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ABSTRACT

One challenging task in MCMC methods is the choice of

the proposal density. It should ideally provide an accurate

approximation of the target density with a low computational

cost. In this paper, we are interested in Langevin diffusion

where the proposal accounts for a directional component.

We propose a novel method for tuning the related drift term.

This term is preconditioned by an adaptive matrix based on a

Majorize-Minimize strategy. This new procedure is shown to

exhibit a good performance in a multispectral image restora-

tion example.

Index Terms— MCMC methods, Langevin diffusion,

Majorize-Minimize, MMSE, multichannel image restoration.

1. INTRODUCTION

Recovering the signal of interest from degraded observations

embedded in an additive noise is a key issue for many ap-

plications such as remote sensing imaging. In this respect,

a Bayesian framework can be adopted to compute the Mini-

mum Mean Squared Estimator (MMSE). However, it is not

always possible to derive a closed expression of the posterior

distribution involved in the MMSE. To alleviate this prob-

lem, Markov Chain Monte Carlo (MCMC) approaches have

been developed. They consist of constructing an irreducible

Markov chain whose stationary distribution is the unknown

posterior distribution. Building the Markov chain corre-

sponds to a specific way of exploring the state space. For this

purpose, Metropolis–Hastings (MH) algorithms have been

intensively used [1]. The key issue however is the choice of

a proposal density. Recent methods such as those based on

Langevin diffusion have incorporated a directional compo-

nent for the proposal [2]. More precisely, two parameters (a

stepsize and a scale matrix) are introduced to guide the di-

rectional component. The problem of setting the scale matrix

must be carefully addressed, especially for high dimensional

problems. Several solutions have been considered [2–4]. In

this work, we propose a novel approach for choosing the scale

matrix based on a Majorize-Minimize (MM) strategy.

The paper is organized as follows: In Section 2, we formulate

the problem and we give a brief overview of the Langevin

diffusion process. In Section 3, we describe the new MM

adapted MH algorithm. Section 4 is devoted to experimental

results for multicomponent image restoration. Finally, some

concluding remarks are drawn in Section 5

2. RELATEDWORKS

2.1. Problem statement

In this paper, we address a wide array of problems where the

vector x in R
Q of samples of an unknown signal X is esti-

mated from the observation vector z in RN given the follow-

ing observation model:

z = Hx+w (1)

where the matrixH ∈ R
N×Q corresponds to a linear degrada-

tion operator, andw inRN is the vector of a Gaussian additive

noise samples. In this work, we adopt a Bayesian framework

and we aim at computing the MMSE x̂MMSE = EπX
[x]where

the posterior distribution πX is related to the prior distribution

pX of the unknown vectorX:

πX(x) ∝ pX(x)p(z|x). (2)

Generally, the computation of x̂MMSE involves integrals that

are both analytically and numerically intractable. The Monte

Carlo approach is a classical alternative solution which con-

sists of simulating a sufficient number of i.i.d. random vari-

ables from the posterior distribution πX and approximating

the MMSE estimator by the empirical average over all these

samples. However, the target posterior is often complex and

does not present a closed form, so that direct sampling is not

always possible. To alleviate this difficulty, MCMC meth-

ods have been developed. They consist of building an irre-

ducible Markov chain whose stationary distribution is πX.
The asymptotic state of the chain is then considered as a sam-

ple of the target distribution. From an initial state x0, the

problem reduces to exploring the state space according to the

transition probabilities that characterize the Markov chain.

Different ways of moving from a state to another have been

reported. Among them, much attention was paid to MH al-

gorithms that generate a random walk according to a pro-



posal density and implement a method for rejecting proposed

moves [1].

2.2. Langevin diffusion

The choice of the proposal distribution is crucial as it impacts

the statistical properties of the resulting Markov chain espe-

cially for complex and high-dimensional target distributions.

AdvancedMHmethods introduce a directional component for

the proposal. In this respect, Langevin diffusion strategies ad-

just the state transition by accounting for the gradient direc-

tion of the target density. We have thus, for every t ∈ N,

xt+1 = xt + ε2 b(xt) + ε σ(xt)nt+1, (3)

where ε > 0 is the stepsize resulting from Euler’s discretiza-

tion of the diffusion, (nt)t∈N are realizations of a zero-mean

white noise, σ(xt) is a positive definite matrix and, b(x) =

(bi(x))
Q
i=1 is a drift term. The latter is defined as follows:

bi(x) = 1
2

∑N
j=1Aij(x)

∂ log πX(x)

∂xj

+|A(x)| 12 ∑N
j=1

∂

∂xj

(
Aij(x)|A(x)|−

1

2

)
,

(4)

where A(x) = σ(x)σ⊤(x) and |A(x)| denotes the determi-
nant of this matrix. It can be proved that the Langevin process

has πX as its stationary distribution and is more likely to ac-

cept proposed values than a standard random walk. Indeed,

the gradient information of the target distribution allows the

chain to be guided toward regions of higher probability, where

most of the samples should lie and hence, enables to achieve

high acceptance rates. To this end, it is worth noting that the

two scale parameters play an important role: ε determines the
length of proposed jumps whereas A controls the direction.

Three classes of algorithms have been developed from this

diffusion depending on the choice ofA.

2.3. Choice of the scale matrix

The standardMetropolis adjusted Langevin algorithm (MALA)

is the simplest form of this diffusion when A equals IQ, the

identity matrix of RQ [2]:

(∀t ∈ N) xt+1 = xt +
ε2

2
∇ log πX(x

t) + ε nt+1. (5)

However, it should be noted that a bad adjustment of ε can
significantly affect the convergence rate especially for large

scale problems [3]. For this reason, many methods focus on

how to choose a suitable stepsize such that the asymptotic

average acceptance rate is bounded away from zero for high

dimensions [3, 5]. Another approach consists of accelerating

the algorithm by preconditioning the proposal density using

a given constant scale matrix [4]. However, there is no clear

guiding strategies for the selection of such a constant matrix.

Recent algorithms [6–10] propose adaptive procedures where

A is tuned according to the past behavior of the Markov chain

resorting to some deterministic optimization tools. For exam-

ple, when setting A to the inverse of the Hessian matrix of

− log πX and, assuming a locally constant curvature, the term

involving the derivatives of the scale matrix in (4) reduces to

zero. Consequently, the computation of the drift term b be-

comes a scaled Newton step for minimizing − log πX. Thus,
a new sample of the Newton-based MCMC is more likely

drawn from a highly probable region and then more likely ac-

cepted, which can speed up the convergence of the sampling

process [6–8]. However, in practice, this method has a high

computational load since it requires the computation of the

Hessian matrix and its inverse at each iteration. This is partic-

ularly critical for large scale problems and/or when the Hes-

sian matrix is not definite positive. One appealing solution is

to replace the Hessian by a scale matrix that can efficiently

accelerate the algorithm with a lower computational cost. In

particular, many methods have proposed the Fisher informa-

tion matrix as a preconditioning matrix in the Langevin diffu-

sion [9, 10] which can be interpreted as the discretization of

the MALA algorithm directly on a natural Riemannian man-

ifold where the parameters live. In this work, we propose a

new approach where the scale matrix of the Langevin diffu-

sion is chosen according to a Majorize-Minimize strategy.

3. MAJORIZE-MINIMIZE ADAPTED

METROPOLIS–HASTINGS

We focus on the case when the minus-log of the target density

function Θ = − log πX can be expressed as:

(∀x ∈ R
Q) Θ(x) = Φ(Hx− z) + Ψ(x), (6)

where z ∈ R
N , H ∈ R

N×Q, Φ is a continuous coercive

differentiable function with an L-Lipschitzian gradient and

Ψ(x) =

S∑

s=1

ψs(‖Vsx− cs‖), (7)

where (∀s ∈ {1, ..., S}) Vs ∈ R
Ps×Q, cs ∈ R

Ps and

(ψs)16s6S is a set of positive continuous functions satisfying

the following properties:

• (∀s ∈ {1, ..., S}) ψs is a differentiable function,

• (∀s ∈ {1, ..., S}) ψs(
√·) is concave over R+,

• (∀s ∈ {1, ..., S}) (∃ ω̄s > 0) such that (∀u > 0) 0 6

ψ̇s(u) 6 ω̄su and lim
t→0

ψ̇s(u)/u <∞.

The minimization of (6) using the MM approach consists of

performing successive minimizations of its tangent majorant

functions [11]. Let x′ ∈ R
Q. A function f is said to be a

tangent majorant function of Θ at x′ provided that

{
f(x′,x′) = Θ(x′),
f(x,x′) > Θ(x) (∀x ∈ R

Q).
(8)



Let us assume the existence, for every x′ ∈ R
Q, of a posi-

tive definite matrix Q(x′) ∈ R
Q×Q such that the following

quadratic function, defined for every x ∈ R
Q,

f(x,x′) = Θ(x′)+(x−x′)⊤∇Θ(x′)+1
2
(x−x′)⊤Q(x′)(x−x′)

(9)

is a tangent majorant of (6) at x′. Then, the MM optimization

algorithm reduces to building a sequence (xt)t∈N through the

following scheme:

(∀t ∈ N) xt+1 = xt +
ε2

2
Q−1(xt)∇ log πX(x

t), (10)

with ε ∈ (0,
√
2]. According to the majorization properties

(8), the MM update rule (10) will produce a monotically de-

creasing sequence (Θ(xt))t∈N that converges to a local min-

imum of Θ. We take up this idea to speed up the Langevin

diffusion by using the inverse of the curvature matrix Q(xt)
as a scale matrix in (4). Similarly to Newton-based MCMC

methods, the drift term, assuming zero curvature changes,

proposes, from a current state xt, a state with a higher value

of log πX, resulting from an iteration of MM algorithm on

− log πX. Then, the obtained proposal reduces to a noisy

version of a MM iteration for minimizing − log πX. Since

the deterministic MM optimization approach can suffer from

convergence to a local minimum in the nonconvex case, the

addition of the noise component can solve this issue. The re-

sulting 3MH sampler is described by Algorithm 1.

Algorithm 1:Majorize–Minimize adapted Metropolis–

Hastings algorithm

0. Initialize x0, t = 0, ε ∈ (0,
√
2]

1. ComputeA(xt) = Q−1(xt) and
g(xt) = ∇ log πX(x

t)
2. Generate x∗ ∼ q(xt, ·), where
q(xt, ·) = N

(
xt + ε2

2 A(xt)g(xt), ε2A(xt)
)

3. Accept with probability

α(xt,x∗) = min

(
1,
πX(x

∗)q(x∗,xt)

πX(xt)q(xt,x∗)

)

3. Set t← t+ 1 and go to 1 until convergence.

There remains to define a set of suitable preconditioning

matrices {Q(x)}
x∈RQ . According to [12], convex quadratic

tangent majorants of (6) can be obtained by using

(∀x ∈ R
Q) Q(x) = µH⊤H+V⊤diag{ω(x)}V + ζ IQ,

(11)

where µ ∈ [L,+∞[, V =
[
V⊤1 , . . . ,V

⊤
S

]⊤
and ω(x) =

(ωi(x))
P
i=1 is such that, for all s ∈ {1, . . . , S}, p ∈ {1, . . . , Ps},

ωP1+P2+...+Ps−1+p(x) =
ψ̇s(‖Vsx− cs‖)
‖Vsx− cs‖

. (12)

Moreover, ζ > 0 is a constant that ensures the invertibility
of Q(x) for every x ∈ R

Q. In the context of large scale

problems, the inversion of the curvature matrix (11) at each

iteration may become intractable. We thus also propose to

resort to the following alternative choice described in [13],

which can be understood as a diagonal approximation of (11):

(∀x ∈ R
Q) Q(x) = (µ‖H‖2 + ζ)IQ + Diag

(
P⊤ω(x)

)
,

(13)

where 1Q is the unit vector of RQ and P ∈ R
P×Q, with

P =
∑

s Ps, is the matrix whose elements are given by

(∀i ∈ {1, . . . , P})(∀j ∈ {1, . . . , Q})Pi,j = |Vi,j |
Q∑

k=1

|Vi,k|.

4. EXPERIMENTAL RESULTS

Objective The experiments we carried out deal with the re-

covery of a multicomponent image with B components de-

graded by a blur modelled by a linear operator D and an

additive Gaussian noise w with covariance matrix Λ. The

restoration is performed in the wavelet transform domain: our

objective is to compute the MMSE of x ∈ R
Q through the lin-

ear model defined in (1) with H = DF ∗ where F ∗ denotes
a linear synthesis wavelet operator. Note that the wavelets

coefficients are grouped into M subbands of size Qm, m ∈
{1, . . . ,M} and, for each subband m, we can extract the set

of vectors (xm,q)
Qm

q=1 containing the wavelet coefficients lo-

cated at the same spatial position q through all the B chan-

nels using a B ×Q permutation matrix Pm,q such as xm,q =
Pm,qx.

Prior distribution Similarly to [14], we assume that the

vectors (xm,q)
Qm

q=1 are realizations of a random vector with a

Generalized Multivariate Exponential Power (GMEP) distri-

bution whose multivariate probability density function pGMEP

is defined, for every u in RB , by

pGMEP(u; θm) = Cm|Σm|−1/2g
(
u⊤Σ−1

m u;βm, δm
)
, (14)

where θm = {βm > 0, δm > 0,Σm}, for every t ∈ R+,

g(t;βm, δm) = exp
(
− 1

2 (t+ δm)
βm

)
, and Cm is the associ-

ated normalization constant. Σm is related to the covariance

matrix Γm through Σm = K2
βm,δm

Γm with

K2
βm,δm = B

∫∞
0
t
B
2
−1e−

1

2
(t+δm)βm

dt
∫∞
0
t
B
2 e−

1

2
(t+δm)βmdt

. (15)

The GMEP is an elliptical distribution that reflects the sparsity

of the coefficients and, following [15] it can be proved that it

is a scale mixture of Gaussian distributions when βm < 1. Its
mixing density is expressed as follows:

hβm,δm(ν) =
2

B
2 Γ(B2 )ν

B−3Sβm,δm(
1
2ν
−2, 2−

1

βm )
∫∞
0
t
B
2
−1e−

1

2
(t+δm)βmdt

(16)



where, for every α1 ∈ (0, 1), α2 > 0, σ > 0, Sα1,α2
(·, σ) =

e−
1

2
α2Sα1

(·, σ), and Sα1
(·, σ) is the alpha-stable density

whose characteristic function is exp(−σα1 |·|α1e−iπ
2
α1 sign(·))

[16].

Proposed priors for the hyperparameters In the follow-

ing, we suppose that (δm)16m6M is known. We also assume

that, for every m ∈ {1, . . . ,M}, parameters βm and Γm are

independent and we denote by pβm
and pΓm

their respective

prior density functions. Since wavelet coefficient images have

leptokurtic histograms [17], we set pβm
= U(0, 1). We use an

inverseWishart prior forΓm, with parameters fixed according

to a prior knowledge about Γm.

Posterior distributions The posterior distributions of the

GMEP hyperparameters have complicated form and there is

no practical way for designing algorithms to simulate sam-

ples from them especially for the scale matrix. Since for

every m ∈ {1, . . . ,M}, βm ∈ (0, 1), we propose to exploit
the fact that GMEP is a scale mixture of normal distribu-

tions. Then, there exists a vector vm = (vm,q)
Qm

q=1 of random

variables vm,q such that Kβm,δmvm,q ∼ hβm,δm and, for all

q ∈ {1, . . . , Qm}, xm,q is drawn independently from a zero

mean Gaussian distribution with covariance matrix v2m,qΓm.

Hence, the posterior distributions of Γm reduces to an inverse

Wishart distribution and the posterior distribution of βm is

related to a product of densities of stable distributions [15].

Let Ω = H⊤Λ−1H +
M∑

m=1

Qm∑
q=1

v−2
m,qP

⊤
m,qΓ

−1
m Pm,q then

the posterior distribution of x reduces to a normal distribu-

tion with mean µ = Ω−1H⊤Λ−1z and covariance matrix

Ω−1. Note that sampling from high-dimensional Gaussian

distributions is often very difficult since matrix factorization

(Cholesky, QR, square root) is not always possible because

of its high computation cost and/or memory requirements.

Some solutions have been proposed for some special struc-

tures of the covariance matrix (circular, sparse,. . . ) [18, 19].

In this work, we propose to use a step of the 3MH algorithm

with the diagonal curvature matrix. The interest of this alter-

native solution is that it does not require any assumption on

the structure of the covariance matrix.

Note that we follow the method proposed in [15] for the

sampling of vm,q. Moreover, MH steps are used to generate

samples from the posterior distribution βm.

Results The test image is a remote sensing multispectral

SPOT image of size 128 × 128 with three components (B =
3) and, corresponding to a scene depicting the city of Tu-

nis. This image is artificially blurred with a cosine blur FTM

and corrupted with a zero-mean white Gaussian noise with

a variance adjusted so as to correspond to an initial averaged

Blurred Signal-to-Noise Ratio (BSNR) equal to 21.64 dB. We

apply a 2-resolution wavelet orthonormal decomposition us-

ing a Symmlet wavelet transform of order 8. We run the hy-

brid Gibbs sampler for 8,000 iterations, reject the 6,000 first

ones as a burn-in, and take the last 2,000 results as samples

for the target data. Fig. 1 provides the evolution of improved

SNR (ISNR) with respect to the computational time using dif-

ferent algorithms to generate πX, when performing tests on

an Intel Core i7 CPU, @ 3.00 GHz and using a Matlab 7.12

implementation. It can be observed that the 3MH algorithm

reaches stability faster than MALA. In fact, MALA algorithm

requires less time per iteration but our algorithm converges

in a significantly smaller number of iterations. The obtained

samples of the wavelet coefficients are then used to compute

the empirical MMSE estimator for the original image. We

have used the hyperparameters estimated by the Gibbs sam-

pler to run the method described in [14] which computes the

MAP estimate with a GMEP prior using the MM Memory

Gradient algorithm. Table 1 reports the results obtained for

the different components in terms of SNR, BSNR and Struc-

tural Similarity Index (SSIM). It can be observed that the

MMSE estimator shows better performance than the MAP.

This can also be observed on Fig. 2 showing the visual im-

provement for the first component of the image.

Table 1. Restoration results

b = 1 b = 2 b = 3 Average

In
it
ia
l BSNR 22.32 20.29 22.30 21.64

SNR 21.72 19.56 21.96 21.08

SSIM 0.729 0.761 0.720 0.737

M
A
P

BSNR 26.76 24.16 26.48 25.80

SNR 24.95 22.33 25.19 24.16

SSIM 0.860 0.863 0.843 0.855

M
M
S
E BSNR 27.34 24.75 27.06 26.38

SNR 25.20 22.59 25.51 24.43

SSIM 0.872 0.874 0.855 0.867
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Fig. 1. Convergence speed of 3MH, MALA and MH.



(a) (b)

(c) (d)

Fig. 2. (a) Original image, (b) degraded version of the first compo-
nent (SNR = 21.72 dB, SSIM= 0.729), (c) restored version using the

MAP estimator (SNR =24.95 dB, SSIM = 0.860), (d) restored ver-

sion using the MMSE estimator (SNR =25.20 dB, SSIM = 0.872).

5. CONCLUSION

In this paper, we have proposed a new MCMC algorithm that

can be considered as a scaled MALA where the scale ma-

trix is adapted at each iteration with a MM strategy. We

have applied this algorithm to compute the MMSE estima-

tor of a multicomponent image from its blurred version. Ex-

perimental results indicate the good performance of this new

MCMC method. Note that the proposed approach can be

applied to general models where the posterior distribution is

non-Gaussian.
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