A multi-parameter optimization approach for complex continuous sparse modelling

Abstract : The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique, the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an l0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.
Type de document :
Communication dans un congrès
19th International Conference on Digital Signal Processing (DSP 2014), Aug 2014, Hong-Kong, China. pp.817 - 820, 2014, <10.1109/ICDSP.2014.6900780>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01077331
Contributeur : Emilie Chouzenoux <>
Soumis le : vendredi 24 octobre 2014 - 14:44:19
Dernière modification le : mercredi 27 janvier 2016 - 17:37:30
Document(s) archivé(s) le : vendredi 14 avril 2017 - 12:08:44

Fichier

DSP2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Emilie Chouzenoux, Jean-Christophe Pesquet, Anisia Florescu. A multi-parameter optimization approach for complex continuous sparse modelling. 19th International Conference on Digital Signal Processing (DSP 2014), Aug 2014, Hong-Kong, China. pp.817 - 820, 2014, <10.1109/ICDSP.2014.6900780>. <hal-01077331>

Partager

Métriques

Consultations de
la notice

224

Téléchargements du document

80