Image classification using object detectors

Abstract : Image categorization is one of the most competitive topic in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our rep-resentation with state-of-the art methods based on low-level descriptors, e.g. Fisher Vectors and BossaNova. Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia. pp.4340 - 4344, 2013, 〈10.1109/ICIP.2013.6738894〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01078079
Contributeur : Thibaut Durand <>
Soumis le : lundi 27 octobre 2014 - 21:11:00
Dernière modification le : samedi 8 décembre 2018 - 01:28:28
Document(s) archivé(s) le : mercredi 28 janvier 2015 - 11:56:17

Fichier

durand_icip2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thibaut Durand, Nicolas Thome, Matthieu Cord, Sandra Avila. Image classification using object detectors. IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia. pp.4340 - 4344, 2013, 〈10.1109/ICIP.2013.6738894〉. 〈hal-01078079〉

Partager

Métriques

Consultations de la notice

122

Téléchargements de fichiers

122