A residual-based variational multiscale discontinuous galerkin method for turbulent flows
G. Kuru, Marta de la Llave Plata, V. Couaillier, R. Abgrall

To cite this version:
G. Kuru, Marta de la Llave Plata, V. Couaillier, R. Abgrall. A residual-based variational multiscale discontinuous galerkin method for turbulent flows. 11th World Congress on Computational Mechanics (WCCM XI), Jul 2014, BARCELONE, Spain. hal-01077187

HAL Id: hal-01077187
https://hal.archives-ouvertes.fr/hal-01077187
Submitted on 24 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Turbulent flows in aeronautical applications typically have a very wide range of length and time scales characterized by their high Reynolds numbers. Traditionally, the prohibitively large computational cost implied by a high Reynolds number has made physical modelling rather than direct computation of turbulent scales a more popular approach in the industry. While well-calibrated turbulence models can provide good accuracy at reasonable computational costs, they tend to have a very limited range of applicability. In particular, flows with inhomogeneous features sensitive to small errors, such as flow with detachment, cannot be accurately predicted by conventional models and require computing a greater range of turbulent scales.

Large-eddy simulation (LES) aims to resolve all relevant turbulent scales while employing more fundamental models to account for the influence of the unresolved scales. Therefore, it has great potential for a more universal turbulence simulation methodology that is valid for any configuration. In order to make LES a tool of engineering practice, it is necessary to address issues of computational cost, handling of complex geometries and compatibility of the employed models with the used numerical method. In this work, we propose a residual-based variational multiscale discontinuous Galerkin method to address these issues and to ultimately improve efficiency by exploiting its flexibility in local refinement.

The variational multiscale (VMS) [1] approach is a framework for designing numerical methods and associated models for multiscale phenomena. In this approach, the scales not resolved by the numerical scheme are modelled by a fine scale model. This approach is particularly well-suited for higher order methods, since the model term does not add any low order consistency errors. In the context of LES, many VMS variants have been proposed, with implicit [2] and explicit [3] fine scale models. The implicit models have the
disadvantage of introducing additional degrees of freedom for the fine scales, leading to a
three-level decomposition of scales. In this work we concentrate on extending the cheaper
explicit residual-based fine scale model developed in the framework of continuous finite
excellent scalability properties in simulating unsteady phenomena on parallel computers.
DG methods have been successfully used in the variational multiscale setting for the
large-eddy simulation of turbulence [5, 6] with implicit fine scale models. In this work we
propose a cheaper explicit fine scale model based on a scaling of the cell and face residuals
of the resolved scales.

We numerically explore various options for constructing residual-based fine scale models
for DG discretizations. These methods differ in how (or whether) the jump residuals are
taken into account for the fine scale model. We compare these options using the viscous
Burgers’ equation in 1D to note that residual-based VMS DG with even the simplest fine
scale model that disregards interface jumps gives results that are better than the plain
DG method for underresoved simulations.

In the second part of this study, we apply the proposed methodology to the compressible
Navier-Stokes equations. We perform LES of wall-bounded turbulence based on the pro-
posed residual-based VMS DG method and compare our results to the results obtained
through implicit LES and LES based on the three-level VMS DG method in terms of ac-
curacy and computational cost. We conclude that the proposed residual-based VMS DG
method is competitive with the three-level VMS DG in terms of accuracy while retaining
only the coarse scale degrees of freedom. In terms of computational cost, the proposed
method is better than the three-level VMS and competitive with implicit LES.

REFERENCES

formulation, subgrid scale models, bubbles and the origins of stabilized methods.

[2] T.J.R. Hughes, L. Mazzei, K.E. Jansen. Large Eddy Simulation and the variational

ational multiscale residual-based turbulence modeling for large eddy simulation of

2003.


pour la simulation des grandes échelles des écoulements turbulents. PhD Thesis. ON-
ERA, Châtillon, December 2013.