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Abstract

In Computer Graphics, physically-based simulation of deformable objects is a current challenge, and many effi-

cient models have been developed to reach real-time performance. However, these models are often limited when

complex interactions involving topological modifications are required. To overcome this, the key issue is to manage

concurrently, and at minimal cost, both the topology and physical properties.

Thus, this paper presents a unified topological-physical model for soft body simulation. The complete embedding

of physical and topological models will facilitate operations like piercing, fracture or cutting, as well as adap-

tive refinement. Indeed, the difficulty is to treat topological changes during the simulation, requiring combined

geometric and physics considerations. Rigorous topological operations guarantee the validity of the mesh, while

direct access to the adjacent and incident relations will ease the update of physical properties of new elements

created during these operations.

These features are illustrated on an embedded mass-spring system undergoing topological modifications per-

formed during simulation. Different levels of subdivision are also presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Physically-based modeling I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Hierarchy and geometric transformations

1. Introduction

A current challenge in Computer Graphics consists in
achieving interactive physically-based simulations. In many
areas, such as entertainment application, manufacturing or
medical training, the goal is to simulate the realistic behavior
of deformable objects in interaction with their environment
in real time. Additionally, topological modifications have to
be handled efficiently, to enable operations like tearing, cut-
ting, fracture, etc.

For this, two physical models are classically
used [NMK∗06, Pay12], both underlying on a mesh.
The finite elements method (FEM) is based on continuum
mechanics. This allows to solve the partial differential
equations of the problem on irregular grids by spatially
discretizing the objects into elements (typically tetrahedra
or hexahedra in 3D). The resulting solutions are quite
accurate, but this method is known to be computationally
expensive especially for interactive event management,
despite numerous optimizations recently proposed. The

mass-spring system (MSS) is a valuable alternative ap-
proach in this case. It consists in discretizing the object into
a set of particles connected by springs. Forces represen-
tation is very simple, and can be computed for each node
(instead of element), allowing for very fast computation.
The spring parameters can be linked to the mechanical
properties of the object to improve the accuracy of the
discrete model [LSH07, BBJ∗09]. In this paper, to illustrate
our approach, we focus on this second method that allows
for better control in the integration of external interactions
or topology alterations.

Furthermore, to improve the tradeoff between accuracy
and computation time for these models, a typical solution
considers relatively coarse initial meshes that will be locally
refined when and where required. For example, the refine-
ment can be restricted to the elements undergoing external
actions, such as contacts with a surgical tool, or along a
fine cutting path inside elements. The refinement can also
be driven by some criteria, such as error estimators that may

Authors version of paper published in Proc. of 11th Workshop on Virtual Reality Inter-
action and Physical Simulation, Eurographics Digital Library, September 2014. Original
version is available http://dx.doi.org/10.2312/vriphys.20141222

http://dx.doi.org/10.2312/vriphys.20141222


Fléchon E., Zara F., Damiand G., Jaillet F. / A Unified Topological-Physical Model for Adaptive Refinement

be based on geometry or energy, or on distance to camera for
Level Of Detail strategies.

This paper proposes an extension of the work of [FZDJ13]
which introduced a unified topological-physical model
(called LCC+MSS) adapted for a mass-spring simulation
that handles cutting or piercing simulated objects. An inter-
esting feature of this work is the use of the same model to
define the topology of the mesh (i.e., its subdivision in cells
plus all the incidence and adjacency relations), its geometry
(the coordinates of the vertices) and the physical properties
of the system (mass of particles, stiffness of springs, etc.) al-
together. Moreover, on the fly topological modifications are
also simply allowed by updating the model.

The main contribution of our work is the definition of
adaptive refinement operations during 2D or 3D simula-
tion. Our paper addresses the following problems (i) the lo-
cal modification of the topological description of the mesh,
(ii) the assignment of the physical properties of elements
newly created during the refinement according to those of
initial elements and (iii) the updating of physical proper-
ties of existing elements. Moreover, the method handles T-
junctions in order to support local refinement.

The rest of this paper is organized as follows. Section 2
presents previous works and Section 3 describes the initial
LCC+MSS model which serves as preliminary work. Sec-
tion 4 is the core of our contribution, and presents the pro-
posed modifications to tackle the problem of refinement dur-
ing the simulation. Then, Sections 5 and 6 present in details
the refinement process for 2D and 3D embedded MSS, with
emphasis on adaptive refinement in Section 7. Finally, re-
sults are given in Section 8, and Section 9 concludes this
paper with future work.

2. Related work

Adaptive refinement of surfaces. As stated in [AUGA05],
surface remeshing is a key component in many applications
involving geometric manipulations. The simulation of de-
formable objects is not an exception, but in this case the
refinement is usually error-driven to optimize the trade-
off between accuracy and computation time. In this sense,
Hutchinson et al. [HPH96] proposed a method that both im-
proves the accuracy and reduces the computational cost for
cloth simulations. During the animation, a MSS is adaptively
refined by adding masses and springs according to a geomet-
ric criterion based on angles between springs. In addition, a
hierarchical structure will ensure the correct behavior of the
refined meshes. The challenge here is to preserve the ini-
tial mass and stiffness, and to define the time step accord-
ing to the subdivision level. In the same context, Villard et

al. [VB05] proposed a method to adaptively refine a mesh,
but this time without multi-resolution grids. Non conformal
meshes (including T-junctions) are handled by defining ac-
tive and virtual particles which are processed differently.

Lee et al. [LYO∗10] presented a multi-resolution method
for cloth simulation with a triangle-based energy model. The
simulation begins with a high-resolution mesh. The size of
the linear system is then reduced using an adaptive mesh.
Regions to be simplified are then detected according to cri-
teria depending on stretching, shearing, bending or particles
status, or according to collision. More recently, Busaryev et

al. [BDW13] simulated fractures on multi-layered thin plate
objects (such as paper), based on FEM. However, a fracture-
aware remeshing scheme based on constrained Delaunay tri-
angulation is employed beforehand, that cannot be applied
during the simulation.

Adaptive refinement of volumes. Burkhart et al. [BHU10]
presented a method for FE analysis using Catmull-Clark
solids but restricted to three-manifolds meshes of hexahe-
dra. The advantage of this approach is the use of a unified
representation for both the geometry and the physical sim-
ulation. However, the use of a surface or solid subdivision
scheme cannot mix several kind of elements, nor elements
with different levels of refinement in the same mesh. Wicke
et al. [WRK∗10] used a physical model based on a linear
co-rotational finite element formulation. To avoid degrada-
tion of tetrahedral elements quality, they remeshed small
parts of the object during the simulation. This is based on a
smoothing method which consists in moving vertices to im-
prove the quality of incident elements without topological
changes. Thus, they cannot subdivide individual tetrahedra
into smaller ones.

Cutting. Refinement takes part in the problematic of cut-
ting simulation, for example, by allowing for the following
of a fine cutting path. The recent state of the art of Wu et

al. [WWD14] summarizes works about virtual cutting on
deformable objects. In this sense, Dick et al. [DGW11] pro-
posed a model for simulating cuts in objects. The model is
composed of an adaptive octree grid (to represent cuts at a
very fine scale), a multigrid (to run the simulation according
to topological changes) and a simulation grid based on FEM.
Jeřábková et al. [JBB∗10] presented a model using two level
hierarchies of hexahedral elements: coarse level for simu-
lation purpose and fine level of detail for visualization and
collision. Cutting is performed by removing hexahedra at the
finer level.

Topological model. In 2013, Untereiner et al. [UCB13]
demonstrated the benefit of using combinatorial maps for the
representation of 3D multi-resolution meshes. This model is
capable of handling different levels of subdivision with ar-
bitrary elements and supports adaptive subdivision, but at
high memory cost. They applied this approach on an electro-
thermal simulator, but neither the geometry, nor the topology
is modified during the simulation.

Topological model for physical simulation. Amongst the
few attempts to explore the combination between topo-
logical modeling and physical simulation, Meseure et

al. [MDS10a, MDS10b, DKS∗11] presented an approach
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Figure 1: Overview of our method. Our topological data structure stores the geometry and physical properties of the deformable
object modeled with a MSS. During the simulation, this data structure is updated to take into account topological modifications
such as refinement of elements.

based on mass-interaction and generalized maps (a vari-
ant of combinatorial maps). The model allows topological
changes such as element removing, or even cutting. Jund et

al. [JAD∗12] also used generalized maps with a meshless
physical model. By mapping a set of particles to the cells of
the topological model, their framework allows for the asso-
ciation of any volume shape to any point based motion. This
way, they are able to handle topological changes, shown on
tearing experiments. However, even if the topological and
physical models are strongly connected, in the end two dif-
ferent structures still remain to be maintained, at least for
external interactions.

Fléchon et al. [FZDJ13] presented a hybrid model to sim-
ulate soft body deformations. A mass-spring system (MSS)
is fully embedded into a topological model based on Linear
Cell Complex (LCC). The great advantage of this model is
to propose a unified framework for topology and physically-
based simulation, that will simplify many topological opera-
tions and will ensure to always preserve the model integrity.
So far, local or adaptive refinement is not possible as appro-
priate subdivision of elements is not proposed.

Adaptive refinement of topological models for physical

simulation. Choi et al. [CHCK02] proposed the only adap-
tive refinement method with a topological model we are
aware of. A topological model (based on winged-edge) and
an MSS physical model are combined to deal with adaptive
refinement during the simulation. A multi-resolution mass-
spring model is locally refined. Moreover, they used surface
wavelets to switch between the different levels of subdivi-
sion of the model. However, this method was developed for
2D triangular meshes, and its edge-based design cannot be
easily extended to 3D.

T-junctions. One issue that may eventually appear in refine-
ment algorithms that treat elements in isolation, is the pres-
ence of T-junctions. It is possible to address this problem ei-
ther by avoiding non-conformal elements like the red-green
method of Molino et al. [MBTF03] or by mixing different
types of elements [Lob13]. Others treat this case by snap-

ping T-junction particles on edges or faces of adjacent ele-
ments or by using other models that do not necessitate any
special treatment [GKS02, NFP06, SSH10].

In this paper, to overcome the different limitations en-
countered in previous work, we proposed a unified model
avoiding redundancy and facilitating the update of informa-
tion. In addition, local adaptation is possible both for 2D and
3D meshes during the physical simulation.

3. LCC+MSS model

Mass-spring systems have largely been used in anima-
tion [TW90, TPF91, ZGF07] because of their intuitive im-
plementation. Objects are discretized into a set of masses
(also called particles) inter-connected by springs. The dy-
namics of the model are computed with the classic simu-
lation loop [NMK∗06]: (1) computation of the forces ap-
plied on the particles (due to springs and external forces);
(2) computation of the acceleration of each particle accord-
ing to Newton’s second law: for each particle v, we have at
time t:

mv
d2

dt2 Pv(t) = Fv(t) (1)

where mv, Pv and Fv are respectively the mass, position and
the sum of the forces applied to the particle v; (3) com-
putation of the velocity and position of each particle us-
ing numerical integration schemes (for example, Euler semi-
implicit or implicit method).

The LCC+MSS model proposed in [FZDJ13] uses,
as underlying data structure, the 3D linear cell com-
plexes [Dam12] from the CGAL Open Source geometric al-
gorithms library [The12]. This topological structure is able
to represent an orientable 3D object thanks to 3D combina-
torial maps, called 3-maps [Lie94]. A 3-map describes the
subdivision of a 3D object as a set of i-cells, i ∈ {0,1,2,3}.
The 0-, 1-, 2-, 3-cells correspond respectively to vertices,
edges, faces and volumes. They are described by darts which
generalize half-edges [Män87] to n-dimension, plus point-
ers between these darts named βi with i ∈ {0,1,2,3}. Two
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i-cells are adjacent if they share a common (i− 1)-cell (for
example, two volumes are adjacent if they share a common
face); and two cells are incident if one belongs to the bound-
ary of the other (for example a vertex is incident to a face if
it belongs to its boundary).

The 3-map shown in Fig. 1 represents two adjacent cubes.
Darts are displayed as arrows. β1(d) is the next dart follow-
ing dart d in the same face and the same volume. β0(d) is the
previous dart in the same face and same volume. β2(d) gives
the other dart from d belonging to the same edge, same vol-
ume but not the same face (eventually represented by small
segments in red in Figures 1, 5 and 6). Lastly, β3(d) gives
the other dart from d belonging to the same edge, same face
but not the same volume. Also, some properties are defined
on these pointers to guarantee the topological validity of the
described objects [Lie94].

Thanks to these darts and pointers, the main benefit of 3-
maps is to describe the cells of 3D objects as well as the inci-
dence and adjacency relationships. This information is very
useful in algorithms to compute and update physical proper-
ties while allowing for topological modifications. Moreover,
the use of a topological model ensures the permanent topo-
logical validity of the mesh after modification.

The construction of a LCC+MSS starts with the descrip-
tion of a mesh. A 3-map is built according to this input data.
Then, the coordinates of the vertices of the mesh are added
to the combinatorial map to obtain a Linear Cell Complex
(LCC). The construction of the LCC+MSS is finalized to fit
MSS requirements: the data structure Particle is associ-
ated to each vertex and the data structure Spring is associ-
ated to each edge, as seen in [FZDJ13].

The Particle structure contains information related to
the MSS such as its mass, acceleration, velocity or the sum
of the forces applied to this particle. Note that in 2D (resp.
3D), each quad (resp. hexahedron) has 2 (resp. 4) internal
diagonal springs (as shown in Fig. 2 for 3D case). Each par-
ticle stores a list of all the diagonal springs attached to it.
Note that the geometric coordinates of the particle are di-
rectly associated to the corresponding 0-cell in the 3D LCC.

The Spring structure contains the physical properties of
the spring: its initial length, stiffness and its two extremities
(i.e., pointers to the two Particles connected by the con-
sidered spring). The formulation of the spring stiffness con-
stant is based on Baudet et al. [BBJ∗09] to take into account
the mechanical properties (Young’s modulus and Poisson’s
ratio) of the simulated object. In this paper, surfaces (resp.

volumes) are represented by quads meshes (resp. hexahedral
meshes) and the cells of highest dimension are called ele-

ments, i.e., quads in 2D or hexahedra in 3D.

The different information associated with particles and
springs can be initialized thanks to geometrical and topolog-
ical information. To compute the mass mv of a particle v, the

contribution of each element incident to v is accumulated:

mv =
1
c

∑
e∈Ev

ρe De

with Ev the set of elements incident to v, ρe the density and
De the area of element e in 2D (resp. volume in 3D), and c a
constant equal to 4 in 2D (resp. 8 in 3D).

For the stiffness of each spring s, we accumulate the con-
tribution of each element incident to s. The stiffness constant
associated to the length i, for a 2D rectangular element E of
length i and j, is given by [BBJ∗09]:

kE(i, j) =
E

(

j2 (3 ν+2)− i2
)

4 i j (1+ν)

with E, ν respectively the Young’s modulus and the Pois-
son’s ratio of the object (or element for heterogeneous ob-
ject). Thus, the two stiffness constants of a 2D element E of
length lX and lY are defined by kE(lX , lY ) and kE(lY , lX ) with
{i, j} ∈ {lX , lY } and {i 6= j}. For a 3D element E of sizes i,
j and k, the stiffness constant associated to the length i is:

kE(i, j,k)=
E

(

6 j2k2 (1+ν)+(ν( j2 + k2)− i2)
(

i2 + j2 + k2
))

24 (1+ν) i j k

Thus, the three stiffness constants of a 3D element E of sizes
lX , lY and lZ are kE(lX , lY , lZ), kE(lY , lX , lZ) and kE(lZ , lX , lY )
with {i, j,k} ∈ {lX , lY , lZ} and {i 6= j 6= k}.

In 2D, 4 internal diagonal springs kd are created. Their
stiffness constant is computed with the following formula:

kd =
E

(

lX
2 + lY

2
)

4 lX lY (1+ν)

The same goes in 3D, with 8 internal diagonal springs:

kd =
E

(

lX
2 + lY

2 + lZ
2
)2

24 (1+ν) lX lY lZ

4. LCC+MSS extension for adaptive refinement

In [FZDJ13], the LCC+MSS structure is used for a MSS
simulation allowing topological changes. This paper pro-
poses an extension of this model to handle complex topo-
logical operations, like local mesh refinement, while keeping
the possibility to cut or pierce objects. The principle of a sin-
gle data structure is preserved to store the physical properties
and geometric and topological information of the mesh. The
basic tool of the adaptive refinement process during the sim-
ulation is the local subdivision of an element (local means
that only one element is modified, not its neighbors).

Without adaptive refinement, each quad is always com-
posed of 4 edges, and each hexahedron is always composed
of 6 quads. This is not true anymore after local subdivisions,
since the side of an element can be composed of several
edges in 2D, and several quads in 3D (see Figs. 3 and 4).
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To define our local refinement algorithm, all the edges
(resp. quads) belonging to the same side of an element must
be retrieved. For that, the following notions are introduced:

• The subdivision level of an element E (resp. an edge e),
noted lE (resp. le), is related to the number of times E

(resp. e) is subdivided. These levels are initialized to 1
and updated during the refinement process (multiplied by
2 at each new refinement).

• A hierarchical face (resp. hierarchical edge) is the set
of faces (resp. edges) generated by the subdivisions of
the same initial face (resp. edge). For a non-subdivided
face (resp. edge), it corresponds to the face (resp. edge)
itself. Hierarchical faces only exist in 3D, while hierar-
chical edges exist in 2D and 3D.

• A corner particle is one extremity of a hierarchical edge.
In 2D, each face (resp. hierarchical face in 3D) has always
4 hierarchical edges and 4 corner particles.

• A border T-junction is a particle which is inside a hier-
archical edge (i.e. it is not an extremity of a hierarchical
edge). Each border T-junction stores the two corner parti-
cles of its hierarchical edge.

• A middle T-junction (which only exists in 3D) is a particle
which is inside a hierarchical face (i.e. not on the border
of a hierarchical face). Each middle T-junction stores the
four corner particles of its hierarchical face.

• A face (resp. volume) is said non-conformal if it has at
least one T-junction particle (border or middle) in addi-
tion to its corner particles. An element is non-conformal

related to a T-junction if the dart belonging to the element
and incident to the T-junction is not hierarchical.

• A hierarchical dart is the first dart of a hierarchical edge.
All the darts are initialized as hierarchical, and updated
during split operations. These darts allow for the retrieval
of all the corner particles.

This additional information allows the local refinement pro-
cess without any geometric computation, avoiding complex
computation and possible rounding error. Indeed, we make
no angle calculation to retrieve the different sides of an el-
ement, nor any length computation between the extremities
of an edge to find, for example, the middle dart of an ele-
ment side. Fig. 2 summarizes the information contained in
the Particle and Spring structures associated to each
vertex, edge, face or volume of a 3D LCC.

In Fig. 3, the 2D model was initially composed of 4 quads
E0, E1, E2 and E3. E1 was subdivided into E10, E11, E12
and E13, followed by the subdivision of E10. Different sub-
division levels of elements coexist, for example lE(E0) =
1, lE(E11) = 2 and lE(E100) = 4. For edges, le(e0) = 1,
le(e3) = 2 and le(e2) = 4. The left hierarchical edge e0 of
E0 is only composed of one edge, while the right hierarchi-
cal edge is composed of 3 edges (e1,e2,e3). E0, E12 and E23
are non-conformal, while E20 and E300 are conformal.

In Fig. 4, the 3D model was initially composed of 6 hex-
ahedra. The central hexahedron is not subdivided (thus its

subdivision level is equal to 1), while some of its neigh-
bors are. For this reason, the hierarchical faces of the cen-
tral hexahedron are eventually composed of several faces,
and the central hexahedron is non-conformal. The following
subdivision levels of edges coexist, le(e0) = 1, le(e1) = 2
and le(e2) = 4. The hierarchical face F0 is non-conformal,
even if it contains only one face. Indeed, F0 has no middle
T-junction, while it has 8 border T-junctions. The hierarchi-
cal face F1 is non-conformal as well, contains 7 faces, has 4
middle T-junctions and 8 border T-junctions.

Particle 

Spring 

Mass 

Acceleration 

Velocity 

Sum of forces  

List of diagonal springs 

… 

Initial length 

Stiffness 

Extremities 

Subdivision level 

… 

Geometric coordinates 

Mark for hierarchical dart 

Subdivision level 

Figure 2: A 3D LCC with additional information for an
hexahedral MSS. Particle and Geometric coordi-

nates are associated to all 0-cells. Spring is associated
to all 1-cells, and a mark identifies all the hierarchical darts.
The MSS is composed of springs on the edges of the mesh,
and internal diagonal springs in the elements.

Figure 3: 2D model showing a set of quads with different
subdivision levels. Corner particles are drawn in black, bor-
der T-junctions in blue and hierarchical darts in orange.

5. 2D regular refinement 1:4

In this section, we present our approach to locally refine a 2D
LCC+MSS model. Firstly, we explain the topological part of
our refinement process, and secondly its physical one.

Topological refinement. Fig. 5 illustrates the refinement
steps on a 2D object composed of two adjacent quads E0



Fléchon E., Zara F., Damiand G., Jaillet F. / A Unified Topological-Physical Model for Adaptive Refinement

(a) (b) (c) (d) (d)

Figure 5: E0 and E1 are two adjacent quads having the same subdivision level. (b-d) The different steps for the subdivision of
E0 into four sub-quads: E000, E001, E010 and E011.

(a)

(b)

Figure 4: (a) 3D model showing a hexahedron (in green)
adjacent to more subdivided hexahedra (in blue). (b) Zoom
on the central green element. Corner particles are drawn in
black, middle T-junctions in pink and border T-junctions in
blue, hierarchical darts are drawn in orange.

and E1 at the same initial subdivision level. All edges have
the same subdivision level (equal to 1 if never subdivided)
and all darts are marked as hierarchical (see Fig. 5(a)). El-
ement E0 is refined in a regular way in 4 sub-quads (called
regular refinement 1:4), see Fig. 5(e). The subdivision pro-
cess, based on the insertion operations of the combinatorial
maps [BADSM08], is done in four steps:

1. A new vertex is inserted in the middle of each edge of
E0. The insertion of a vertex splits the initial edge in two.
The subdivision level of the resulting darts is twice that of
the initial darts. New particles are associated to the new
vertices, and new springs are associated to the new edges.
In the current example, this operation creates 4 new darts
drawn in gray in Fig. 5(b).

2. A new edge is inserted between the two darts associated
with the two vertices in the middle of two opposite hierar-

chical edges of E0 (the two darts circled in Fig. 5(b)). The
insertion of the edge creates two darts (see Fig. 5(c)). The
subdivision level of the new edge is initialized to 2lE0 ,
which corresponds to the value obtained after the sub-
division process. The two darts of the edge are marked
hierarchical. After this step, E0 is now subdivided in two
2-cells: E00 and E01.

3. A new vertex is inserted in the middle of the edge previ-
ously created, similarly to step 1 (see Fig. 5(d)), associ-
ated with a new particle. Two new springs are created and
associated with the two new edges.

4. The two new elements created, E00 and E01, are then sub-
divided as in step 2: two edges are inserted by using two
opposite darts belonging to the same face. The subdivi-
sion levels of the two new edges are initialized to 2lE0 . A
spring is associated to each new edge, and the new darts
created are all marked as hierarchical. This operation in-
duces the creation of four new elements: E000, E001, E010
and E011 (see Fig. 5(e)).

This refinement process involves that the adjacent ele-
ments to the element to be refined have a smaller or equal
subdivision level. This is not necessarily true and thus this
must considered during the subdivision process.

Let us reconsider the example given in Fig. 3. The first
step to subdivide E0 consists in inserting a vertex in the mid-
dle of its hierarchical edges. But since E0 is adjacent to ele-
ments already refined (the refinement of E1 and E2 followed
by the refinement of E10), its right and bottom hierarchical
edges are already subdivided. Consequently, the vertices in
the middle of these two hierarchical edges already exist, and
hence no new vertex has to be inserted.

To test if an edge e of an element E has to be split in two
or not, its subdivision level le is compared to the level of
the element lE . If they are equal, the edge is not subdivided
and thus a vertex must be inserted. Otherwise, the edge is al-
ready subdivided and there is no need to insert a new vertex.
A second modification of the subdivision process appears
when we recover the darts associated with the vertices in the
middle of a hierarchical edge. The darts circled in Fig. 5(b)
or Fig. 5(d) are obtained by β1 from a hierarchical dart. But,
this is not true anymore if the hierarchical edge has already
been subdivided. To obtain this middle dart, S is computed
as the sum of the inverse of the subdivision level 1/le of all
the edges e of the hierarchical edge. Then, the method starts
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from the corresponding hierarchical dart and iterates β1, ac-
cumulating 1/le, until S/2 is reached.

Physical properties updating. During the subdivision pro-
cess, the insertion of vertices and edges involves the addition
of particles and springs in the MSS. Their properties are ini-
tialized or updated to preserve the initial physical properties
of the object.

• Mass. The mass of all the particles incident to the newly
subdivided face must be initialized or updated. We pro-
ceed as seen in Section 3. However, a specific treatment
must be done for T-junction particles (explained below).

• Diagonal spring. When a quad is subdivided into four,
its two initial diagonal springs are removed, and two di-
agonal springs are created for each new sub-quad (while
updating the lists of all the diagonal springs linked to the
particles at their extremities). The stiffness constant of
new springs are computed again as previously described
(Sec. 3). Their initial lengths are computed with the initial
lengths of their element, relatively to the level of subdivi-
sion of the considered element.

• Spring. For a face newly refined, the set of springs associ-
ated to the edges are updated and new springs are initial-
ized. It is done as in the initialization process. The initial
length of each spring is updated by division by le. There-
fore, the stiffness constants are computed relatively to the
hierarchical edges and not to the considered edges. The
stiffness constant kE|e(i, j) of a spring associated to edge
e (of subdivision level le) of the element E (of subdivision
level lE ) is computed with the following formulation:

kE|e(i, j) = kE(i, j)
le

lE

where kE(i, j) is the stiffness constant of the hierarchical
edge containing edge e. The dimensions of E are lX and
lY corresponding to the initial lengths of the springs asso-
ciated to two successive hierarchical edges of E. {i, j} ∈
{lX , lY } and {i 6= j}.

• Velocity and acceleration. To avoid slowing down the
system, the velocity and acceleration of new particles are
initialized from their neighborhood. When a particle is in-
serted in an edge (step 2 of the refinement process), its
velocity (resp. acceleration) is the average of the one of
the extremities of the considered edge. For the particle in-
serted in the middle of the face to be refined (step 4 of
the refinement process), its velocity (resp. acceleration) is
the average of the four particles corresponding to the first
extremities of the hierarchical darts of the initial face.

• Border T-junction. During the refinement process, if a hi-
erarchical edge incident to two faces is subdivided in two,
the new particle becomes a border T-junction. In Fig. 6,
v01 is a T-junction which does not exist for the non-

conformal element E0. Consequently, v01 is constrained
to remain on the edge (v1, v4) to avoid inconsistencies in
the physical simulation (as shown in Fig. 6(b) where v01
enters inside E0). The T-junction is projected orthogonally

on its corresponding hierarchical edge at each iteration (il-
lustrated by Fig. 6(c)). Its mass is computed according to
its incident faces (E10 and E12) which are conformal re-
lated to it. Moreover, to conserve the global force of a con-
formal element, the force of each T-junction is distributed
to the particles of the incident conformal elements. In our
example, the force of v01 is distributed to v1, v4, v04, v00
and a double weight is used for v02 by construction.

6. 3D regular refinement 1:8

The 2D refinement (sec. 5) is now extended to the 3D case.

Topological refinement. Fig. 7 illustrates the six refinement
steps of a 3D model composed of 1 hexahedron E which is
split into eight (called regular refinement 1:8).

1. The six faces of E are subdivided in four, creating new
points/particles and darts/springs (the new 0-cells are rep-
resented in red in (b)). The 2D refinement process is used.

2. A 2-cell (see (c)) is inserted in the middle of the 3-cell,
splitting E into two parts (blue and green hexahedra).
This face is inserted along a list of darts forming a cy-
cle in the middle of the four lateral faces.

3. The new face is split into four (the new 0-cells and 1-
cells are represented in red in (d)) using again the 2D
refinement process.

4. A 2-cell is inserted in the two new hexahedra (see (e)).
5. The two new faces are split into two (the new 1-cells are

red in (f))).
6. A 2-cell is inserted in the four new hexahedra (see (g)).

Physical properties updating. In addition to particles and
springs corresponding to the edges, four internal diagonal
springs have to be updated for each element. For a hexahe-
dron, the four initial diagonal springs are removed, and four
new diagonal springs are created for each new hexahedron.
The computation of the stiffness constant of the new springs
is done similarly than for the initialization (Sec. 3).

As in 2D, T-junctions are projected orthogonally on their
associated cell to avoid physical inconsistences: border T-
junctions are projected on their associated hierarchical edge,
while middle T-junctions are projected on their associated
hierarchical face. The projections are done using the corner
particles associated to T-junctions.

7. Adaptive refinement

Local refinement can be used, both for 2D and 3D meshes,
to propose an adaptive refinement method. Thus, during the
simulation, each element can be tested and subdivided (by
using the local refinement presented in previous sections) if
a given criterion is satisfied. The main benefit of this adap-
tive refinement method is to automatically adapt the mesh
depending on the need of the simulation.

We chose a geometric criteria based on the deformation
of internal diagonal springs. An element is subdivided if
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(a) (b) (c)

Figure 6: We handle T-junctions by orthogonal projection on their hierarchical edge. Particles of the same color have the same
mass.

(a) (b) (c) (d) (e) (f) (f)

Figure 7: The different steps of the subdivision of a hexahedron into eight sub-hexahedra.

one of its diagonal springs satisfies the following formula:

|l − l0|

l0
∗100.0 > threshold

where l and l0 are respectively the length at time t and the
initial length of the diagonal spring.

Other criteria can be defined using, and possibly mixing,
the geometry of the elements or their physical properties.

8. Results

Our adaptive refinement method was implemented in the
generic topological framework of Fléchon et al. [FZDJ13]
by improving the LCC+MSS model.

The results shown in Fig. 8 illustrate that our method han-
dles adaptive refinement during the simulation while allow-
ing cutting operations. Another experiment also exhibiting
adaptive 3D refinement is shown Fig. 9. The automatic re-
finement of a 3D mesh can be observed during its fall on a
spike. Fig. 10 illustrates the capability of our method to de-
scribe objects with hexahedra of different subdivision levels.

A comparison between our adaptive method and the re-
sults obtained without adaptive refinement is given in Fig. 11
These results show that the adaptive refinement method is in
between the coarse and refined results which validates the
precision of our method.

The "Adaptive 2-4" version, whose curve is presented
in Fig. 11(c), is composed of 18 elements refined twice and
880 elements refined three times, as seen in Table 1. This
version requires an average computation time of 13.12ms by
simulation step. Moreover, the average computation time for
the mere subdivision process is 28.66ms, and 5.86ms for the
distribution of the T-junction forces to their neighbors (120

Time (ms) Number of elements
Coarse 0.37 2 elts lvl. 1
Adaptive 2-3 2.49 2 elts lvl. 2 and 112 elts lvl. 3
Refined ×3 13.47 1024 elts lvl. 4
Adaptive 2-4 13.12 18 elts lvl. 3 and 880 elts lvl. 4
Refined ×4 97.53 8192 elts lvl. 5

Table 1: For each curve shown in Fig. 11(c), average compu-
tation time for one simulation step, and number of elements
with their subdivision level.

T-junctions). The low tradeoff in time between "Adaptive 2-
4" and "Refined ×3" is explained by the small difference
between the number of elements (898 vs 1024) and the ex-
tra cost due to T-junctions. The first point can be solved by
choosing a better subdivision criteria, and the second by im-
proving how T-junctions are handled.

9. Conclusion

In this paper, the LCC+MSS model presented by Fléchon
in [FZDJ13] has been extended. Our main contribution is
the use of a 2D or 3D unified model, and the definition of an
adaptative refinement operation during the simulation. The
physical description is updated while the validity of the mesh
is guarantied thanks to the underlying topological model.
Our refinement method is implemented based on CGAL Lin-
ear Cell Complex.

Besides, the coarsening operation will be investigated as
future work. Note that we already have implemented the
coarsening of edges (or faces in 3D) which is used after a
cut involving different subdivision levels. Finally, other re-
finement patterns may be considered (tetrahedra, prisms),
as well as other physical models such as the Mass-Tensor
model [FZJM12].



Fléchon E., Zara F., Damiand G., Jaillet F. / A Unified Topological-Physical Model for Adaptive Refinement

(a) (b) (c) (d)

Figure 8: 2D experiment. The elements on the boundary of the mesh are constrained and the other ones are subject to gravity.
(a) Initial mesh composed of 20×20 quads with the cutting path in red. (b) A step of the simulation where some elements are
automatically subdivided. (c) Another step that exhibits four different subdivision levels. (d) Zoom on the circled part in (c).

(a) (b)

Figure 9: 3D experiment. (a) The initial mesh composed of 10× 10 hexahedra with
a spike (a cube centered on a plane). (b) The mesh after collapsing on the spike, with
three different subdivision levels. ρ = 400 Kg/m3

E= 30 KPa, ν = 0.4.

Figure 10: A rabbit composed of hexa-
hedra having different subdivision lev-
els (the 3D mesh is visually cut in order
to see the internal hexahedra).
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Figure 11: Each graph shows plots representing a simulated beam at different subdivision levels: 3 fixed subdivisions levels
("Coarse", "Refined ×3" and "Refined ×4") and one (resp. two for (c)) adaptive refinement "Adaptive 2-4" (resp. "Adaptive
2-3" and "Adaptive 2-4"). The coarse model is adaptively refined during the simulation. The subdivision level of its elements
range from 2 to 3 for "Adaptive 2-3" and from 2 to 4 for "Adaptive 2-4". As illustrated in (b), the curves give the position of
all the upper particles of the beam (red crosses) after 10,000 simulation steps, E = 100 KPa, ν = 0.3. (a) 2D model, initially
composed of two quads of size 0.1 m×0.1 m. ρ = 1000 Kg/m3 with a threshold = 2% for the geometric criteria. (c) 3D model,
initially composed of two hexahedra of size 1 m×1 m×1 m, ρ = 100 Kg/m3 with a threshold = 1.2% for the geometric criteria.
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