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Abstract: Consider a set of oligomers listing the subunits involved in sub-complexes of a macro-
molecular assembly, obtained e.g. using native mass spectrometry or affinity purification. Given
these oligomers, connectivity inference (CI) consists of finding the most plausible contacts between
these subunits, and minimum connectivity inference (MCI) is the variant consisting of finding a
set of contacts of smallest cardinality. MCI problems avoid speculating on the total number of
contacts, but yield a subset of all contacts and do not allow exploiting a priori information on the
likelihood of individual contacts. In this context, we present two novel algorithms, MILP-W and
MILP-Wg. The former solves the minimum weight connectivity inference (MWCI), an optimization
problem whose criterion mixes the number of contacts and their likelihood. The latter uses the
former in a bootstrap fashion, to improve the sensitivity and the specificity of solution sets.
Experiments on the yeast exosome, for which both a high resolution crystal structure and a large
set of oligomers is known, show that our algorithms predict contacts with high specificity and
sensitivity, yielding a very significant improvement over previous work.

The software accompanying this paper is made available, and should prove of ubiquitous interest
whenever connectivity inference from oligomers is faced.

Key-words: Connectivity Inference Connected induced sub-graphs, Mixed integer linear pro-
gram, Mass spectrometry, Protein assembly, Structural biology, Biophysics, Molecular machines



Dévoilement de contacts au sein d’un assemblage
macro-moléculaire, par résolution du probleme d’inférence
de connectivité de poids minimal

Résumé : Considérons un ensemble d’oligomeéres, obtenus e.g. par spectrométrie de masse
native, listant les sous-unités contenues dans certains sous-complexes d’un assemblage macro-
moléculaire.

Etant donnés ces oligomeres, 'inférence de connectivité (CI) consiste a inférer les contacts
les plus plausibles entre sous-unités. L’inférence de connectivité minimale (MCI) est la variante
visant a trouver un ensemble de contacts de taille minimale. Les problemes MCI évitent d’avoir
a spéculer sur le nombre exact de contacts, mais ils conduisent & un sous ensemble de tous les
contacts, et ne permettent pas d’exploiter une connaissance a priori sur la plausibilité de ces
contacts. Dans ce contexte, nous présentons deux nouveaux algorithmes, MILP-W et MILP-Wg.
Le premier permet de résoudre les problemes de type inférence de connectivité a poids minimal
(MWCT), qui sont des problemes d’optimisation ot le critére fait intervenir le nombre de contacts
mais aussi un poids sur chacun d’eux. Le second cascade a partir du premier, de fagon a améliorer
la sensitivité et la specificité des ensembles de solutions générées.

Des simulations sur ’exosome de la levure, systeme pour lequel sont connus un ensemble
d’oligomeres mais aussi un structure crystallographique, montrent que nos algorithmes prédisent
les contacts avec une grande sensitivité et specificité, le gain par rapport a ’état de I’art étant
tres substantiel.

Le logiciel accompagnant ce travail est mis a la disposition de la communauté, et devrait
s’avérer d’intérét central pour tous les problemes d’inférence de connectivité.

Mots-clés : Inférence de la connectivité, Sous-graphe induit connexe, programme linéaire
mixte, spectrométrie de masse, assemblage protéique, biologie structurale, biophysique, machine
moléculaire
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1 Connectivity Inference from Sets of Oligomers

Structural inference from oligomers and contacts. Unraveling the function of macro-
molecules and macro-molecular machines requires atomic level data, both in their static and
dynamic dimensions, the latter coding for thermodynamic and kinetic properties [SXK™13].
However, obtaining even static snapshots of large systems remains a tour de force, so that al-
ternative methods are being developed, based in particular on reconstruction by data integration
(RDI), a strategy aiming at producing models of assemblies using complementary experimental
data [ADV™07]. In its full generality, RDI accommodates both structural and purely com-
binatorial data |[AFKT08]. The former typically consists of crystallographic (high resolution)
structures, electron microscopy maps, and NMR models. The latter comprise information on the
composition and copy numbers of subunits, as well as pairwise contacts. Given a large assem-
bly, information on oligomers (i.e., sub-complexes of the assembly) can be obtained by methods
such as tandem affinity purification [ea0I] or native mass spectrometry [SR0O7, [RDD™12|, and
such oligomers can be complemented by information on pairwise protein - protein interactions
[BLIOT, BTD™08|. More specifically, oligomers of varying size can be obtained under various
experimental conditions. While stringent conditions (e.g. low pH) result in complete dissociation
of the assembly, so that the individual molecules are identified, less stringent conditions result
in the disruption of the assembly into multiple overlapping oligomers. Assembled together, such
oligomers can be used to infer contacts within the assembly [SRO7]. In the context of RDI, the
models stemming from such analysis do not, in general, achieve atomic resolution. They can,
however, be used to bridge the gap to atomic level models of sub-systems of the assembly under
scrutiny [DDC12l [DDC13].

Unweighted and weighted connectivity inference: MCI and MWCI. Consider a macro-
molecular assembly consisting of subunits (typically proteins or nucleic acids). Assume that these
subunits are known, but that the pairwise contacts between them are unknown or only partially
known — in this latter case the presence or the likelihood of selected contacts is known. Con-
nectivity Inference (CI) is the problem concerned with the elucidation of contacts between these
subunits, as it ideally aims at producing one contact for each pair of subunits sharing an interface
in the assembly (Fig. . Note that mathematically, the subunits may be seen as the nodes of a
graph whose edges are defined by the contacts. Thus, in the sequel, we use contacts and edges
interchangeably.

To address CI, let an oligomer formula be a list of subunits defining a connected component
within the assembly. That is, an oligomer formula is the description of the composition of
the oligomer, giving the number of copies of each molecule. We define a connectivity inference
specification (specification for short) as a list of oligomers. The solution of a CI problem consists
of a set of contacts, denoted S in the sequel. This set is called a valid edge set or a solution
provided that for each oligomer and also for the whole complex: restricting the edges from S to
the vertices of an oligomer formula yields a connected graph (Fig. . In defining valid solutions,
two critical questions arise: how many contacts should one seek, and should all edges be treated
on an equal footing.

On the number of contacts. In the absence of a priori knowledge on the likelihood of
individual contacts, a solution is naturally assessed by its number of contacts. Mastering this
size is non trivial, since the number of interfaces between subunits in the assembly is unknown.
On the one hand, the trivial solution involving all possible edges is uninteresting since it is likely
to contain a large number of false positives. On the other hand, one may solve the Minimum
Connectivity Inference problem (MCI), namely the variant of CI minimizing the number of

Inria



solving Minimum Weight Connectivity Inference Problems 7

contacts used. To do so, observe that minimally connecting an oligomer merely requires a tree,
that is a graph whose number of edges is the number of vertices (subunits) minus one. Thus,
solving MCI consists of choosing for each oligomer the tree yielding the solution of minimum
size. Yet, in doing so, one is likely to generate false negatives. Given these two extremes, one
goal of this work is to optimize the number of contacts reported, so as to maximize the number
of true positives and true negatives — a goal that will be achieved using so-called consensus edges
and a bootstrapping strategy.

A priori knowledge on contacts. In a number of cases, the likelihood of a given contact
may be known. On the experimental side, various assays have been developed to check whether
two proteins interact, including yeast-two-hybrid, mammalian protein-protein interaction trap,
luminescence-based mammalian interactome, yellow fluorescent protein complementation assay,
co-immuno precipitation, etc [BLJO7, IBTDT08]. But information obtained must be used with
care for several reasons, notably because expression systems force promiscuity between proteins
which may otherwise be located in different cellular compartments, and also because affinity
purification typically involves concentration beyond physiological levels. On the in-silico side,
various interactions attributes can be used, such as gene expressions patterns (proteins with iden-
tical patterns are more likely to interact), domain interaction data (a known interaction between
two domains hints at an interaction between proteins containing these domains), common neigh-
bors in protein - protein interaction networks, or bibliographical data (number of publications
providing evidence for a particular interaction). Here again, these pieces of information have
a number of caveats. In particular, structural data from crystallography or mass spectrometry
yield a bias towards stable interactions, at the detriment of transient ones. For these reasons,
strategies computing confidence scores usually resort to machine learning tools trained on the
aforementioned data [YMJ12] and also [TRT™10).

In any case, being able to accommodate such a previous knowledge is precisely another goal
of the algorithms developed in this work.

Algorithms. From a computer science perspective, solving CI problems is a hard task (sup-
plemental section . Two algorithms targeting such problems have been developed so far.

The first one is a two-stage heuristic method |[THST08|. First, random graphs meeting the
connectivity constraint are generated, by incrementally adding random edges. Second, a genetic
algorithm is used to reduce the number of edges, and also boost their diversity. Once the average
size of the graphs stabilizes, the pool of graphs is analyzed to spot highly conserved edges.

The second one is our method solving MCI problems, based on a mixed integer linear pro-
gram |[AACT13|. On the one hand, this work delineates the combinatorial hardness of the CI
problem, and offers two algorithms. Of the particular interest is MILP, since it delivers all optimal
solutions of a given MCI problem. (Following our discussion above, note that this algorithm may
require exponential time for hard instances, event though this behavior was not observed for the
cases processed.) On the other hand, when assessed against contacts seen in crystal structures,
the solutions of MILP suffer from two limitations. First, in all solutions, few false negatives are
observed, at the expenses of selected false positives. On the other hand, since all edges have a
unit weight, one cannot favor or penalize some of them.

In this context, this paper makes two improvements. First, we introduce the Minimum Weight
Connectivity Inference problem (MWCI), which allows computing optimal solutions incorporat-
ing a priori knowledge on the likelihood of edges. Second, we present algorithm MILP-W to solve
MWTCI problems, an algorithm aiming at maximizing the sensitivity and specificity of the set of
contacts reported.

RR n° 8622
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2  Minimum Weight Connectivity Inference: Mathemati-
cal Model

Oligomers and pools of edges. In solving CI problems, a valid edge set consists of edges
such that each of them involves two subunits belonging to at least one oligomer. More precisely,
consider an oligomer O;. This oligomer defines a pool of candidate edges equal to all pairs
of subunits found in O;. Likewise, the pool of candidate edges Poolg(Q) defined by a set of
oligomers O is obtained by taking the union of the pools defined by the individual oligomers.
Note that one can also consider a restricted set of oligomers involving the oligomers whose size is
bounded by an integer s, denoted O<g, the corresponding pool of candidate edges being denoted
Poolg(O<;s). The rationale for using small oligomers is that they favor local contacts. (Note
that the extreme case is that of a dimer, since the contact seen in a dimer must belong to every
solution.) Note also that one can edit a pool of edges, to enforce or forbid a given edge in all
solutions. For example, if a cryo-electron microscopy map of the assembly is known and two
proteins have been located far apart in the map, one can forbid the corresponding contact even
though the two proteins appear in a common oligomer.

We now present two ways to solve CI problems.

Unweighted case. In the unweighted case, each edge from the pool is assigned a unit weight,
so that the weight of a solution is the number of its edges. The corresponding optimization
problem is called MCI, and an algorithm solving it, MILP, has been proposed in [AACT13].

Weighted case. Inthe weighted case, each candidate edge e from the pool Poolg(Q) is assigned
a weight w(e), namely a real number in range [0, 1]. This number encodes the likelihood for the
edge to be a true contact. Taking G = 1/2 as a baseline (i.e. no a priori on this contact), a value
F > (G is meant to favor the inclusion of this edge in solutions, while a value U < G is meant to
penalize this edge.

Unifying the unweighted and weighted cases: MWCI problems. Depending on how
much information is available on candidate contacts, one may wish to stress the number of
contacts in a solution, or their total weight. Both options can actually be handled at once by
interpolating between the previous two problems. Using a real number o € [0, 1], we define a
functional mixing the number of edges and their weights, this latter one being favored for values
beyond the threshold 1/2. That is, we define the cost of a solution S using two terms respectively
corresponding to the number of edges and their weights:

CS)=ad 14+ (1-a)> (1/2 - w(e) = Y Cule), (1)
eesS ecS ecS
with )
(- a)ule). (2)

Eq. corresponds to the objective of the optimization problem denoted MWCI in the sequel.

Cale) =

The following comments are in order:

e In using o = 1, which is the strategy used by algorithm MILP [AACT13], the weights play no
role, and the inter-changeability of edges favors the exploration of a large pool of solutions.

Inria
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e The situation is reversed for small values of a. In particular, the conjunction @ < 1 and
different weights for all edges typically yields a small number of solutions, since ties between
solutions are broken by the weights.

e A null weight does not prevent a given edge to appear in solutions. To forbid an edge, one
should edit the pool of candidate edges, as explained above i.e. remove this edge from the
pool.

Remark 1 Assume that each edge has a default weight d instead of 1/2. Eq. s a particular
case of the following
Codle) =a(l—d)+d— (1 —a)w(e). (3)

Setting d = 1/2 in Eq. yields the edge cost of Eq. . On the other hand, setting d = 1 yields
a constant term 1 instead of (o + 1)/2. Since the default d =1 yields a weighting criterion less
sensitive to weights, we use d = 1/2.

We also observe that dCy 4(e)/da = 1 —d+ w(e). Thus, when varying o, the edge weight
prevails or not depending on its value with respect to the value 1 — d. For d = 1/2, one gets
dCqa(e)/da=1/2 4+ w(e).

3 Minimum Weight Connectivity Inference: Algorithms

3.1 Algorithm MILP-W

Algorithm MILP-W generalizes the unweighted version MILP [AACT13|, and allows enumerating
all optimal solutions with respect to the criterion of Eq. . The algorithm solves a mixed
integer linear program, using constraints imposing the connectivity constraints inherent to all
oligomers. Candidate edges are represented by binary variables taking the value 1 when edges
belong to a specific solution [AACT13| and 0 otherwise.

More precisely, algorithm MILP-W iteratively generates all optimal solutions, and adds at
each iteration extra constraints preventing from finding the same solution twice. To this end,
the method starts with a first resolution of the problem to get an optimal solution, if any. This
solution defines a set of edges and the associated value O PT for the criterion of Eq. . To check
whether another solution matching OPT exists, a new constraint preventing the concomitant
selection of all edges from the first solution is added. More formally, the sum of the binary
variables associated with the solution just produced is forced to be strictly less than the number
of edges in solutions seen so far. The resolution is launched again, and the criterion value is
compared to OPT. This process is iterated until the value of the solution exceeds OPT.

Remark 2 By picking the adequate combination of o and w(-), the individual edge cost of Eq.
can be null. Edges with null cost can create troubles in the enumeration problem, since solutions
with the same cost but nested sets of edges can be created. To get rid of spurious large edges, it is
sufficient to build the Hasse diagram (for the inclusion) of all solutions, and remove the terminal
nodes of this diagram.

3.2 Solutions and consensus solutions

The set of all optimal solutions reported by MILP-W is denoted Syrp-w, and the set of contacts
used in these solutions is denoted Enrp.w. The size of a solution S € SyLp-w, denoted | S |,
is its number of contacts. The score of a contact appearing in a solution S € Syrp-w, called

RR n° 8622
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contact score for short, is the number of solutions from Sypp.w containing it. The highest
scoring contacts are called the consensus contacts, and define the set Eft%.w. The score of a
solution S € Sypp-w is the sum of the scores of its contacts. Finally, a consensus solution is a

solution achieving the maximum score over Syp.w. The set of all such solutions being denoted
CONns.

MILP-W

As noticed earlier, when o = 1, algorithm MILP-W matches algorithm MILP. Therefore, for the
sake of clarity, the solution set, consensus solutions and the associated edge sets are respectively
denoted SmiLp, Sifirp, Eminp and Efi%. These notations are summarized in Table

To further assess the quality of the solution set S(= Smirp, SMiLp-w), assume that a reference
set of contacts Eger is known. The ideal situation is that where a high resolution crystal structure
is known, since then, all pairwise contacts can be inferred [LC10]. This reference set together
with the pool Poolg(Q) define positive (P), negative (N), and missed contacts (M) (Fig. [2)).
From these groups, one further classifies the edges of a predicted solution in set S into four
categories, namely true positive (TP), false positive (FP), true negative (TN), and false negative
(FN).

Positives (P) and negatives (N) decompose as P = TP + FN, and N = TN + FP, from
which one defines the sensitivity ROCgens. and the specificity ROCgpe.. as follows:

| TP|

_ TN
Pl

ROCsens. = ROCspee. = N (4)

Note that specificity requires the set N to be non empty, which may not be the case if Poolg(O) C
ERef-

We also combine the previous values to define the following coverage score, which favors true
positives, penalizes false positives and false negatives, and scales the results with respect to the
total number of reference contacts (since P might be included into Eger if the pool size is too
small):

|TP|—(|FP|+ | FN])
Cvals) = || ERet | |

Note that the maximum value is one, and that the coverage score may be negative.

(5)

3.3 Algorithm MILP-Wg

The focus on consensus edges is quite natural, since these may prosaically be seen as the backbone
of the connectivity in the assembly. However, alternative edges of significant importance may
exist too. To unveil such edges, we preclude one or more consensus edges, so as to trigger a
rewiring of the connectivity of solutions, and check which novel consensus edges appear along
the way. Implementing this strategy requires two precautions, namely: (i) edges corresponding
to dimers must be kept for a solution to be valid, and (ii) hindering too many edges may yield
a connectivity inference problem without any solution.

More precisely, we start precluding the consensus contacts i.e. the initial consensus contacts
EXip-w minus the dimers, one at a time from the pool of contacts to be explored. We subse-
quently report the union of consensus contacts (including the initial consensus contacts which
we began with) yielded after all the MILP-W runs. The process can be iterated by precluding two
or more contacts at a time. This strategy triggers rewiring of the system to a greater extent, at
the risk of inducing more false positives. (See pseudo code in the supplemental section )

Inria
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4 Material: Test Systems

We test the performance of the algorithms MILP-W and MILP-Wg on the following three systems
for which reference contacts for validation are available either coming from crystal structure or
from various biophysical experiments such as cryo-EM based reconstruction, cross-linking, and
MS/MS dimers. See supplemental section [§|for the input to the algorithms and the supplemental
section [ for the reference contacts.

4.1 Yeast exosome

The exosome involves 10 protein types, and 19 oligomers E| have been reported [THST08], ranging
in size from two to nine (Table [2| and supplemental section .

Oligomers up to size five are required to encompass 9 out of 10 proteins — the protein Csl4 is
present in size nine oligomers only. In terms of contacts, classical interfaces modeling tools [LCT0]
applied to the crystal structure yield 26 contacts amidst the 10 proteins, and 20 contacts in the
assembly depleted of Csl4 (Fig. [4)).

The status of Csl4 is interesting, since, as discussed in section [2] local contacts are favored
by small oligomers. In the sequel, we therefore consider two settings, namely the full exosome,
and the exosome without Csl4. In the former case, all oligomers define a pool Poolg(9) of 45
candidate edges; in the latter, the pool Poolg(8) contains 36 candidate edges.

4.2 Yeast 19S Proteasome lid

Proteasomes are protein assemblies involved in the elimination of damaged or misfolded proteins,
and the degradation of short-lived regulatory proteins. The most common form of proteasome is
the 26S, which involves two filtering caps (the 19S), each cap involving a peripheral lid, composed
of 9 distinct protein types each with unit stoichiometry.

Series of overlapping oligomers were formed by mass spectrometry (MS), tandem MS and
cross-linking using BS3. In total, 14 complexes were obtained out of which 8 came from MS,
MS/MS and 6 came from cross-linking experiments [STAT06] (Table|3|and supplemental section

4.3 Human elIF3

Eukaryotic initiation factors (elF) are proteins involved in the initiation phase of the eukaryotic
translation. They form a complex with the 40S ribosomal subunit, initiating the ribosomal
scanning of mRNA. Among them, human elF3 consists of 13 different protein types each with
unit stoichiometry. The elF3 complex in this text refers to the human elF3 unless otherwise
stated.

A total of 27 complexes were generated from the assembly by manipulating the ionic strength
of the solution and using tandem mass spectrometry [ZSFT08| (Table 4/ and supplemental section
. The subunit elF3j is labile and since none of 27 subcomplexes comprises of this subunit we
exclude it from the list of protein types, leaving behind 12 protein types.

1Originally 21 oligomers are reported including a trivial case of having all 10 protein types and one other
oligomer of size 8 has a duplicate, leaving behind 19 distinct oligomers.

RR n° 8622



12 Agarwal et al

5 Results

We first provide results for MILP-Wg with a = 1, namely when all edges have the same weight.
In a second step, we illustrate the benefits of using weights.

5.1 Algorithm MILP-Wg

As explained in section algorithm MILP-Wg works by accumulating consensus contacts (high-
est scoring contacts) from MILP-W and those due to local rewiring as a result of precluding the
initial consensus contacts one (or more) at a time. Consequently, our analysis focuses on the
sensitivity, specificity and coverage statistics introduced in section n in four settings:

e (C

The statistics for the edge set Eyrp, which serve as a baseline.

CONns.

. The statistics for the edge set E{fir-

_1)
(C-2)
e (C-3) The statistics for the edge set EyLp-wy returned by MILP-Wg after one iteration.
(C-4) the statistics for the edge set Envpp-wy, obtained when algorithm MILP-Wp terminates.

The results are presented on Figs. [B] [6] [7] and [§] for the yeast exosome, Figs. [I0] and [T1] for the
yeast proteasome, and Figs. and [L4] for human elF3.

The following consistent observations can be made for the three systems:

e In comparing (C-1) against (C-2), the sensitivity decreases since consensus solutions have
fewer edges. On the other hand, the specificity increases, indicating a large number of true
negatives or equivalently a small number of false positives — an observation in line with the
high scores of edges in consensus solutions.

e In comparing (C-3) against (C-4), the sensitivity increases, while the specificity decreases.
The variations observed for sensitivity and specificity actually depends on the number of
contacts precluded in the bootstrap procedure. Indeed, precluding more contacts triggers
more rewiring, which in turns yields a larger set of true positive edges (increased sensitivity),
at the expense of more false positives (decreased specificity).

e Finally, for algorithm MILP-Wg, one observes that a small number of iterations, typically in
the range 1,...,3, is favorable to high coverages. This owes to the aforementioned coun-
terbalance between sensitivity and specificity. In particular, when the bootstrap procedure
halts, all contacts from the pool have been used, which entails a large number of true pos-
itives — high sensitivity, but also a large number of false positive — low specificity. Thus,
the user may choose the risk level (in terms of false positives) he/she is willing to accepts,
depending on whether the focus is on sensitivity or specificity.

Comparison to previous work. The statistics just discussed compare favorably to previ-
ous work, obtained in particular with the heuristic network inference algorithm [THST08]. We
illustrate this fact with the results produced by MILP-Wy after one iteration.

On the yeast exosome with Csl4, the sensitivity of MILP-Wp is ~ 1.67 (=0.77/0.46) times
that of network algorithm and Cwvg. score increases from -0.08 to 0.35 (lines T3 vs TO in the
supplemental Table .

For the yeast proteasome, one observes that the sensitivity for Enrpowy is 1.76 (=0.74/0.42)
times that published earlier [THST08]. Also, Cvg. score increases from -0.21 to 0 (lines T3 vs
TO in the supplemental Table [L1]).
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The comparison is not possible, for elF3, though, since the previously published contacts
were computed manually using experimental information from various other sources |ZSFT08].
See however the supplemental Table for the results using our algorithms.

5.2 Algorithm MILP-W

In this section, we illustrate the role of weights stemming from using Eq. with a # 1. One
naturally expects a benefice in penalizing an edge which is a negative contact and which is thus
predicted as a false positive or a true negative. But an improvement of statistics can also happen
by merely favoring positive contacts. As an illustration, we consider the yeast exosome without
Csl4 (specifications in Table , using o = 0.25. We assign a weight of 0.6 to the following three
contacts - (Rrp45, Rrp46), (Rrp40, Rrp46) and (Rrp4l, Rrp42), the remaining contacts having
the default weight of 0.5.

Upon moving from the instance without weights (i.e., & = 1) to the instance with weights
(i.e., a = 0.25), we consider the changes in the sensitivity, specificity and coverage, namely:

A = (AROC,eps., AROC, e, ACvg). (6)

Consider first Eyp. One observes 4 false positives instead of 5 (supplemental Fig. 7
improving the assessment tuple by (0, 0.06, 0.05). Thus, while none of the contacts has a weight
less than 0.5, the relative value of weights has an incidence on the outcome.

Consider now &ffi%- The union of consensus contacts has no false positive, and true positives
are increased from 9 to 13, improving the assessment tuple by (0.2, 0.06, 0.45) (supplemental Fig.
. For EviLpowy, the change in assessment tuple for Envrpowy, (1st iteration) is (0.05, -0.12,

0). When more contacts are precluded, the trend seen is similar to earlier cases (supplemental
Fig. .

The reader is referred to the supplemental section for a thorough assessment obtained
upon varying the weights and the value of «.

6 Discussion and Outlook

For these reasons, strategies computing confidence scores usually resort to machine learning tools
trained on the aforementioned data [YMJ12] and also [TRT™10].

By giving access to a list of overlapping oligomers of a given macro-molecular assembly,
native mass spectrometry offers the possibility to infer pairwise contacts within that assembly,
opening research avenues for systems beyond reach for other structural biology techniques. In this
context, our work makes three contributions, based on state-of-the art combinatorial optimization
techniques.

First, we introduce the Minimum Weight Connectivity Inference problem (MWCI), which
generalize the Minimum Connectivity Inference problem, by introducing weights associated with
putative contacts. Second, we develop algorithm MILP-W to solve MWCI problems, taking into
account a priori biological knowledge on the likelihood of contacts. Third, we also develop al-
gorithm MILP-Wg, a bootstrap strategy aiming at enriching the solutions reported by MILP-W.
Algorithm MILP-Wg accumulates consensus contacts (highest scoring contacts) from MILP-W and
those arising due to local rewiring as a result of precluding the initial consensus contacts one (or
more) at a time. Our algorithms predict contacts with high specificity and sensitivity, yielding
a very significant improvement over previous work, typically a twofold increase in sensitivity.
Despite the combinatorial complexity of the problems addressed, all runs of algorithm MILP-W
terminated within a hand-full of seconds for all the cases processed in this work. Calculations
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with algorithm MILP-Wp are more demanding, though, since the run-time depends on the com-
binatorics of the tuples to be precluded. These algorithms raise a number of opportunities and
challenges.

In the context of native mass spectrometry, they offer the possibility to test various parameter
sets, in particular regarding the number of contacts and their likelihood, and to compare the
solutions obtained. More broadly, the ability to take into account confidence levels on putative
edges should be key to incorporate scores currently being designed in proteomics, in conjunction
with various assays.

In terms of challenges, fully harnessing these algorithms raises difficult questions. On the
practical side, one current difficulty is the lack of cases to learn from, namely assemblies for
which a significant list of oligomers is known, and a high resolution structure has been obtained.
Such cases would be of high interest to tune the balance between the aforementioned two criteria
(number of contacts and their likelihood). This would also aid in carrying out an in-depth study
of incidence of weights on the solutions obtained from MILP-W runs, given true positives and
false positives in the pool of contacts. Unfortunately, mass spectrometry studies are typically
attempted on assemblies whose high resolution structure is unknown and is likely to remain so,
at least in the near future. On the theoretical side, outstanding questions remain open. The
first one deals with the relationship between the set of oligomers processed and the solutions
generated. Ideally, one would like to set up a correspondence between equivalence classes of
oligomers yielding identical solutions. The ability to do so, coupled to the understanding of
which oligomers are most likely generated, would be of invaluable interest. The second one
relates to the generalization of our algorithms to accommodate cases where multiple copies of
sub-units are present. However, the multiple copies complicate matters significantly, so that novel
insights are called for not only computing solutions, but also representing them in a parsimonious
fashion.

In any case, we anticipate that the implementations of our algorithms, will prove its interest
for the growing community of biologists using native mass spectrometry.

Inria
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7 Artwork

7.1 Methods

Figure 1 (Minimum) Connectivity Inference from oligomers and a-priori information
on contacts: illustration on a fictitious system. Given an assembly whose subunits are
known but pairwise contacts are not, and for which the composition of a number of oligomers
in terms of subunits is also known, the problem consists of inferring contacts between subunits.
We consider a toy example involving 5 proteins and three oligomers (three trimers), as seen on
panel (A)). As additional information, one may enforce and/or forbid contacts, and one may also
weight contacts, depending on their likelihood. To connect each oligomer using as few edges
as possible, two edges must be chosen, out of three possible (panels (B, C, D)). The Minimum
Connectivity Inference consists of finding the overall smallest number of edges such that each
each oligomer gets connected. Panel ((E)) shows a solution with 4 edges (bold edges). Note that
these four edges from a subset of all pairwise contacts.

(A)

List of proteins / subunits:

Cyan Gray Green Orange Purple

Enforced and forbidden contacts:

Green Purple: Enforced
Gray Orange: Forbidden

Likelihood of contacts — default is 0.5:

Gray Green: 0.9
Gray Purple: 0.1 G

Oligomers: N

Green Orange Purple N
Gray Green Purple S
Cyan Orange Purple

Table 1 Notations for (consensus) solutions and (consensus) edges returned by the
algorithms MILP, MILP-W and MILP-Wg.

solutions edges consensus edges consensus solutions
MILP SMILP EmILp MILD MILD
MILP-W Svip-w  EMILP-w EXiED-w Syt p-w
MILP-Wg | SMILP-Ws  EMILP-Wg NA NA
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Figure 2 A pool of candidate Poolg(O) and a set of reference contacts Egrer define
positive (P), negative (IN), and missed contacts (M). Upon performing a prediction S,
S and its complement Poolg(O)\S further split into true/false x positives/negatives (TP, FP,
TN, FN).

Poolg(O\S S

ERef : POOIE (O)
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7.2 Yeast Exosome

Figure 3 The yeast exosome, an assembly consisting of 10 subunits. The Connectivity
Inference problem consists of inferring contacts between the subunits from the composition of
oligomers, i.e. connected blocks of the assembly. (Left) Crystal structure (Right) The solid
edges reported by the algorithm MILP, while the dashed edges are not present in the solution.

Crystal structure Contacts generated by MILP

Rrp46 Rrp4l
Rrp4

Dis3 Rrp45

Figure 4 Yeast exosome with and without Csl4.: contacts between subunits. Each
edge corresponds to an interface between two subunits. The two numbers decorating an edge
respectively refer to the number of atoms involved at that interface, and to the number of patches
(connected components) of the interface. Interfaces were computed with the program intervor,
which implements the Voronoi model from |[LCI10]. Note that a given subunit makes from three
(e.g. Rrp40) to seven (e.g. Rrp45) interfaces.
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Table 2 Yeast exosome: oligomers and associated statistics. The yeast exosome contains
10 proteins, with Csl4 found in size 9 oligomers only. (1st column) Size of oligomers i.e. number
of subunits (2nd column) Number of oligomers up to a given size (3rd column) size of the
pool of contacts associated with the oligomers selected. Note also that for s = 8 and s = 9,
the pool size is maximal, i.e. contains all possible pairs of proteins: for s = 8 : (g) = 36; for
s=9: () =45. (4th column) The number of missed contacts, as defined on Fig.

Oligomer size s | O<s| |Poolg(O<s)| |M]
2 3 3 17
3 4 6 14
4 6 13 7
5 8 20 3
6 9 21 3
7 10 29 3
8 15 36 0
9 19 45 0
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Figure 6 Yeast Exosome: Variation of
cumulative sensitivity, specificity and
coverage score with iteration index.
Note that the iteration index also indicates
number of contacts forbidden at a time. See
supplemental Table[J] for the detailed statis-

Figure 5 Yeast Exosome: Assessment
of contacts yielded from different al-
gorithms, MILP and MILP-Wg. See sup-
plemental Table[§|for the detailed statistics.

Yeast Exosome

: : ‘ ‘ tics.
1.4r 3 sensitivitv
[ specific
1.2F I Cvg sc(
Lol oo sensitivity
’ ¢—¢ specificity
sl 1.0F =—a Cvg score
0.6 (o} (o} (o} (o} (o} (o} (o} o
0.4f
0.2p
0.0
02 < Q N Q
&N Y & «
& < S
38 ; > N
3 O o »
N > b RN
& 9 & o
& O Q@ &
& ®8 N ®
& S

0.00

2 4 6 8 10 12 14
Iteration Index
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Figure 7 Yeast Exosome without
Csl4: Assessment of contacts yielded
from different algorithms, MILP and
MILP-Wg. See supplemental Table [§for the
detailed statistics.

Yeast Exosome (w/o Csl4)

Figure 8 Yeast Exosome without Csl4:
Variation of cumulative sensitivity,
specificity and coverage score with it-
eration index. Note that the iteration in-
dex also indicates number of contacts for-
bidden at a time. See supplemental Table
[IQ for the detailed statistics.
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[ specific
1.2r I Cvg scc
1.0F
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0.2f
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7.3 Yeast Proteasome lid

Figure 9 Yeast proteasome lid: contacts between subunits. Each edge corresponds to
an interface between two subunits.

@1)7 Rp:

Table 3 Proteasome lid: oligomers and associated statistics. The yeast proteasome lid
contains 9 proteins. Note that the pool size is maximal only for s = 8, the 14 oligomers yielding
the 36 possible contacts. The value s = 8 also corresponds to a null number of missed contacts.
See supplemental Table [2] for details on the notations.

Oligomer size s | O<s| | Poolg(O<s)| |M]|
2 3 3 16
3 7 10 10
4 9 11 10
) 10 18 )
6 10 18 )
7 11 27 1
8 14 36 0
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Figure 10 Yeast Proteasome Lid: As-
sessment of contacts yielded from dif-
ferent algorithms, MILP and MILP-Wg.
See supplemental Table [11] for the detailed
statistics.

Yeast Proteasome Lid

[0 sensitivity |
@3 specificit
I Cvg scor
1.0f
0.5
0.0
R D Q
& © ¥ & S
& Y & <
&S ; > N4
Q o o
& N O S
& &S & <&
SN & Q N\
/\\‘9 @Vq N N
& 4 \‘\\8

Figure 11 Yeast Proteasome Lid:
Variation of cumulative sensitivity,
specificity and coverage score with it-
eration index. Note that the iteration in-
dex also indicates number of contacts for-
bidden at a time. See supplemental Table
for the detailed statistics.

1.2p oo sensitivity ||
¢—0 specificity
1.01- =—a Cvg score |1
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7.4 elF3

Figure 12 Human eIF3: contacts between subunits. Each edge corresponds to an interface
between two subunits.

Table 4 Human elF3: oligomers and associated statistics. The human elF3 contains 12
proteins without eIF3j (a labile protein not present in the oligomers, see supplemental section
. Note that the maximal pool size for 12 proteins is (122) = 66, however for s = 11, the pool
size is 60, i.e. sub-maximal. The value s = 11 also lacks 2 reference contacts, i.e. |M| = 2 See

Table [2 for details on the notations.

Oligomer size s | O<,| |Poolg(O<,)| |M]
2 8 8 9
3 12 11 8
4 15 16 7
5 19 31 2
6 21 36 2
7 24 47 2
8 25 48 2
9 26 58 2

10 26 58 2
11 27 60 2
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Figure 13 Human elF3: Assessment Figure 14 Human eIF3: Variation of
of contacts yielded from different al- cumulative sensitivity, specificity and
gorithms, MILP and lvIILP‘WB-. See Sup- coverage score with iteration index.
plemental Table for the detailed statis- Note that the iteration index also indicates
tics. number of contacts forbidden at a time.
HUMAN EIF3 ‘ ‘ See supplemental Table [14] for the detailed
sl 3 sensitivity j statistics.
' 3 specific’
I Cvg scc
- 1.5 T
Lo oo sensitivity
¢—¢ specificity
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8 Supplemental: Lists of Oligomers for the Assemblies
Studied

In this section, we list the composition of the complexes, also called oligomers, produced
experimentally and used as input of our connectivity inference problems.

8.1 Yeast Exosome

The 19 oligomers generated using tandem mass spectrometry and subdenaturing concentration
of organic solvents [HDTT06] are the following ones:

List of proteins
Csl4 Dis3 Mtr3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46

List of oligomers

Mtr3 Rrp42

Rrp41 Rrp45

Rrp43 Rrp46

Rrp40 Rrp45 Rrp46

Rrp4 Rrp4l Rrp42 Rrp45

Rrp40 Rrp43 Rrp45 Rrp46

Dis3 Rrp4 Rrp4l Rrp42 Rrp4b

Mtr3 Rrp4 Rrp4l Rrp42 Rrp4b

Dis3 Mtr3 Rrp4 Rrp41l Rrp42 Rrp4b

Dis3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp45 Rrp46

Dis3 Mtr3 Rrp4 Rrp40 Rrp41l Rrp42 Rrp43 Rrp4b

Dis3 Mtr3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp45 Rrp46

Dis3 Mtr3 Rrp4 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46

Dis3 Mtr3 Rrp40 Rrp41l Rrp42 Rrp43 Rrp45 Rrp46

Mtr3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46

Csl4 Dis3 Mtr3 Rrp4 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46
Cs1l4 Dis3 Mtr3 Rrp40 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46
Csl4 Mtr3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46
Dis3 Mtr3 Rrp4 Rrp40 Rrp4l Rrp42 Rrp43 Rrp45 Rrp46

8.2 Yeast 19S Proteasome lid

The 14 oligomers obtained using MS and MS/MS (8 of them), and cross-linking experiments (6
of them) are as follows [STAT06]:

List of proteins
Rpn3 Rpn5 Rpn6 Rpn7 Rpn8 Rpn9 Rpnll Rpnl2 Seml

List of oligomers
Rpn7 Seml

Rpn3 Seml

Rpn3 Rpnb

Rpn3 Rpn5 Rpn8
Rpn5 Rpn6 Rpn8
Rpn5 Rpn8 Rpn9
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Rpn6
Rpn3
Rpnb
Rpn3
Rpn3
Rpn3
Rpn3
Rpn3

Rpn8
Rpnb
Rpn6
Rpnb
Rpnb
Rpnb
Rpnb
Rpnb

Rpn9
Rpn8
Rpn8
Rpn7
Rpn6
Rpn6
Rpn6
Rpn7

Rpn9

Rpn9

Rpn9 Rpnill

Rpn7 Rpn8 Rpnll Seml

Rpn7 Rpn8 Rpn9 Rpnll Seml
Rpn7 Rpn8 Rpnll Rpni2 Seml
Rpn8 Rpn9 Rpnll Rpni2 Seml

8.3 Eukaryotic Translation factor elF3

The 27 oligomers obtained using tandem mass spectrometry |[ZSFT08| are the following ones:

List of proteins
abcdefghiklmn

List of oligomers

g

TT 0000000000 RO QAT R BPM@HAMKROOQDT
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Note that the subunit elF3j is excluded from the list of protein types as there is no sub-
complex (oligomer) yielded containing the same.
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9 Supplemental: Reference Contacts Within Assemblies

In this section, we provide a classification of various contacts reported in the literature, classified
as a function of the experimental technique they were observed with. These contact categories are
used to define reference edge sets used for the assessment of the edges reported by our algorithms.

9.1 Pairwise Contacts within Macro-molecular Oligomers

Crystal contacts: [Cxtal] A high-resolution crystal structure of an assembly can be seen as
the gold standard providing all pairwise contacts between its constituting molecules. Given such
a crystal structure, all pairs of molecules are tested to check whether they define a contact. A
pair defines a contact provided that in the solvent accessible (SAS) model of the assembly EL two
atoms from these pairs define an edge in the a-complex of the assembly for a = 0, as classically
done to define macro-molecular interfaces [CPBJ0G, [TBCOS, [LC10].)

This protocol actually calls for one comment. For protein interfaces, it is generally accepted
that any biologically specific contact has a surface area beyond 500A2, or equivalently, involves at
least 50 atoms on each partners [JBCO8|]. For assemblies, because of the promiscuity of molecules,
this threshold does not apply directly. As an example, consider the number of atoms observed
at interfaces for the yeast exosome (Table . While selected interfaces meet the usual criterion,
others involve a handful of atoms. For this reason, in addition to Cxal, we defined a set Cy,,,
involving the most prominent contacts only (14 contacts out of 26). We note in passing that
the existence of a hierarchy of interface size within a protein assembly has been reported in
[LEBRTO08, .JBC0S].

Cryo-electron microscopy reconstruction (set Ccryo). Cryo-electron microscopy is a
technique to visualize and interpret unstained biological samples including macromolecular as-
semblies of 200 kDa and more. The biological sample is cryo-fixed to preserve the aqueous
environment around the macromolecule thereby, preventing ultrastructural changes, redistribu-
tion of elements etc. The imaging is therefore done in near native conditions and using state
of art computer controlled microscopy, image reconstruction software, sub-nanometer resolution
structures of large biological macromolecular assemblies can be retrieved.

Cross-linking (set Cxy,). Cross-linking is an analytical technique which consists in chemically
linking surface residue of two proteins located nearby. This technique is used to identify protein-
protein interactions, upon disrupting the cell and identifying the cross-linked proteins. The
outcome allows identifying interacting proteins within an assembly, but also transient interactions
which get stabilized by the cross-linker. The distance between the two amino-acids cross-linked is
circa 25A, including the length of the linker and the span of the side-chains of the two amino-acids
involved.

Due to this distance, the two proteins cross-linked may not form an interface in the sense
defined above. However, cross-linking contacts are considered as interfacial contacts in [KRY "12],
defining a low-resolution topology.

Dimers obtained from various biophysical experiments (set Cpim). The following
experiments deliver information on the existence of a dimer involving two proteins:

2Given a van der Waals model, the corresponding SAS model consists of expanding the atomic radii by 1.4A,
so as to account for an implicit layer of water molecules on the model. The SAS model also allows capturing
intersections between atoms which are nearby in 3D space, but are not covalently bonded.

RR n° 8622



30 Agarwal et al

e Mass spectrometry (MS) or Tandem Mass spectrometry (MS/MS): upon collecting a dimer,
and since no re-arrangement occurs in gas phase, the two proteins form a dimer in the
assembly analyzed.

e Tandem affinity purification (TAP): a bait put on one protein pulls down another protein,
upon capturing the marked protein on a affinity purification column.

e Co-immuno-precipitation of two proteins: as above.

e Native Agarose Gel electrophoresis: two proteins are inferred to be interacting if instead
of two sharp bands (assuming mol. wt. to be different) a broad band spread over a range
of molecular weight is observed.

e NMR titrations: information of the interacting residues of one protein is inferred from the
perturbation of the chemical shifts of the interfacial residues obtained when adding the
partner.
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9.2 Yeast Exosome

Table 5 List of contacts determined from experiments for Yeast Exosome. Note in
particular the crystal contacts (third column), determined from the crystal structure using the
relative atomic positions, using a Voronoi based interface model [LC10]. In general, interfaces
involving a large number of atoms are stable ones. Note also that small interfaces in the fi-
nal product may correspond to interfaces which were large at an early stage of the assembly
formation, and which got shrunk along the accretion of molecules.

] Cxtal (26 contacts) \ Cpim (7 contacts) \
X-Ray Crystallography, 2.8 A [MBC13] TAP, MS, MS/MS
Chains Subunits #Interface atoms | Partial Denaturation [HDTT06] [THST08]
CG (Rrp43, Rrp40) 2 (Rrp43, Csl4)
EI (Rrp42, Csl4) 6 (Rrp45, Rrp40)
AF (Rrp45, Mtr3) 19 (Rrp46, Rrp40)
FH (Mtr3, Rrp4) 24 (Rrp45, Rrp46)
DF (Rrp46, Mtr3) 54 (Rrp45, Rrp4l)
AH (Rrp45, Rrp4) 59 (Rrp43, Rrp46)
HI (Rrp4, Csl4) 60 (Rrp42, Mtr3)
AC (Rrp45, Rrp43) 72
DI (Rrp46, Csl4) 79
AJ (Rrp45, Dis3) 95
GI (Rrp40, Csl4) 117
CJ (Rrp43, Dis3) 148
CI (Rrp43, Csl4)f 211
BE (Rrp41, Rrp42) 223
EJ (Rrp42, Dis3) 231
AG  (Rrp45, Rrp40)f 245
EF (Rrp42, Mtr3)f 313
FI (Mtr3, Csl4) 327
AD  (Rrp45, Rrp46)f 349
BH (Rrp41, Rrp4) 352
CD  (Rrp43, Rrp46)t 369
BJ (Rrp41, Dis3) 371
DG (Rrp46, Rrp40)f 411
CF (Rrp43, Mtr3) 446
EH (Rrp42, Rrp4) 458
AB (Rrp45, Rrp41)t 463

T signifies those contacts which are also recovered by other biophysical experiments, TAP, MS, MS/MS

Published previously in the panel C of Fig. 4 of [THST08] a list of the contacts determined using
Network inference algorithm for the set of oligomers for Yeast exosome in the Section [§ The 12
contacts are:

(Csl4, Rrp43) (Dis3, Rrp45) (Mtr3, Rrp42)  (Mtr3, Rrp43)  (Rrp4, Rrp4l)
(Rrp4, Rrp42)  (Rrp40, Rrp45) (Rrp40, Rrp46) (Rrp4l, Rrp42) (Rrp4l, Rrp45)
(Rrp43, Rrp46)  (Rrp45, Rrp46)
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9.3 Yeast Proteasome Lid

Table 6 List of contacts determined from experiments for Yeast 19S Proteasome Lid

[ Ccuyo (13 contacts) |

Cbim (3 contacts)

Cxr, (14 contacts)

[LEMT12]
(Rpn3, Rpn5)f
(Rpn3, Rpn8)T
(Rpn3, Rpn12)f
(Rpn5, Rpn6)T
(Rpn5, Rpn8)f
(Rpn5, Rpn9)f
(Rpu5, Rpnll)
(Rpn6, Rpn7)f
(Rpn6, Rpn11)T
(Rpn7, Rpn8)
(Rpn8, Rpn9)f
(Rpn8 Rpnl1)f
(Rpn9, Rpnll)

MS, MS/MS analysis [STAT06]

(Rpn5, Rpn8)
(Rpn6, Rpny)
(Rpn8, Rpn9)

CX —-DSSO,DSS,BS3

(Rpn3, Rpn7)
(Rpn3, Rpny)
(Rpn3, Rpnl2)
(Rpn3, Sem1)
(Rpn5, Rpnb)
(Rpn5, Rpn9)
(Rpn6, Rpn7)
(Rpn6, Rpnll)
(Rpn7, Rpnll)
(Rpn7, Seml)
(Rpn8, Rpn9)
(Rpn8, Rpnll)
(Rpn3, Rpnb)
(Rpn3, Rpnll)

References
[KRY "12||[LEB"12]
[KRY 12
[KRY 12|
IKRY ™12 [STA™06]
[KRY™12]
IKRY "12||[LEB™12]
[KRY™12]
[KRY 12
[KRY ™12
IKRY "12|[STAT06]
[KRY 12
[KRY 12
[STAT06]
[ILFBT12)

Number of distinct contacts, |Ccryo U Cpim U Cx1.| = 19

t signifies those contacts in Ccryo which are also recovered by other biophysical experiments, TAP, MS, MS/MS, cross-links

Published previously in the panel B of Fig. 3 of [THST08|, a list of the contacts determined
using Network inference algorithm for the set of oligomers for Yeast 19S Proteasome lid in the
section Rl The 9 contacts are:

(Rpn3, Rpnb)
(Rpn5, Rpnll)

9.4 elF3

(Rpn3, Rpnll)
(Rpn6, Rpnd)

(Rpn3, Seml)
(Rpn7, Sem1)

(Rpn5, Rpn7)
(Rpn8, Rpn9)

(Rpn5, Rpn8)

Table 7 List of contacts determined from experiments for eIF3.

Name # contacts Ref. List of contacts

CCTYO 15 IQASV+13I (aa C) (37 d) (av m) (bv C) (bv g)T (ba i)T (Cv e) (Ca h) (ev I)T (fv h)T
(f, m)T (g, )7 (b, m)" (1, 1) (k, 1)

Cbim 10 [ZSET08] | (a, b) (b, g) (b, i) (d, e) (e, 1) (f, h) (f, m) (g, i) (h, m) (k, 1)

T signifies those contacts in Ccryo which are also recovered by other biophysical experiments, TAP, MS,

MS/MS

Number of distinct contacts, |Coryo U Cpim| = 17

Published previously in Fig. 4 of [ZSFT08], a list of the contacts determined manually for the
set of oligomers for elF3 in the Section [§] The 17 contacts are:

(a,b) (ac) (byc) (bse) (b,f) (b,g) (bji) (c,d) (c.e) (¢;h) (de) (e)]) (Eh) (fm) (g,i) (h,m)

(k1)
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10 Supplemental: Results

10.1 Yeast Exosome

Results without Csl4. On solving the problem for yeast exosome (without Csl4) using MILP
(or, MILP-W with oo = 1), one gets 10 consensus contacts in 2 consensus solutions (9 TP and 1
FP) (line with tag T6 in Table |8 and line with n = 0 in Table E[) We aim to enrich this initial
set of consensus contacts, £5fjj%. Among these 10 contacts, we excluded 3 dimers in the set of
oligomers (irreplaceable contacts), since, ipso facto, they are part of all the solutions, to launch
the bootstrap procedure. The contacts from Effji% are forbidden one at time by putting the
label forbidden (’E”), yielding 7 different MILP problems each with different pool set (each having
| Poolg(O<s) |= 35). The union of consensus contacts from 7 runs (including initial consensus
contacts) has 19 contacts having 3 FP. The ROC scores are ROCj.p,s. of 0.80, ROCjye.. of 0.81
and Cg. score of 0.45 (T7 in Table [§ and row with n =1 in Table [J).

If one goes further by forbidding two contacts at a time, there are 21 possible MILP problems
each with different pool set (each having | Poolg(O<;) |= 34). The union of consensus contacts
from these problems has 24 contacts having 7 FP. The cumulative number of contacts on taking
the union from the first step of forbidding one contact at a time is also 24. Therefore, ROC scores
are — ROCgeps. of 0.85, ROCjpe.. of 0.56 and C'vg. score of 0.35 (n = 2 in Table @ These scores
remain unchanged when we forbid 3,4,5 contacts at a time. When 6 or 7 contacts are forbidden,
there is no solution since the pool set is insufficient (n = 3,...,7 in Table@. Therefore, the final
cumulative ROC score when all possible combinations of the contacts are precluded is ROCgeps.
of 0.85, ROCjypec. of 0.56 and Cvg. score of 0.35 (T8 in Table .

Results with Csl4. The complete system involves 10 proteins and 19 set of oligomers. The
initial consensus set has 13 TP and 3 FP (T2 in Table@ out of which 3 are dimers (irreplaceable
contacts). On forbidding one contact at a time union of consensus contacts from 13 different
MILP runs is 25 contacts with 20 TP and 5 FP. The corresponding ROC scores are i.e. ROCgeps.
of 0.77, ROCpec. of 0.74 and Cvg. score of 0.35 (T3 in Table .

On forbidding further upto 11 contacts, the union of consensus contacts is 33 with 23 TP
and 10 FP. Forbidding 12 and 13 contacts do not yield any solutions due to insufficient number
of contacts. The ROC scores at the end, therefore, are ROCg¢ps. of 0.88, ROC;pe.. of 0.47 and
Cwg. score of 0.38 (T4 in Table [g).

Assessment. Precluding the initial consensus contacts simultaneously yields new consensus
contacts. We observe that the bootstrapping procedure has served its purpose which is to enrich
the initial consensus contacts, & by possibly further sampling more TP and less FP. For
s = 8, number of TP increases from 9 to 16 with 2 additional FP (T6 and T7 in Table .
Similarly, for s = 9, TP increases from 13 to 20 with additional 2 FP (T2 and T3 in Table .

We also see that the bootstrapping procedure, MILP-Wg, which essentially extends the initial
consensus contact set by including consensus contacts (high scoring contacts with high specificity)
that are found in the way, in the end have comparable sensitivity and improved sensitivity to
that of the contact sets yielded by MILP. For s = 8, for &yp and Evinp-wy, respectively, the
sensitivities are 0.85 and 0.80, whereas, the specificities are 0.69 and 0.81 (T5 vs T7 in Table .
These numbers for s =9 are 0.81 and 0.77 and 0.63 and 0.74 (T1 vs T3 in Table [§).

Note, that precluding more number of contacts though increase sensitivity as more TP are
sampled but hurt the specificity as well as a result of sampling of FP (T4 and T8 in Table .
This is due to rewiring of the system to a larger extent on forbidding large number of consensus
contacts.
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Finally, the performances are excellent when compared against those of the heuristic network
algorithm [THST08]. On the yeast exosome with Csl4, the sensitivity of MILP-Wg is ~ 1.67 times
that of network algorithm and Cvg. score increases from -0.08 to 0.35 (T3 vs TO in Table .
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Table 8 Yeast exosome: sensitivity, specificity and coverage for various edge sets
generated by MILP and MILP-Wg. Results from T0-T4 corresponds to Yeast exosome including
Csl4 and from T5-T8 corresponds to Yeast exosome without Csl4. For a given run (each line),
all edges predicted get distributed into TP and FP. In the following paragraph, the content in
the bracket correspond to yeast exosome without Csl4. Out of a pool of candidate edges of size
45 (36), the edge set EmiLp-wy (1st iteration) contains all true positives but six (but four), and
five false positives (three false positives). It is to be noted that tag T3 (T7) corresponds to the
1st iteration of the Table @] (Table , while tag T4 (T8) corresponds to results obtained upon
precluding all possible combinations of initial consensus contacts.

Tag algo s |Poolg(O<s) | M| P TP FN|N TN FP|ROCens. ROCypec.| Cvg
(T0) Network inference [THS™08] 9 45 0/26 12 14119 19 O 0.46 1| -0.08
(T1) Emme 9 45 0/26 21 5 |19 12 7 0.81 0.63] 0.35
(T2) & 9 45 0/26 13 1319 16 3 0.50 0.84] -0.12
(T3) EmiLp-wy, 1-contact 9 45 0[26 20 6 [19 14 5 0.77 0.74] 0.35
(T4) EmiLp-wy, after exhaustion 9 45 0126 23 3 (19 9 10 0.88 0.47| 0.38
(T5) Emie 8 36 0(20 17 3 |16 11 5 0.85 0.69 0.45
(T6) Econss 8 36 0[20 9 11]16 15 1 0.45 0.94] -0.15
(T7) Emrp-wy, 1-contact 8 36 0/20 16 4 |16 13 3 0.80 0.81] 0.45
(T8) EmiLp-wy, after exhaustion 8 36 020 17 6 9 7 0.85 0.56| 0.35

Table 9 Yeast exosome: sensitivity, specificity and coverage of enriched consensus
set on forbidding a number of initial consensus contacts by MILP-Wg. Note that the
cumulative statistics for row n is computed by considering union of all the consensus edge sets,

cons.

from 0 to n = 13.

MILP-Wg

#contacts  #combinations, | [E5T e wal €SS wa O™ individual cumulative
fobidden, n ((f)) ROCyens. ROCgpee.  Cvg | ROCsens. ROCgpee.  Cvg
0 1 16 16 0.50 0.84 -0.12 0.50 0.84 -0.12
1 13 25 25 0.77 0.74 0.35 0.77 0.74 0.35
2 78 30 30 0.81 0.53 0.27 0.81 0.53 0.27
3 286 30 30 0.81 0.53 0.27 0.81 0.53 0.27
4 715 30 30 0.81 0.53 0.27 0.81 0.53 0.27
5 1287 30 30 0.81 0.53 0.27 0.81 0.53 0.27
6 1716 33 33 0.88 0.47 0.38 0.88 0.47 0.38
7 1716 33 33 0.88 0.47 0.38 0.88 0.47 0.38
8 1287 33 33 0.88 0.47 0.38 0.88 0.47 0.38
9 715 33 33 0.88 0.47 0.38 0.88 0.47 0.38
10 286 33 33 0.88 0.47 0.38 0.88 0.47 0.38
11 78 25 33 0.77 0.74 0.35 0.88 0.47 0.38
12 13 0 33 - - - 0.88 0.47 0.38
13 1 0 24 - - - 0.88 0.47 0.38
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Table 10 Yeast exosome without Csl4: sensitivity, specificity and coverage of en-
riched consensus set on forbidding a number of initial consensus contacts by MILP-Wg.
Note that the cumulative statistics for row n is computed by considering union of all the consensus
edge sets, & p.w,, from 0 to n.

#contacts  #combinations, [ [E5 s wal  [EST-wa o™ individual cumulative

fobidden, n ( 771 ) ROCgens. ROCgpee.  Cvg | ROCyens. ROCgpe.. Cvg
0 1 10 10 0.45 0.94 -0.15 0.45 0.94 -0.15
1 7 19 19 0.80 0.81 0.45 0.80 0.81 0.45
2 21 24 24 0.85 0.56 0.35 0.85 0.56 0.35
3 35 24 24 0.85 0.56 0.35 0.85 0.56 0.35
4 35 24 24 0.85 0.56 0.35 0.85 0.56 0.35
5 21 24 24 0.85 0.56 0.35 0.85 0.56 0.35
6 7 0 24 - - - 0.85 0.56 0.35
7 1 0 24 - - - 0.85 0.56 0.35

10.2 Yeast 19S Proteasome lid

Results. This system involves 9 proteins and 14 oligomers. The initial consensus set using
MILP (or MILP-W with o = 1) has 11 TP and 6 FP out of which 3 are dimers (irreplaceable
contacts) (line with tag T2 of Table[11] line with n = 0 in Table[12)). On forbidding the contacts,
Exfitp one at a time, one has 14 different MILP problems each with different pool set of size of 35.
The union of consensus contacts of all such problems has 23 contacts having 14 TP and 9 FP.
The ROC scores, therefore, are ROCjeps. 0of 0.74, ROCgpec. of 0.47 and Cvg. score of 0 (T3 of the
Table|11{and row with n = 1 of the Table . Proceeding further by precluding two contacts at
a time, the size of union of consensus contacts yielded is 24 and cumulative union size (taking
into account the previous step) is also 24. The ROC scores are - ROC,eys. of 0.79, ROCjpee.
of 0.47 and Cuvg. score of 0.11 (n = 2 in Table [12)). When three to five contacts are precluded
then the following cumulative scores for 27 contacts are — ROCgeps. of 0.89, ROCpe.. of 0.41
and Cvg. score of 0.26 (n=3,...,51in Table. When six contacts are precluded more FP are
induced yielding scores — ROCgeps. of 0.89, ROCpec. of 0.29 and Cvg. score of 0.16. Beyond this
point the cumulative scores do not change when number of contacts are precluded from 4 to 14
at a time (n =6, ..., 14 in Table [12).

Assessment. The bootstrapping algorithm MILP-Wg enriched the initial consensus contacts
o by augmenting TP from 11 to 14 with 3 additional FP (T2 and T3 of the Table . On
comparing with Eyvip, we observe that for Envrp-wy the number of FP are same but number of

TP is one more, thus improved sensitivity.

We again observe that on precluding more consensus contacts at a time, the specificity is
dropped. The final cumulative score is ROCgepns. of 0.89, ROCpee. of 0.29 and Cvg. score of 0.16
(T4 of the Table [L1] and Table [12).

Finally, when we compare with previously published contacts by Network inference algorithm
in [THS™08|, we observe that the sensitivity for Eyrp.wy is 1.76 higher than those published
earlier. Also, Cvg. score increases from -0.21 to 0 (T3 vs TO in the Table[L1).
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Table 11 Yeast proteasome lid: sensitivity, specificity and coverage for various edge
sets generated by MILP and MILP-Wg. For a given run (each line), all edges predicted get
distributed into TP and FP. Out of a pool of candidate edges of size 36, the edge set EmLp-wy
(1st iteration) contains all true positive but five, and nine false positives. It is to be noted that
tag T3 corresponds to the 1st iteration of the Table while tag T4 corresponds to results
obtained upon precluding all possible combinations of initial consensus contacts.

Tag algo s | Poolg(O<s) | M| P TP FN|N TN FP|ROC,ens. ROCspee.| Cvg
(TO) Network inference [THST08] 8 36 0{19 8 11|17 16 1 0.42 0.94| -0.21
(T1) Evie 8 36 0(19 13 6 |17 8 9 0.68 0.47| -0.11
(T2) £omss 8 36 0[19 11 8 [17 11 6 0.58 0.65| -0.16
(T3) EmiLp-wy, 1-contact 8 36 019 14 5 |17 8 9 0.74 0.47 0
(T4) EmiLp-wy, After exhaustion 8 36 0(19 17 2 |17 5 12 0.89 0.29| 0.16

Table 12 Yeast proteasome assembly: sensitivity, specificity and coverage of enriched
consensus set on forbidding a number of initial consensus contacts by MILP-Wg. Note
that the cumulative statistics for row n is computed by considering union of all the consensus

edge sets, Ep w,, from 0 to n.

#contacts  #combinations, | [E5 5wyl 1€ BowgCM™ individual cumulative
fobidden, n ( <1n4> ) ROCuns. ROCupe. Cvg | ROCuens. ROCyee.  Cvg
0 1 17 17 0.58 0.65 -0.16 0.58 0.65 -0.16
1 14 23 23 0.74 0.47 0 0.74 0.47 0
2 91 24 24 0.79 0.47 0.11 0.79 0.47 0.11
3 364 27 27 0.89 0.41 0.26 0.89 0.41 0.26
4 1001 27 27 0.89 0.41 0.26 0.89 0.41 0.26
5 2002 27 27 0.89 0.41 0.26 0.89 0.41 0.26
6 3003 29 29 0.89 0.29 0.16 0.89 0.29 0.16
7 3432 29 29 0.89 0.29 0.16 0.89 0.29 0.16
8 3003 29 29 0.89 0.29 0.16 0.89 0.29 0.16
9 2002 29 29 0.89 0.29 0.16 0.89 0.29 0.16
10 1001 29 29 0.89 0.29 0.16 0.89 0.29 0.16
11 364 29 29 0.89 0.29 0.16 0.89 0.29 0.16
12 91 28 29 0.84 0.29 0.05 0.89 0.29 0.16
13 14 0 29 - - - 0.89 0.29 0.16
14 1 0 29 - - - 0.89 0.29 0.16

10.3 Eukaryotic Translation factor elF3

Results and Assessment. Regarding the reference contacts for human elF3 we have cryo-EM
reconstruction and MS, MS/MS dimers. We do not have cross-linking contacts for human eIF3.
Therefore, the set of reference contacts is possibly not exhaustive. Also, pool set of contacts
is sub-maximal since the size is 60 instead of 66 (for 12 vertices) and maximum 15 out of 17
positives could be sampled from the pool set (Table .

However, the behavior of Eviip-wy, Viz-a-viz Efp and Evip resembles that of the previous
two systems. Using bootstrapping procedure we report 20 contacts with 11 TP and 9 FP. The
contact set EmLp-wy has one more additional FP than that of E51% (T3 vs T2 in the Table.
However, the specificity is still better than that of Enrp (T3 vs T1 in the Table . We observe

that precluding more than 1 contact at a time in MILP-Wg yields low specificity (T3 vs T4 in the

Table [13| and Table [14).
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The previously published contacts in [ZSFT08| are computed manually using experimental
information from various other sources (T0 in the Table .

Table 13 Sensitivity, specificity and coverage for various edge sets generated by MILP
and MILP-Wg for human eIF3 assembly. For a given run (each line), all edges predicted get
distributed into TP and FP. Out of a pool of candidate edges of size 60, the edge set Eniinp-wy
(1st iteration) contains all true positive but four, and nine false positives. It is to be noted that
tag T3 corresponds to the 1st iteration of the Table while tag T4 corresponds to results
obtained upon precluding all possible combinations of initial consensus contacts.

Tag algo s | Poolg(O<s)| M| P TP FN|N TN FP|ROCgens. ROCgpee.| Cvg
(T0) Manually [ZSET08] 11 60 2[15 14 1 |45 42 3 0.93 093] 059
(T1) Ewvp 11 60 2115 13 2 (45 34 11 0.87 0.76 0
(T2) Eomss 11 60 2015 11 4 |45 37 8 0.73 0.82| -0.06
(T3) EntiLp-wy, 1-contact 11 60 2015 11 4 [45 36 9 0.73 0.80| -0.12
(T4) Emipp-wy, After exhaustion 11 60 2|15 14 1 |45 13 32 0.93 0.29] -1.12

Table 14 Sensitivity, specificity and coverage of enriched consensus set on forbidding
a number of initial consensus contacts by MILP-Wg for human eIF3 assembly. Note
that the cumulative statistics for row n is computed by considering union of all the consensus

cons.

edge sets, & p.w,, from 0 to n.

#contacts  #combinations, [ €5 wal  [ESTwa o™ individual cumulative

fobidden, n ( <1nl>) ROCgens. ROCgpee.  Cvg | ROCyens. ROCgpe..  Cvg
0 1 19 19 0.65 0.81 -0.18 0.65 0.81 -0.18
1 11 20 20 0.65 0.79 -0.24 0.65 0.79 -0.24
2 55 22 22 0.71 0.77 -0.18 0.71 0.77 -0.18
3 165 40 40 0.82 0.40 -0.88 0.82 0.40 -0.88
4 330 42 42 0.82 0.35 -1.00 0.82 0.35 -1.00
5 462 42 42 0.82 0.35 -1.00 0.82 0.35 -1.00
6 462 42 42 0.82 0.35 -1.00 0.82 0.35 -1.00
7 330 46 46 0.82 0.26 -1.24 0.82 0.26 -1.24
8 165 46 46 0.82 0.26 -1.24 0.82 0.26 -1.24
9 55 46 46 0.82 0.26 -1.24 0.82 0.26 -1.24
10 11 46 46 0.82 0.26 -1.24 0.82 0.26 -1.24
11 1 46 46 0.82 0.26 -1.24 0.82 0.26 -1.24
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10.4 Using Weights: an Illustration

0.25 and [Right)]

Figure 15 Yeast Exosome: Contact distribution with [Left] «

Note that the contacts (Rrp45, Rrp46), (Rrp40, Rrp46) and (Rrp4l, Rrp42) are

assigned weights of 0.6 and rest are left at default (0.5).

a = 1.0.
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Figure 16 Yeast Exosome (without
Csl4): Assessment of contacts yielded
from different algorithms, MILP and
MILP-Wg with a = 0.25. See supplemental
Table for the detailed statistics. Note
that the contacts (Rrp45, Rrp46), (Rrp40,
Rrp46) and (Rrp4l, Rrp42) are assigned
weights of 0.6 and rest are left at default
(0.5).

Yeast Exosome (w/o CSL4)

Figure 17 Yeast Exosome (without
Csl4): Evolution of cumulative sensi-
tivity, specificity and coverage score
with iteration index; o = 0.25. Note
that the iteration index also indicates
number of contacts forbidden at a time.
See supplemental Table for the de-
tailed statistics. Note that the con-
tacts (Rrp45, Rrp46), (Rrp40, Rrp46) and
(Rrp4l, Rrp42) are assigned weights of 0.6
and rest are left at default (0.5).
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Table 15 Sensitivity, specificity and coverage for various edge sets generated by MILP
and MILP-Wg for yeast exosome (without Csl4) assembly; o = 0.25. Note that the contacts
(Rrp45, Rrp46), (Rrp40, Rrp46) and (Rrp4l, Rrp42) are assigned weights of 0.6 and rest are left
at default (0.5). For a given run (each line), all edges predicted get distributed into TP and FP.
Out of a pool of candidate edges of size 36, the edge set Enp-wy (1st iteration) contains all
true positive but three, and five false positives. It is to be noted that tag T3 corresponds to the
1st iteration of the Table while tag T4 corresponds to results obtained upon precluding all

possible combinations of initial consensus contacts.

Tag algo s | Poolg(O<s) | M
(T1) Evp 8 36 0
(T2) s 8 36 0
(T3) EmiLp-wy, 1-contact 8 36 0
(T4) Emip-wy, After exhaustion 8 36 0

P TP FN|N TN FP|ROC;ens. ROCgpee. | Cvg
20 17 3 |16 12 4 0.85 0.75 0.5
20 13 7 |16 16 O 0.65 1.0 0.3
20 17 3 |16 11 5 0.85 0.69| 045
20 17 3 |16 7 9 0.85 0.44] 0.25
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Table 16 Yeast exosome (without Csl4): sensitivity, specificity and coverage of en-
riched consensus set on forbidding a number of initial consensus contacts by MILP-Wg;
a = 0.25. The contacts (Rrp45, Rrp46), (Rrp40, Rrp46) and (Rrp4l, Rrp42) are assigned weights
of 0.6 and rest are left at default (0.5). Note that the cumulative statistics for row n is computed

cons.

by considering union of all the consensus edge sets, Exit:

from 0 to n.

P-Wg

#contacts  #combinations, | [ET S w,l [T Bows|C ™ individual cumulative

fobidden, n (<17?> ) ROCens. ROCgpee. Cvg | ROCyens. ROCgpee. Cvg
0 1 13 13 0.65 1 0.3 0.65 1 0.3
1 10 22 22 0.85 0.69 0.45 0.85 0.69 0.45
2 45 24 24 0.85 0.56 0.35 0.85 0.56 0.35
3 120 25 25 0.85 0.50 0.30 0.85 0.50 0.30
4 210 23 25 0.85 0.63 0.40 0.85 0.50 0.30
5 252 24 26 0.85 0.56 0.35 0.85 0.44 0.25
6 210 24 26 0.85 0.56 0.35 0.85 0.44 0.25
7 120 24 26 0.85 0.56 0.35 0.85 0.44 0.25
8 45 24 26 0.85 0.56 0.35 0.85 0.44 0.25
9 10 - - - - - 0.85 0.44 0.25
10 1 - - - - - 0.85 0.44 0.25
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11 Supplemental: Algorithms and Programs

11.1 Problem hardness, existing algorithms and contributions

Assessing the intrinsic difficulty of a combinatorial problem requires inspecting the decision and
the optimization versions of the problem [GJ79]. In our case, deciding whether a MCI problem
admits a solution using a pre-defined number of edges k is NP-complete, while finding the
solution of smallest size is APX-hard. This latter result is of special interest since we aim at
finding an edge set of minimal size. It stipulates that unless P = NP, there does not exist
any polynomial time approximation scheme [AACT13|, that is, a polynomial time algorithm
reporting an edge set as close as desired, in terms of size, from the optimum. It should be
stressed that these facts do not exploit any peculiar property of real data, and only show the
existence of hard i.e. difficult to solve instances.

11.2 Algorithm MILP-Wg: pseudo-code

Algorithm 1 Algorithm MILP-Wg, with initial call MILP-Wg (E5i1ip \I), with I standing
for the list of dimers in the list of oligomers. The algorithm bootstraps from consensus
edges, and collects novel consensus edges which appear upon precluding already found consensus
edges.

Require: &£{fjp — initial consensus edges.

Require: I — irreplaceable contacts (dimers).

Require: specy — the initial connectivity inference specification.

Require: Evip.wy — the set storing all consensus edges.

Parameter: B — consensus edges to be precluded := EFr5s \ I

Algorithm: MILP-Wg (B)
L EmiLp-wy < SR
2: /* NB: an iteration precludes all possible ¢-tuples */
3: for ¢ from 1 to |B| do
4:  Get fsetsy: all £-tuples from the set B, namely (?)
5. /* Cp: A set of consensus contacts that will be generated for all /-tuples is initiated to

cons. *k
EMILP /

6: Cg — @

7. for each fset € fsets; do

8: /* Edit the initial specification specy to take into account the annotations */
9: Assign label forbidden ("F’) to all contacts in fset

10: Run MILP-W for this novel specification

11: Get consensus contacts associated with fset, denoted Clget

12: Cp + CpU Cheet

13: EmLp-wy = EMmiLp-wy U Cp

11.3 Implementation

Our algorithms have been implemented using IBM CPLEX solver 12.6. The typical running
time required to solve an instance presented in this paper is circa 30 seconds, on a standard
laptop computer (2.80GHz Intel(R) Xeon(R) CPU E5-1603 0).
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Upon publication of this paper, the programs implementing MILP, MILP-W, and MILP-Wpg
will be distributed within the Structural Bioinformatics Library (http://structural-bioinformatics-library.
org/).
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12 Supplemental: Using Weights: a Detailed Study
12.1 Methods

In the sequel, we present a thorough evaluation of MILP-W upon varying weights and the value
of o — Eq. ().

To this end, we challenge algorithm MILP-W with two classes of instances. While determin-
istic instances are meant to assess the behavior of the algorithm under controlled conditions,
randomized instances are meant to investigate scenarios where no a priori information on the
contacts is known.

12.1.1 Deterministic instances

Specification. The input specification of a MWCI problem depends to three ingredients,
namely the set of oligomers O, the value of «, and the individual weights w(-) for the candi-
date edges in Poolg(O<;). We design MWCI instances to assess the relative importance of these
ingredients. To this end, consider two values F' > G = 0.5 > U, respectively meant to favor and
penalize contacts. Note that the value G = 0.5 is a default value for contacts for which there is

no a priori. The gap between these two values is defined by A = F'— U. Practically, we consider
three cases, namely (F,U) = (0.9,0.1), (F,U) = (0.75,0.25), and (F,U) = (0.6,0.4),

The first set of instances involves the two weights F' and U applied to the edges of the pool.
The instance FU is obtained by assigning the weight F' to all TP, and the weight U to all FP.
To define a control, we define the UF instance by swapping the weights i.e. by favoring FP and
penalizing TP. Note that instances of the type FF or UU, where true and false positives are given
the same weight, are irrelevant since they are covered by the case a = 1.

We first report basic facts observed for deterministic instances FU and UF defined by oligomers
of size s = 5,8, since the cases s = 6,7 match s = 5 (supplemental Tables and .

Results. We examine successively the roles of a and of the individual weights.

Parameter a. When « increases, two striking facts are observed. First, the number of solutions
increases, since one has up to 9 solutions when o = 0.25, but up to 274 solutions when
a =1 (supp. Table s = 8). This solution set uses 22 contacts out of a pool of size 36.
These 22 contacts involves 17 TP and 5 FP, resulting in a coverage of 0.45. The maximal
number of solutions for & = 1 owes to the fact that ties between contacts cannot be broken
thanks to the weights, so that all solutions with the same number of contacts are equivalent.
Second, the size of solutions decreases (up to 22 contacts for a = 0.25 but nine only for
a =1). This owes to the modest constant overhead in Eq. for small values of a.

Weights. The configuration yielding the maximum number of solutions comes with an average
(0.45) coverage (supp. Table s = 8). Improving this score requires optimized combi-
nations of o and weights, which is observed for the FU instance and «« = 0.25. In that
case, the 20 TP are reported, while no FP is found, resulting in perfect unit values for the
sensitivity, the specificity, and the coverage. This is admittedly a contrived experiments
since TP are promoted while FP are hindered. Reverting odds, the control setup UF yields
the expected, since penalizing TP and promoting FP results in a poor coverage (from one
for FU to -0.90 for UF). It is also noticed that the difference in coverage decreases when «
increases. For example, considering oligomers of size five, one gets 0.95(= 0.85 — (—0.1)),
0.5(= 0.45—(—0.05)), and 0(= 0.35—0.35) for v = 0.25, 0.5, 1 respectively (supp. Table[17]
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s = 5). This owes to the decreasing prevalence of weights when « increases. In a similar
vein, larger values of A, or equivalently large values of the weight F' favor high coverages
(for the FU case, @ = 0.25 and s = 8, the coverage drops from one to 0.7 in moving from
A=08to A=0.2.)

All versus consensus solutions. Consensus solutions, which form a subset of all solutions,
are characterized by two main properties. First, the number of consensus solutions varies
in the range 1 to 48, that is, one get a 6 fold reduction with respect to the max number of
total solutions. Second, the number of solutions is accompanied by a smaller set of edges
used out of the pool of size 36, and also a smaller number (often null) of false positives.
The former number decreases faster than the later, whence, overall, lower coverages.

12.1.2 Randomized instances

Specification. In designing deterministic instances involving the weights F and U, some a
priori knowledge on the individual contacts is required to favor contacts standing a better chance
to be true positives. If such information is not available, one could use favorable or unfavorable
weights only. However, from the analysis carried out on deterministic instances, one gets that
the FF scenario yields large solutions with false positives, while the UU scenario yields poor
statistics — and in the extreme case connectivity inference problems without any solution. We
therefore design a new class of instances also involving the intermediate weight G.

To specify these instances, we start from a deterministic instance, and use randomization.
Consider e.g. the assignment of weights TP <> F and FP < U. For each contact from FP, we
toss a fair coin and proceed as follows: if head is obtained, the contact keeps the weight F’; if
not, its weight is changed to G. We proceed likewise for false positive contacts, which may then
be re-assigned a weight of G instead of the initial weight U. Note that for a given set of contacts
(TP or FP), the expectation of the number of contacts whose weight is changed is half of the
size of that set since the coin is fair. To avoid random bias, we generate 20 such instances.

Results. We noticed above that the FF and UU cases in the deterministic setting actually
correspond to the case a = 1. In comparing the results for randomized FF and UU instances
against the case a = 1, one first notices a drastic decrease of the number of solutions (2 for
FF and a = 0.25, 7 for UU and o = 0.25, versus 274 for o = 1) (Table 20). Solution size,
however, are coherent with the deterministic case, and depend on the weights (large solutions
for F weights, small solutions for U weights). Most interesting is the analysis of UU instances.
On the one hand, a satisfactory sensitivity is obtained (for @ = 0.25: ROCgepns. = 0.55 for
randomized instances, versus ROCg,p,s. = 0.85 for deterministic instances). On the other hand,
an excellent specificity is observed (for av = 0.25: ROCgpe.. = 0.91 for randomized instances,
versus ROCgpe.. = 0.69 for deterministic instances).

12.1.3 Overall recommendations

We summarize the insights gained from the previous experiments on deterministic and random-
ized instances:

(i) Low values of « are sensitive to weights on the edges, as large solutions arise from favored
edges.

(ii) Consensus solutions strongly hint at contacts which are true positives. However, modest
coverage may stem from many false negatives.
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(iii) High coverage scores are observed in two cases, namely when large solutions are obtained,
or when a large number of solutions are obtained.

(iv) The scenario consisting of hindering a fraction of true contacts (by unfavorable weights or
removing them from the pool) may trigger the discovery of alternative contacts also satis-
fying the connectivity constraints of oligomers. This finding, which stems from the analysis
of randomized instances, underlies the strategy used in Algorithm MILP-Wg (section .

12.2 Results

The following tables present statistics to assess the incidence of weights, as explained in the main
text. The following comments are in order:

e In the tables, the coverage values of Eq. (5] are color coded with a heat map, from blue
(0-0.1) to red (0.9 - 1).

e The values reported in Tables were obtained on 20 runs. The statistics reported
correspond to the median of the values. For example, the number of solutions and the
solution size are the median of the values obtained for all runs.
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Table 17 Yeast exosome: statistics for U
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0.25, F=0.75.

Table 18 Yeast exosome: statistics for U
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=0.4, F=0.6.

Table 19 Yeast exosome: statistics for U
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0.5. 20 intances each.

0.1, F=0.9, G=

Table 20 Yeast exosome: statistics for U
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Weight Connectivity Inference Problems

Minimum

solving

0.5. 20 instances each.

0.25, F=0.75, G=

Table 21 Yeast exosome: statistics for U
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0.5. 20 instances each.

=0.4, F=0.6, G=

Table 22 Yeast exosome: statistics for U
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