. Then:

‖(Φnv)p‖ ≥ (Φnv)p1
(x0) ≥ ψθws0(x0) =

∫

R

vθ(x0,y)ws0 (y) dy ≥

∫

Rσ

vθ(x0,y)ws0 (y) dy ≥ min
y∈Rσ

vθ(x0,y) · min
y∈Rσ

ws0(y) · Vol(Rσ).

For y in Rσ, the first minimum is bounded from below by some positive constant c1. Indeed, all the
|Q|2 paths θpq given by Lem. 26 are forgetful, thus their operators have kernels strictly positive on Rσ, and
we can take c1 = minp,q,y∈Rσ

vθpq (x0,y) > 0 By Prop. 44, the second minimum admits the lower bound:

miny∈Rσ
ws0(y) ≥ σnp−ℓ‖ws0‖. Finally the volume of the shrunk region is Vol(Rσ) ≥ σ|Q|/|Q|! = c2. Thus

we can conclude that (for any s0)

‖(Φnv)p‖ ≥ c1 · σ
np−ℓ · c2 ≥ cσ

np‖ws0‖

for some positive c. Comparing this lower bound on ‖(Φnv)p‖ with the upper bound (C.1) we get the
required result. �

Proof (of Lemma 28). In the following chain of inequalities, π1 ranges over good paths of length n from
p to q, and π2 over good paths of length n from q to r:

〈Φ∗
nh,Φnv〉 =

∑

p,q,r

〈
∑

π1

ψ∗
π1
hp,
∑

π2

ψπ2
vr

〉
=
∑

p,q,r

∑

π1,π2

〈
ψ∗
π1
hp, ψπ2

vr
〉 (1)

≥ αn
∑

p,q,r

∑

π1,π2

(‖ψ∗
π1
hp‖‖ψπ2

vr‖) =

αn
∑

q

(
∑

p,π1

‖ψ∗
π1
hp‖

∑

r,π2

‖ψπ2
vr‖

)
(2)

≥ αn
∑

q

(∥∥∥∥∥
∑

p,π1

ψ∗
π1
hp

∥∥∥∥∥

∥∥∥∥∥
∑

r,π2

ψπ2
vr

∥∥∥∥∥

)
= αn

∑

q

(‖(Φ∗
nh)q‖‖(Φnv)q‖)

(3)

≥

αnmin
q
‖(Φnv)q‖

∑

q

‖(Φ∗
nh)q‖ =α

nmin
q
‖(Φnv)q‖‖Φ

∗
nh‖

(4)

≥ αnβn max
q
‖(Φnv)q‖‖Φ

∗
nh‖ = (αβ)n‖Φ∗

nh‖‖Φnv‖.

35

Here the inequality (1) follows from Lem. 25, (2) is triangle inequality, (3) is trivial, and inequality (4)
follows from Lem. 46. �

C.3. Proof of Lemma 30

Unfortunately, we did not find this result in the literature and were obliged to prove it by adapting
techniques from [15]. We first need some “infrastructure”.

Let A be an acute operator on Banach space F and ρ its spectral radius. By Lem. 24, A and A∗ have
non-negative eigenvectors e and f corresponding to eigenvalue ρ. By definition of acuteness 〈A∗f,Ae〉 > 0,
thus 〈ρf, ρe〉 > 0 and 〈f, e〉 > 0.

So e and f can be chosen such that ‖e‖ = 1 and 〈f, e〉 = 1. Let F0 = {v ∈ F| 〈f, v〉 = 0}, and
F1 = {λe|λ ∈ R}. The space F is a direct sum of unidimensional eigenspace F1 and complementary space
F0, each vector admits a decomposition v = v0 + v1 with

v0 = Qv = v − 〈f, v〉 e ∈ F0; v1 = Pv = 〈f, v〉 e ∈ F1

(in this proof, we will systematically use notation v0, v1 for projections Qv and Pv). The projectors P and
Q commute with A. Let also the constant c be defined by:

c = sup

{
‖z‖

‖z − λe‖

∣∣∣∣z ∈ F0 \ {0}, λ ∈ R

}
. (C.2)

The acuteness condition (8) provides useful estimates on several norms:

Proposition 47. For an acute operator A with cosine cosφ, vector e, functional f , operators P,Q and
constant c described above, the following bounds hold:

‖f‖, ‖P‖ ≤ (cosφ)−1, ‖Q‖, c ≤ 1 + (cosφ)−1, ‖A‖ ≤ ρ(cosφ)−1. (C.3)

Proof. First, applying (8) to f and e (they are positive) we get

cosφ ≤
〈A∗f,Ae〉

‖A∗f‖ · ‖Ae‖
<
〈ρf, ρe〉

‖ρf‖ · ‖ρe‖
=
〈f, e〉

‖f‖ · ‖e‖
= 1/‖f‖,

and thus ‖f‖ ≤ 1/ cosφ. On the other hand, ‖Pv‖ = ‖ 〈f, v, e〉 ‖ = | 〈f, v〉 | ≤ ‖f‖‖v‖ and ‖Qv‖ = ‖v−Pv‖ ≤
‖v‖+ ‖Pv‖ = (1 + ‖f‖)‖v‖.

To estimate ‖A‖, we remark that for any z ∈ F there exists a positive functional h ∈ F∗ of norm 1 such
that ‖Az‖ = | 〈h,Az〉 | (indeed ‖Az‖ = |Az(x∗)| for some point x∗ and we can take the functional h of norm
1 mapping each function to its value at x∗). Applying (8) to h and e we get that:

cosφ ≤
〈A∗h,Ae〉

‖A∗h‖ · ‖Ae‖
=

〈
h,A2e

〉

‖A∗h‖ · ‖Ae‖
=

ρ2 〈h, e〉

ρ ‖A∗h‖ · ‖e‖
≤

ρ

‖A∗h‖
,

thus ‖A∗h‖ ≤ ρ(cosφ)−1 and ‖Az‖ = | 〈h,Az〉 | = | 〈A∗h, z〉 | ≤ ‖z‖ρ(cosφ)−1.
Last, to estimate the constant c we remark that for z ∈ F0 it holds that 〈f, z〉 = 0 and

‖z − λe‖ ≥
| 〈f, z − λe〉 |

‖f‖
≥
|λ|| 〈f, e〉 |

(cosφ)−1
≥ |λ| cosφ. (C.4)

The supremum in definition (C.2) of c can be represented as maximum of two suprema: c1 for |λ| ≤ a‖z‖,
and c2 for |λ| > a‖z‖ (we will chose a a couple of lines later). Clearly, c1 ≤ 1/(1 − a), and from (C.2) it
follows that c2 ≤ 1/(a cosφ). Choosing a = 1/(1 + cosφ) makes both estimates (for c1 and c2) equal to
1 + (cosφ)−1. We conclude that c ≤ 1 + (cosφ)−1. �

36

Proof (of Lem. 30). Let β be 1− tanφ/2 as in Lem. 24.
Take ζ ∈ Γ, by Lem. 24 it does not belong to the spectrum of A, the resolvent (A − ζ)−1 is thus a

bounded linear operator and we have to estimate its norm. Let x and y be such that x = (A − ζ)−1y,
i.e. Ax − ζx = y, we must estimate ‖x‖ knowing ‖y‖. We project the last inequality to spaces F0 and F1

by applying projectors Q and P :

Ax0 − ζx0 = y0; (C.5)

Ax1 − ζx1 = y1. (C.6)

Since x1 is an eigenvector of A, Equation (C.6) is easy to solve:

ρx1 − ζx1 = y1,

and thus x1 = (ρ− ζ)−1y1, and, since ζ ∈ Γ,

‖x1‖ = |(ρ− ζ)
−1|‖y1‖ ≤ (|ρ| − |ζ|)−1|‖y1‖ ≤ (βρ/4)−1‖y1‖,

and we conclude with the estimate
‖x1‖ ≤ 4(βρ)−1‖y1‖. (C.7)

Estimation of x0 from (C.5) is more involved and is based on the fact that A on F0 is almost bounded
by (1− ρ)β. More precisely, as shown in [15, proof of lemma 12.5] for any y0 ∈ F0:

‖A2m+2y0‖ ≤ c(cosφ)
−2ρ2m+2(tan(φ/2))2m‖y0‖, (C.8)

where the constant c is as defined in (C.4). We can rephrase (C.8) for all even powers:

‖A2my0‖ ≤ Kevenρ
2m(1− β)2m‖y0‖,

with Keven = (1+(cosφ)−1)(cosφ)−2(tan(φ/2))−2. Using the bound (C.3) on ‖A‖ we propagate this bound
to odd powers:

‖A2m+1y0‖ ≤ ‖A‖‖A
2my0‖ ≤ ρ(cosφ)

−1Kevenρ
2m(1− β)2m‖y0‖ = Koddρ

2m+1(1− β)2m+1‖y0‖,

with Kodd = Keven(cosφ)
−1(tan(φ/2))−1. We conclude with an estimate for all powers:

‖Any0‖ ≤ Kρ
n(1− β)n‖y0‖, (C.9)

with K = max(Keven,Kodd). When cosφ is small, K = O(β−4).
From (C.5) it follows that x0 = (A− ζ)−1y0 = −ζ−1

∑∞
n=0 ζ

−nAny0, which yields, using (C.9),

‖x0‖ ≤ |ζ|
−1

∞∑

n=0

|ζ|−nKρn(1 − β)n‖y0‖ =
K|ζ|−1‖y0‖

1− ρ(1− β)|ζ|−1
≤

Kρ−1/(1− 3β/4)‖y0‖

1− (1 − β)/(1− 3β/4)
=

4K‖y0‖

βρ
. (C.10)

Combining estimates (C.10) of ‖x0‖ and (C.7) of ‖x1‖ we get

‖x‖ = ‖x0 + x1‖ ≤ ‖x0‖+ ‖x1‖ ≤
4K‖y0‖

βρ
+

4‖y1‖

βρ
≤

4K‖Q‖+ 4‖P‖

βρ
‖y‖.

Recalling that x = (A− ζ)−1y, we have obtained the required estimate for the norm of resolvent:

δ = ‖(A− ζ)−1‖ ≤
4K‖Q‖+ 4‖P‖

βρ
,

and using the bounds (C.3) on norms of projectors P and Q we obtain

δ ≤
4K(1 + (cosφ)−1) + 4(cosφ)−1

βρ
= O(β−6ρ−1),

which concludes the proof. �

37

C.4. Proof of Lemma 32 and Corollary 33

Proof (of Lemma 32). Let σ ⊂ C be the spectrum of A, then the spectrum σN of AN has the required
form: one simple eigenvalue ρ and a subset of the circle of a lesser radius λ. Hence σ contains some points
of maximum modulus ρ1/Ne (with e roots of unity of degree N) and a subset of the circle of radius λ1/N .
The same is true with respect to N + 1: all the spectral points in σ of maximum modulus have the form

ρ′
1/N+1

e′ (with e′ roots of unity of degree N + 1). Since the only complex number that is a root of unity

of both degrees N and N + 1 is 1, we conclude that σ contains one real number ρ̄ = ρ1/N = ρ′
1/N+1

and a
subset of the circle of a lesser radius λ̄ = λ1/N . We have obtained that ρ̄ is the unique spectral value of A
of the maximal modulus (thus its spectral radius).

In order to show that it is an eigenvalue of A, consider a positive eigenvector v of AN corresponding to
eigenvalue ρ, and build the vector w =

∑N−1
k=0 ρ

−k/NAkv. This vector is positive, and it is an eigenvector of
A, indeed:

Aw =

N−1∑

k=0

ρ−k/NAk+1v = ρ1/n
N∑

j=1

ρ−j/NAjv = ρ1/n(w + ρ−1Av − v) = ρ1/nw.

This eigenvalue is simple. Indeed, all corresponding eigenvectors are also eigenvectors of AN for eigenvalue
ρ, but there is only one such eigenvector. Let us prove that A has no other generalized eigenvectors. Suppose
the contrary, for some x 6= 0 that is not an eigenvector and natural k, it holds that (A− ρI)kx = 0. We fix
such an x and suppose that k is the smallest possible for this x (clearly k ≥ 2). Denote y = (A − ρI)k−2x
and z = (A− ρI)k−1x; this implies that (A− ρI)y = z, and z is an eigenvector. By induction on n we will
prove that Any = ρny+ nρn−1z. Indeed the equality holds for n = 1. To pass from n to n+ 1 we compute

An+1y = An(ρy + z) = ρAny +Anz = ρ(ρny + nρn−1z) + ρny = ρn+1y + (n+ 1)ρnz.

Now we can check that y is a generalized eigenvector of AN , indeed

(AN − ρNI)2y = A2Ny − 2ρNANy + ρ2Ny = ρ2Ny + 2Nρ2N−1z− 2ρN (ρNy +NρN−1z) + ρ2Ny = 0.

This contradicts the simplicity of the eigenvalue ρN for the operator AN and concludes the proof. �

Proof (of Cor. 33, sketch). According to Thm 7, ρ(Θ) is an eigenvalue of Θ = Ψpc

c,i (for some SCC
c) with a positive eigenvector, and thus an eigenvalue of Ψp

c . Using the same argument as in the proof
of Lem. 32, we can construct an eigenvector for Ψc with eigenvalue ρ(Ψ). Finally, this eigenvector can be
extended from one SCC to the whole automaton.

On the other hand, it is not difficult to show that every eigenvalue of Ψ is an eigenvalue of some Ψpc

c,i; and
since each of the latter operators has a spectral gap, ρ(Ψ) is an isolated (but possibly multiple) eigenvalue
of Ψ. �

Appendix D. Proof details for Theorem 9

D.1. Proof sketch of Lemma 34

Proof. First let us denote by [Ψ] the matricial form of Ψ (the operator on C(0, 1)Q such that the vectorial
form of Ψf is [Ψ]F). We recall, from (6), that Ψ can be decomposed as (Ψf)q(x) =

∑
δ=(q,...,q′)∈∆(ψδfq′)(x),

with, for f ∈ C(r̄q): ψδf(x) =
∫
x+τ∈g

f(r(x + τ)) dτ. Thus we can explicit the matricial coefficients of [Ψ]

as operators [Ψ]qq′ ∈ C(0, 1)→ C(0, 1):

([Ψ]qq′f) (x) =
∑

δ=(q,a,g,r,q′)∈∆

(ψδf)(x) =
∑

(q,a,g,r,q′)∈∆

∫

x+τ∈g

f(r(x+τ)) dτ =
∑

(q,a,g,r,q′)∈∆

∫

t∈[g](x)

f([r](x, t)) dτ,

where, in the last expression (obtained after the change of coordinates), the reset function [r] and interval
[g](x) take forms that depend on the situation.

38

Let, as on Fig. 8, C+
q be the set of clocks that were initially positive in the entry region regq and C0

q

the others (initially null). Concerning [r], we remark that transitions of a 11⁄2-clock BDTA going from a
state q can be of two types: either all clocks in C+

q (type 1), or all clocks in C0
q are reset (type 2). Then,

for transitions of type 1, [r](x, t) = t and, for transitions of type 2, [r](x, t) = x + t. Note that transitions
resetting all clocks could be considered as either type and actually, in this case, the target entry region has
dimension 0 thus f is a constant and the form of [r] is irrelevant. To fix our terminology, we choose the
convention that transitions resetting all clocks are of type 1.

Concerning [g], we observe that after entering a location q ∈ Q1, as time elapses (i.e. as τ progresses),
non-degenerated regions of two types are visited alternately: regions where clocks in C+

q have greater
fractional part than initially null clocks (type a) and regions where it is the opposite (type b). We recall
that in region-split BDTA, guards correspond to regions. So here g is either of type a or b. If g is of type
a, then x + τ ∈ g is equivalent to τ ∈ (k, k + 1− {x}), for some k ∈ N, i.e. [g](x) = (0, 1 − x). Otherwise,
if g is of type b, then this constraint is equivalent to τ ∈ (k + 1− {x}, k + 1), i.e. [g](x) = (−x, 0) or
[g](x) = (1 − x, 1) (we choose the one which makes [r](x, t) stay in (0, 1)).

When coming from a state q ∈ Q0, this alternation does not exist and x+ τ ∈ g is always equivalent to
τ ∈ (k, k + 1). We could thus define a type c for transitions from Q0, but it is easy to see that a guard of
type c would be the union of two adjacent guards of type a and b (where the value of x does not matter).
This is why we do not use type c explicitly in the formulas below but, instead, count transitions from Q0

twice: once as type a and once as type b.
The two criteria (type 1 vs type 2 and type a vs type b) can be combined in four different ways, covering

the set of transitions starting from q into as many subsets: ∆ =
⋃

(i,j)∈{a,b}×{1,2} ∆ij (this union is almost

disjoint: only transitions of type c appear in two subsets). Hence [Ψ]qq′ can now be written the following
way (with the change of variable t = τ − k):

([Ψ]qq′f)(x) =
∑

(q,a,g,r,q′)∈∆a1

∫ 1−x

0

f(t)dt +
∑

(q,a,g,r,q′)∈∆b1

∫ 1

1−x

f(t)dt

+
∑

(q,a,g,r,q′)∈∆a2

∫ 1−x

0

f(x+ t)dt +
∑

(q,a,g,r,q′)∈∆b2

∫ 0

−x

f(x+ t)dt.

Finally we define the square matrices Dij as (|{(q, a, g, r, q′) ∈ ∆ij}|)(q,q′)∈Q×Q and we obtain the required

form for the matricial operator Ψ. �

D.2. Proof of Lemma 36

As a preliminary we define the matrix S =

(
0 I|Q|

I|Q| 0

)
. This matrix permutes the |Q| first lines with

the |Q| last lines of any matrix it multiplies from the left, and permutes the |Q| first columns with the |Q| last

columns of any matrix it multiplies from the right. It is clear that Y =

(
F

F̃

)
if and only if SY = Ỹ . For any

natural k, it holds that SAk = (−A)kS, and the same is true for the infinite series: S exp(A) = exp(−A)S.

Proposition 48. The following statements hold:

(i) Eq. (14) implies λY ′ = AY ;

(ii) assuming λY ′ = AY , the condition Y (1/2) = SY (1/2) implies SY = Ỹ (the converse is always true);

(iii) assuming λY ′ = AY and Y (1/2) =

(
X
X

)
, Eq. (14) is equivalent to X ∈ kerMλ.

Proof. (i) Just differentiate (14) with respect to x.

(ii) The general solution of λY ′ = AY can be written in the following form:

Y (x) = exp

(
(x− 1/2)A

λ

)
Y (1/2).

39

Using properties of S (equality (1) below) and Y (1/2) = SY (1/2) (equality (2)) we obtain

SY (x) = S exp

(
(x− 1/2)A

λ

)
Y (1/2)

(1)
= exp

(
(1/2− x)A

λ

)
SY (1/2)

(2)
= Ỹ (x).

(iii) Eq. (14) holds if and only if A
∫ x

0 Y (t)dt+B
∫ 1

0 Y (t)dt−λY (x) = 0. We will rewrite the left-hand side
using our two constraints on Y . First we integrate λY ′ = AY , developing at the point 1/2:

λY (x) = λY (1/2) +A

∫ x

1/2

Y (t)dt = λ

(
X
X

)
+A

∫ x

0

Y (t)dt−A

∫ 1/2

0

Y (t)dt.

Next we express
∫ 1

0 Y (t)dt as

∫ 1

0

Y (t)dt =

∫ 1/2

0

Y (t)dt+

∫ 1

1/2

Y (t)dt =

∫ 1/2

0

Y (t)dt+

∫ 1/2

0

Ỹ (t)dt = (I + S)

∫ 1/2

0

Y (t)dt,

and finally we put everything together and obtain the following equation which is equivalent to (14):

(B(I + S) +A)

∫ 1/2

0

Y (t)dt− λ

(
X
X

)
= 0.

We observe that (B(I + S) + A) =

(
H
H

)
where H =

(
Da1 +Db2 Da2 +Db1

)
, hence the |Q| upper

lines of this equation are equal to the |Q| lower lines, so the equation is equivalent to its upper half:

H

∫ 1/2

0

Y (t)dt− λX = 0, or again MλX =

(
H

∫ 1/2

0

exp

(
(t− 1/2)A

λ

)
dt

(
I
I

)
− λI

)
X = 0.

�

Proof (of Lemma 36). Let Y be a solution of the integral equation (14) of the required form

(
F

F̃

)
.

Then, by (i) of the previous Proposition it satisfies the differential equation λY ′ = AY . By (ii, converse)

Y (1/2) = SY (1/2), hence Y (1/2) =

(
X
X

)
for some X . Finally, by (iii) Eq. (14) becomes equivalent to

X ∈ kerMλ.
For the converse direction, let X ∈ kerMλ. Then the unique solution Y of Cauchy problem λY ′ = AY

with the initial condition Y (1/2) =

(
X
X

)
by (ii) satisfies Y (x) = SY (x). Thus function Y has the required

form

(
F

F̃

)
for F constituted by the first |Q| components of Y . Finally, by (iii) Y satisfies the integral

equation. �

References

[1] E. Asarin, A. Degorre, Volume and entropy of regular timed languages: Discretization approach, in: Concur, LNCS 5710,
2009, pp. 69–83.

[2] E. Asarin, A. Degorre, Volume and entropy of regular timed languages: Analytic approach, in: FORMATS, LNCS 5813,
2009, pp. 13–27.

[3] E. Asarin, A. Degorre, Two size measures for timed languages, in: FSTTCS, volume 8 of LIPIcs, 2010, pp. 376–387.
[4] N. Basset, E. Asarin, Thin and thick timed regular languages, in: FORMATS, LNCS 6919, 2011, pp. 113–128.
[5] E. Asarin, N. Basset, A. Degorre, Spectral gap in timed automata, in: FORMATS, LNCS 8053, 2013, pp. 16–30.
[6] E. Asarin, N. Basset, M.-P. Béal, A. Degorre, D. Perrin, Toward timed theory of channel coding, in: FORMATS, LNCS

7595, 2012, pp. 27–42.

40

[7] R. Ben Salah, M. Bozga, O. Maler, On timed components and their abstraction, in: SAVCBS’07, ACM, 2007, pp. 63–71.
[8] A. Stainer, Frequencies in forgetful timed automata, in: FORMATS, LNCS 7595, Springer, 2012, pp. 236–251.
[9] O. Sankur, P. Bouyer, N. Markey, P.-A. Reynier, Robust controller synthesis in timed automata, in: CONCUR, LNCS

8052, Springer, 2013, pp. 546–560.
[10] E. Asarin, N. Basset, A. Degorre, D. Perrin, Generating functions of timed languages, in: MFCS, LNCS 7464, 2012, pp.

124–135.
[11] N. Basset, A maximal entropy stochastic process for a timed automaton, in: ICALP (2), LNCS 7966, Springer, 2013, pp.

61–73.
[12] N. Basset, Counting and generating permutations using timed languages, in: LATIN, 2014 (to appear).
[13] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
[14] N. Chomsky, G. A. Miller, Finite state languages, Information and Control 1 (1958) 91 – 112.
[15] M. Krasnosel’skij, E. Lifshits, A. Sobolev, Positive Linear Systems: The Method of Positive Operators, number 5 in Sigma

Series in Applied Mathematics, Heldermann Verlag, Berlin, 1989.
[16] T. Katō, Perturbation Theory for Linear Operators, Springer-Verlag, 1995.
[17] D. Beauquier, Pumping lemmas for timed automata, in: M. Nivat (Ed.), FoSSaCS, volume 1378 of LNCS, Springer, 1998,

pp. 81–94.
[18] R. Gómez, H. Bowman, Efficient detection of Zeno runs in timed automata, in: [46], 2007, pp. 195–210.
[19] T. A. Henzinger, Z. Manna, A. Pnueli, What good are digital clocks?, in: ICALP’92, LNCS 623, Springer-Verlag, 1992,

pp. 545–558.
[20] E. Asarin, O. Maler, A. Pnueli, On discretization of delays in timed automata and digital circuits, in: CONCUR’98,

LNCS 1466, Springer-Verlag, 1998, pp. 470–484.
[21] V. Gupta, T. A. Henzinger, R. Jagadeesan, Robust timed automata, in: O. Maler (Ed.), HART, volume 1201 of LNCS,

Springer, 1997, pp. 331–345.
[22] T. A. Henzinger, J.-F. Raskin, Robust undecidability of timed and hybrid systems, in: N. A. Lynch, B. H. Krogh (Eds.),

HSCC, volume 1790 of LNCS, Springer, 2000, pp. 145–159.
[23] A. Puri, Dynamical properties of timed automata, Discrete Event Dynamic Systems 10 (2000) 87–113.
[24] M. D. Wulf, L. Doyen, J.-F. Raskin, Almost ASAP semantics: from timed models to timed implementations, Formal

Aspects of Computing 17 (2005) 319–341.
[25] M. D. Wulf, L. Doyen, N. Markey, J.-F. Raskin, Robust safety of timed automata, Formal Methods in System Design 33

(2008) 45–84.
[26] P. A. Abdulla, P. Krcál, W. Yi, Sampled semantics of timed automata, Logical Methods in Computer Science 6 (2010).
[27] I. Simon, Factorization forests of finite height, Theoretical Computer Science 72 (1990) 65–94.
[28] V. A. Braberman, J. L. Obes, A. Olivero, F. Schapachnik, Hypervolume approximation in timed automata model checking,

in: [46], 2007, pp. 69–81.
[29] G. Bucci, R. Piovosi, L. Sassoli, E. Vicario, Introducing probability within state class analysis of dense-time-dependent

systems, in: QEST’05, IEEE Computer Society, 2005, pp. 13–22.
[30] L. Sassoli, E. Vicario, Close form derivation of state-density functions over DBM domains in the analysis of non-Markovian

models, in: QEST’07, IEEE Computer Society, 2007, pp. 59–68.
[31] O. Maler, K. G. Larsen, B. H. Krogh, On zone-based analysis of duration probabilistic automata, in: Y.-F. Chen,

A. Rezine (Eds.), INFINITY, volume 39 of EPTCS, 2010, pp. 33–46.
[32] N. Bertrand, P. Bouyer, T. Brihaye, N. Markey, Quantitative model-checking of one-clock timed automata under proba-

bilistic semantics, in: QEST’08, IEEE Computer Society, 2008, pp. 55–64.
[33] E. Asarin, P. Caspi, O. Maler, Timed regular expressions, Journal of the ACM 49 (2002) 172–206.
[34] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[35] R. Stanley, Enumerative Combinatorics, volume 1 of Cambridge studies in advanced mathematics, Cambridge University

Press, 2002.
[36] A. Stainer, Frequencies in forgetful timed automata, in: M. Jurdzinski, D. Nickovic (Eds.), FORMATS, volume 7595 of

Lecture Notes in Computer Science, Springer, 2012, pp. 236–251.
[37] H. Comon, Y. Jurski, Timed automata and the theory of real numbers, in: CONCUR, volume 1664 of LNCS, Springer,

1999, pp. 242–257.
[38] C. Dima, Computing reachability relations in timed automata, in: LICS, IEEE Computer Society, 2002, pp. 177–186.
[39] P. Krcál, Infinite Structures in Timed Systems, Ph.D. thesis, University of Uppsala, Dept. of Information Technology,

2009.
[40] E. Seneta, Non-Negative Matrices and Markov Chains, Springer, 2006.
[41] E. Denardo, Periods of connected networks and powers of nonnegative matrices, Mathematics of Operations Research 2

(1977) 20–24.
[42] R. Ehrenborg, J. Jung, Descent pattern avoidance, Technical Report, 2013. ArXiv:1312.2027 [math.CO].
[43] N. Basset, Dynamique Symbolique des Langages Temporisés Réguliers, Master’s thesis, ENS Cachan, France, 2010.
[44] N. Basset, Volumetry of Timed Languages and Applications, Ph.D. thesis, Université Paris-Est, France, 2013.
[45] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten,

Mathematische Zeitschrift 17 (1923) 228–249.
[46] J.-F. Raskin, P. S. Thiagarajan (Eds.), Formal Modeling and Analysis of Timed Systems, 5th International Conference,

FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of LNCS, Springer, 2007.

41

	Introduction
	Our main problem: size of timed languages
	Classical works: entropy of regular languages
	On techniques used
	Our main results on entropy of timed languages.
	Our second problem: ruling out pathologies in timed automata
	Related work
	Paper organization

	Problem statement
	Geometry, volume and entropy of timed languages
	Bounded deterministic timed automata
	Three examples
	Rectangles
	A product of trapezia
	Our favorite example

	Preprocessing timed automata
	Recurrent equations on volume functions
	Other volumes, same entropy

	The thin-thick alternative and its consequences
	Thinness, simplices and examples
	Point to point reachability: algebraic characterization
	Monoid of orbit graphs
	Adding clock resets
	Orbit graphs and reachability
	Other particular cycles

	Linear Lyapunov functions and sub-exponential volume
	Pumping lemma for long thick paths
	Characterizing thick automata

	Operator approach
	Linear operators and finite automata
	Two decompositions
	Spectral gap and its consequences

	The operator associated to a TA
	The functional space of a TA
	Defining the operator
	Characterization of the entropy of a TA

	Exploring the operator
	Path operators and their kernel form
	Two decompositions again

	Spectral gap

	Computing the entropy
	Iterative procedure
	Case of ``112-clock'' automata
	Computing the entropy of the running example symbolically
	The theory of 112-clock BDTA

	Conclusions and further work
	Proof of Proposition 4
	Sketch of proof of Theorem 6
	Proof details for Theorem 7
	Proof of Lemma 25
	Proof of Lemma 28
	Proof of Lemma 30
	Proof of Lemma 32 and Corollary 33

	Proof details for Theorem 9
	Proof sketch of Lemma 34
	Proof of Lemma 36

