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Abstract. We review the following higher-spin holographic duality conjec-
ture: the O(N) model at an isotropic Lifshitz point of criticality order ` + 1
should be dual to a higher-spin gravity theory whose spectrum contains a tower
of partially massless symmetric tensor fields of all even spins and all odd depths
between 1 and 2` − 1. More precisely, the Gaussian fixed point corresponding
to free higher-order singletons on the d-dimensional boundary should be de-
scribed in the bulk by the Vasiliev equations based on the symmetry algebra of
the polywave equation of order 2`. Moreover, an elementary renormalization
group analysis suggests that for ` = 2 and 6 6 d 6 10 both the free and the
interacting isotropic Lifshitz point should be described by the same bulk theory
but with distinct boundary conditions.

PACS number: 11.25.Hf, 11.25.Tq, 64.60.ae

1 Introduction

The duality conjectured in 1998 by Maldacena, called “AdS/CFT correspon-
dence” or “gauge/gravity duality”, relates IIB superstring theory around the
background geometry AdS5 × S5 and maximally supersymmetric super Yang-
Mills (SYM) theory on the conformal boundary of the five-dimensional anti de
Sitter (AdS) spacetime but it was soon generalised to other superstring vacua [1].
Nowadays, this body of ideas has been considerably extended so that, by now,
the “holographic duality” or “bulk/boundary correspondence” generally refers
to a duality relating a gravity theory, not necessarily a string theory, around a
weakly-curved background, to a strongly-coupled conformal field theory (CFT)
on the boundary, not necessarily a gauge theory, nor supersymmetric, nor even

∗Based on the talk given by X.B. at the international conference “Mathematics Days in Sofia”
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relativistic (the only constraint is that the CFT should possess an expansion in
the inverse of the number N of fields, such that its large-N limit correspond to
a tractable semiclassical limit on the gravity side) [2]. However, if one believes
in the strong form of the duality then a natural question is: What is the bulk dual
of a free CFT?

Free (or integrable) CFTs have an infinite number of hidden symmetries, thus
by Noether theorem their spectrum contains an infinite tower of traceless con-
served currents with unbounded spin (including the spin-two stress-energy ten-
sor). Therefore the AdS/CFT dictionary suggests that free (or integrable) CFTs
should be dual to higher-spin (HS) gravity theories [3, 4] whose spectrum con-
tains an infinite tower of gauge fields with unbounded spin (including the spin-
two graviton). One should stress that even if the boundary CFT is free, the
n-point correlators of the bilinear boundary currents do not vanish, thus the n-
point vertices of the bulk theory are also not vanishing. In other words, the bulk
dual of a free CFT should be an interacting HS gravity theory.

Such ideas emerged progressively in a series of papers more than a decade
ago [5–10]: the idea was born in the context of the Maldacena conjecture for
AdS5 [5, 6], and then pursued in any dimension, first at the level of kinemat-
ics [7] and later at a dynamical level. This lead to the holographic duality conjec-
ture between bosonic HS gravity around a strongly-curved AdSd+1 background
and the singlet sector of a d-dimensional theory of (a large number of) free con-
formal scalars in the vector representation of an internal symmetry group [8–10].
A further important step was the observation by Klebanov and Polyakov of the
holographic degeneracy of four-dimensional bosonic HS gravity in the sense that
both the Gaussian (free) and the Wilson-Fisher (strongly-coupled) fixed points of
the three-dimensionalO(N)-model should be dual to the same four-dimensional
bulk theory, but with distinct boundary conditions [10]. This provided the first
example of an exotic AdS/CFT correspondence between a strongly-coupled
condensed-matter CFT and a strongly-curved non-stringy AdS theory. Since
bosonic HS gravity exists in any dimension, the holographic degeneracy argu-
ment also applies to the pair of fixed points of the five-dimensionalO(N)-model
that should be dual to the same six-dimensional bulk theory [11–13].

The agreement between Vasiliev’s four-dimensional HS gravity and the sector
of bilinear operators formed out of free conformal scalars in three dimensions
has been verified very early at the level of scalar cubic couplings in [14,15] but,
more recently, generic checks of the conjecture for AdS4/CFT3 at the cubic
level [16] (see also [17, 18]) prompted a revived interest in the correspondence
which has since been generalised in various directions (see [19] for a review).

The goal of the paper is to briefly review the generalisation proposed in [20] of
the HS holographic duality, by spelling out the CFT side in details in Section 2
and by summarizing the main evidences in favor of the conjecture in Section 3.
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2 CFT: the isotropic Lifshitz point

The isotropic Lifshitz1 point is a special type of multicritical renormalization-
group (RG) fixed point that was originally introduced in the tricritical case in
1975 [22] and has been experimentally observed in a ternary mixture of ho-
mopolymer and diblock copolymer for the first time in 1995 [23] (see also [24]
for more details).

The fundamental fields of the O(N) vector model are N real scalar fields that
form an N -vector multiplet ~φ = (φ1, . . . , φN ) of the internal symmetry group
O(N). Actually, complex scalar fields can also be considered, in which case
the symmetry is enhanced to U(N). The vector model in d dimensions at an
isotropic Lifshitz point1 of criticality order ` + 1 is described by a Wilsonian
action whose quadratic part starts at order 2` in the derivative expansion. In
practice, this means that the couplings in front of the ` first terms appearing in
the derivative expansion of the quadratic piece (i.e. the mass term

∫
~φ∗ · ~φ ddx,

the standard kinetic term
∫
~φ∗ · �~φ ddx, etc, till the term

∫
~φ∗ · �`−1~φ ddx)

are set to zero. Moreover, the couplings of the interacting piece also have to
be fine-tuned in order to be at a fixed point. In practice, this means that ` + 1
experimental parameters have to be fixed, so that one speaks of a (multi)critical
fixed point of order `+ 1.

The actual kinetic term is (at lowest order in the derivative expansion)

Sfree[~φ] =
1

2
c4

∫
~φ∗ ·�`~φ ddx (1)

and it contains the polywave operator �` of order 2`. The standard critical fixed
point corresponds to ` = 1 and is of order 2. In the physical applications,
the isotropic Lifshitz point is mostly considered in the tricritical case ` = 2
because it is already very hard to approach it experimentally [23, 24]. This case
corresponds to the kinetic operator �2 of fourth order.2 In the general case, the
engineering dimension of the scalar fields is ∆~φ = (d− 2`)/2 and the quadratic

action Skin is conformally invariant. An on-shell scalar field ~φ with scaling
dimension (d− 2`)/2 and solution of the polywave equation �`φ = 0 has been
called (scalar) “singleton of order `” in [20] (and “`-linetons” in [30]) since for
` = 1 it is the usual scalar singleton (also called “Rac” in [31]) subject to the
d’Alembert equation. A singleton of order ` 6 d/2 spans an irreducible (in
general, indecomposable) representation (irrep) of the conformal algebra o(d, 2)
denoted by D(d−22 , 0). The usual singleton (` = 1) saturates the unitarity bound

1Although the union of the adjectives “isotropic” and “Lifshitz” may sound like an oxymoron
(since, usually, the celebrated “Lifshitz point” rather correspond to some anisotropic scale symme-
try), we followed the standard RG terminology for these multicritical fixed points (see e.g. [21]).

1A seminal study of the large-N limit of Lifshitz points was provided in the paper [25] (see
also [26] and references therein to recent works).

2Notice that this CFT was also considered in the context of the Weyl anomaly [27, 28].
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but higher-order singletons are not unitary (the polywave equation is higher-
derivative). One should stress that unitarity is not a fatal issue for the physical
applications in condensed matter (in fact one works in the Wick-rotated signature
for statistical physics).

The O(N)-singlet bilinears are the analogues of the “single-trace operators” of
adjoint models (like N = 4 SYM) and are also referred as “single-trace” by
a conventional abuse of terminology. The single-trace sector of vector mod-
els is much more simple than the one of adjoint models because the former is
spanned only by the bilinears (∂ · · · ∂~φ∗) · (∂ · · · ∂~φ). From the point of view of
the conformal algebra o(d, 2), the bilinear operators belong to the tensor prod-
uct D(d−2`2 , 0)⊗2 of two singleton representation. Due to the O(N) symmetry,
the allowed deformations of the Gaussian action (1) are O(N)-singlets, which
are called “multi-trace operators” since they are products of single-trace ones.
Double-trace deformations are the simplest ones and they can be seen as medi-
ated by an auxilliary scalar field via the Hubbard-Stratonovich trick. A corol-
lary of [32] is that the scaling dimensions (∆free and ∆int) of the Hubbard-
Stratonovich field (respectively at the undeformed fixed point and at the inter-
acting fixed point driven by the double-trace deformation) are conjugate to each
other (∆free + ∆int = d+O(1/N) ) in the large-N limit.

The deformation with the lowest scaling dimension is the quartic interaction
|~φ|4 which is precisely a double-trace deformation corresponding to a scalar
Hubbard-Stratonovich field σ ∼ |~φ|2. At the Gaussian fixed point, the scaling
dimension of operators is equal to their engineering dimension. Therefore, the
auxilliary field σ has scaling dimension equal to ∆free = 2∆~φ = d − 2` at the
Gaussian fixed point and can be unitary there only if ∆free > (d− 2)/2⇔ d >
4` − 2. At the interacting fixed point corresponding to the sole deformation by
|~φ|4, the field σ has scaling ∆int = d−∆free = 2` in the large-N limit, thus it
can be (i) unitary only if ∆int > (d−2)/2⇔ d < 4`+2 and (ii) relevant only if
d < 2∆int = 4`. In this sense, the “critical dimension” is d = 4` (since mean-
field theory is only efficient for d > 4`). The scalar Hubbard-Stratonovich field
can be unitary at both fixed points (holographic degeneracy) only in the range
4`− 2 < d < 4`+ 2.

Let us now pursue this elementary RG analysis but restrict to the two physically
relevant cases (` equal to 1 or 2). The potentially relevant deformations take the
form (at lowest order in the derivative expansion)

Sint[~φ] =
1

2

∫ (
u4 |~φ|4 + u6 |~φ|6

)
ddx (2)

For the critical fixed point (` = 1), the double-trace deformation |~φ|4 is the only
relevant interaction for d > 3. More precisely, the triple-trace deformation |~φ|6
is marginal for d = 3 (see e.g. [29] for a related discussion). The variation of
the RG behaviour with the dimension d is summarized for the critical case in the
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table 2 of [11], so one can now consider the tricritical isotropic Lifshitz point
(` = 2). In that case, the double-trace deformation |~φ|4 is the only relevant de-
formation in the range 6 < d < 8 but the triple-trace deformation |~φ|6 becomes
relevant for d < 6. In the range 8 < d < 10 the interacting fixed point is
expected to become ultraviolet attractive (an example of asymptotic safety).

3 AdS: partially massless fields

At kinematical level (i.e. at the level of two-point functions and in the large-N
limit), theAdSd+1/CFTd correspondence can be seen, from a group-theoretical
perspective, as a mere intertwiner of o(d, 2)-representations [33, 34] where the
latter algebra is either realised as isometries in the bulk or as conformal trans-
formations on the boundary.

The maximal compact subalgebra o(d, 2) is o(2)⊕ o(d) and corresponds to the
time translations generated by the (conformal) Hamiltonian and to the o(d)-
rotations, both acting in a natural way on the boundary ∼= S1 × Sd−1. Ac-
cordingly, the simplest irreps of o(d, 2) denoted by D(∆, s) are caracterized by
the energy (scaling dimension) ∆ > 0 and by the spin s ∈ 1

2N of the ground
state (conformal primary operator). In particular, a partially conserved traceless
symmetric tensor field of rank s > t > 1 on the boundary generates the irrep
D(d+s−t−1, s). By “partially conserved” (of depth t) one means that the con-
servation law is weaker (only the t-th divergence vanishes on-shell) [35]. The
AdS counterpart of D(d + s − t − 1, s) is a “partially massless” field, i.e. a
symmetric tensor field on AdSd+1 with a fine-tuned mass such that it posesses
exotic gauge symmetries containing t derivatives of the gauge parameter of rank
s− t [36]. The case t = 1 reproduces the standard AdS/CFT dictionary between
boundary conserved currents and bulk gauge fields. The generalisation of the
dictionary to higher-depths was proposed in [35]. For s > 0 and t > 1, the
irreps D(d + s − t − 1, s) of o(d, 2) are not unitary (the bound is saturated for
t = 1) but their o(d + 1, 1) counterparts are unitary. In other words, bosonic
partially massless fields are unitary on de Sitter (dS) spacetimes but not on anti
de Sitter spacetimes.

The following theorem ensures the validity, at kinematical level, of our conjec-
ture [20]. The tensor product of two higher-order scalar singletons decomposes
as the sum of o(d, 2)-irreps describing the partially conserved-currents/massless-
fields of all ranks s ∈ N and all odd depths t (= 2k−1) ranging from 1 to 2`−1:

D
(d− 2`

2
, 0
)
⊗ D

(d− 2`

2
, 0
)

=

∞⊕
s=0

⊕̀
k=1

D(d+ s− 2k, s) . (3)

It is a generalisation of the Flato-Fronsdal theorem [31,37] to higher order ` > 1
and depth t > 1. From the holographic perspective, the left-hand-side cor-
responds to the singlet sector of the U(N) vector model (for the O(N) it is
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restricted to the symmetric product [11]) while the right-hand-side can be inter-
preted either as the CFT spectrum of (composite) primary operators, or as the
AdS spectrum of elementary fields. The latter coincides with the spectrum of
fields arising from the linearised Vasiliev’s equations based on the symmetry al-
gebra of the free higher-order singleton [20]. In fact, the nonlinear equations
proposed by Vasiliev for bosonic higher-spin gravity around (A)dSd+1 [4] re-
main consistent when based on the symmetry algebra of the free singleton of any
order ` (because it is a suitable quotient of the “off-shell” higher-spin algebra).
This provides the first example of a full interacting theory involving partially
massless fields.

4 AdS/CFT: conjecture

Putting all these facts together support the following particular case of the con-
jecture in [20]: the large-N limit of the O(N) vector model at a tricritical
isotropic Lifshitz point should be dual to the bosonic higher-spin gravity with an
infinite tower of partially massless fields of all even spins 0, 2, 4, ... and of depths
1 and 3. The RG analysis shows that in the range 6 < d < 10, the situation is
very similar to the usual case ` = 1 in that the theory is holographically degen-
erate. More precisely, in the large-N limit the two fixed points are related by a
Legendre transformation on the CFT side and by a change of boundary condi-
tion for the bulk scalar field. However, in the more physical range 2 < d < 6 the
situation is more complicated because triple-trace deformations become relevant
and requires more investigations. The discussion of multitrace deformations of
vector theories and their bulk duals in [29] should help to adress this issue.

The dS/CFT version of this proposal is also of interest. Remember that, though
partially massless fields are not unitary on AdS, their dS analogues are. Follow-
ing the conjecture of [38], one might speculate that the Euclidean Sp(N) vector
model with anticommuting scalars at isotropic Lifshitz points might be dual to
unitary bosonic HS theories of partially massless tensor fields around de Sitter
spacetime.

Acknowledgments

X.B. is grateful to the organisers of the “Mathematics Days in Sofia” for their
invitation to this enjoyable meeting and the opportunity to present his talk. The
work of M.G. was supported by RFBR grant 13-01-00386.

References

[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Phys. Rept. 323
(2000) 183 [hep-th/9905111].

6



Higher-order singletons and partially massless fields

[2] J. McGreevy, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518 [hep-
th]].

[3] M. A. Vasiliev, Phys. Lett. B243 (1990) 378.
[4] M. A. Vasiliev, Phys. Lett. B567 (2003) 139[hep-th/0304049].
[5] B. Sundborg, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247].
[6] E. Sezgin and P. Sundell, JHEP 0109 (2001) 036 [hep-th/0105001].
[7] S. E. Konstein, M. A. Vasiliev and V. N. Zaikin, JHEP 0012 (2000) 018 [hep-

th/0010239].
[8] A. Mikhailov, “Notes on higher spin symmetries,” NSF-ITP-01-181, ITEP-TH-66-

01 [hep-th/0201019].
[9] E. Sezgin and P. Sundell, Nucl. Phys. B 644 (2002) 303 [Erratum-ibid. B 660 (2003)

403] [hep-th/0205131].
[10] I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 550 (2002) 213 [hep-th/0210114].
[11] X. Bekaert, E. Joung and J. Mourad, Fortsch. Phys. 60 (2012) 882 [arXiv:1202.0543

[hep-th]].
[12] J. Maldacena and A. Zhiboedov, Class. Quant. Grav. 30 (2013) 104003

[arXiv:1204.3882 [hep-th]].
[13] S. Giombi, I. R. Klebanov and B. R. Safdi, Phys. Rev. D 89 (2014) 084004

[arXiv:1401.0825 [hep-th]].
[14] A. C. Petkou, JHEP 0303 (2003) 049 [hep-th/0302063].
[15] E. Sezgin and P. Sundell, JHEP 0507 (2005) 044 [hep-th/0305040].
[16] S. Giombi and X. Yin, JHEP 1104 (2011) 086 [arXiv:1004.3736 [hep-th]].
[17] N. Colombo and P. Sundell, “Higher Spin Gravity Amplitudes From Zero-form

Charges,” arXiv:1208.3880 [hep-th].
[18] V. Didenko and E. Skvortsov, JHEP 1304 (2013) 158 [arXiv:1210.7963 [hep-th]].
[19] S. Giombi and X. Yin, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036 [hep-th]].
[20] X. Bekaert, M. Grigoriev, Nucl. Phys. B 876 (2013) 667.
[21] C. Bervillier, Phys. Lett. A 331 (2004) 110 [hep-th/0405027].
[22] R. M. Hornreich, M. Luban and S. Shtrikman, Phys. Rev. Lett. 35 (1975) 1678.
[23] F. S. Bates, W. Maurer, T. P. Lodge, M. F. Schulz, M. W. Matsen, K. Almdal,

K. Mortensen, Phys. Rev. Lett. 75 (1995) 4429.
[24] D. Schwahn, K. Mortensen, H. Frielinghaus and K. Almdal, Phys. Rev. Lett. 82

(1999) 5056.
[25] R. M. Hornreich, M. Luban and S. Shtrikman, Phys. Lett. A 55 (1975) 269.
[26] M. Shpot and Y. Pis’mak, Nucl. Phys. B 862 (2012) 75 [arXiv:1202.2464 [hep-th]].
[27] R. J. Riegert, Phys. Lett. B 134 (1984) 56.
[28] E. S. Fradkin and A. A. Tseytlin, Phys. Lett. B 134 (1984) 187.
[29] S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Nucl. Phys. Proc. Suppl. 171

(2007) 231.
[30] C. Iazeolla and P. Sundell, JHEP 0810 (2008) 022 [arXiv:0806.1942 [hep-th]].
[31] M. Flato and C. Fronsdal, Lett. Math. Phys. 2 (1978) 421.
[32] S. S. Gubser and I. R. Klebanov, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138].
[33] V. K. Dobrev, Nucl. Phys. B 553, 559 (1999) [arXiv:hep-th/9812194].
[34] N. Aizawa and V. K. Dobrev, arXiv:1406.2129 [hep-th].

7



X. Bekaert and M. Grigoriev

[35] L. Dolan, C. R. Nappi and E. Witten, JHEP 0110 (2001) 016 [hep-th/0109096].
[36] S. Deser and A. Waldron, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198].
[37] M. A. Vasiliev, JHEP 0412 (2004) 046 [hep-th/0404124].
[38] D. Anninos, T. Hartman and A. Strominger, “Higher spin realization of the dS/CFT

correspondence,” arXiv:1108.5735 [hep-th].

8


	Introduction
	CFT: the isotropic Lifshitz point
	AdS: partially massless fields
	AdS/CFT: conjecture

