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ADAPTIVE DECONVOLUTION ON THE NONNEGATIVE REAL LINE
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Abstract. In this paper we consider the problem of adaptive density or survival function esti-
mation in an additive model defined by Z = X + Y with X independent of Y , when both random
variables are nonnegative. This model is relevant, for instance, in reliability fields where we are
interested in the failure time of a certain material which cannot be isolated from the system it
belongs. Our goal is to recover the distribution of X (density or survival function) through n
observations of Z, assuming that the distribution of Y is known. This issue can be seen as the
classical statistical problem of deconvolution which has been tackled in many cases using Fourier-
type approaches. Nonetheless, in the present case the random variables have the particularity to be
R+-supported. Knowing that, we propose a new angle of attack by building a projection estimator
with an appropriate Laguerre basis. We present upper bounds on the mean squared integrated risk
of our density and survival function estimators. We then describe a nonparametric data driven
strategy for selecting a relevant projection space. The procedures are illustrated with simulated
data and compared to the performances of more classical deconvolution setting using a Fourier
approach. Our procedure achieves faster convergence rates than Fourier methods for estimating
these functions.

Keywords. Inverse problem. Adaptive estimation. Nonparametric density estimation. Survival
function estimation. Laguerre basis. Deconvolution. Mean squared risk.

AMS Subject Classification 2010: 62G05, 62G07, 62G99, 62N99.

1. Introduction

1.1. Model. It occurs frequently that a variable of interest X is not directly observed ; instead
we have at hand observations of Z, equal to the sum of X and another random variable Y . In
many contexts, Y may be a measurement error, and as such, symmetric or centered. But we can
also, in reliability fields, observe the sum of the lifetimes of two components, the second one being
well known. In survival analysis, X can be the time of infection of a disease and Y the incubation
time, and this happens in the so called back calculation problems in AIDS research. In these last
two cases, distributions of X and Y are R+-supported.

More formally, we consider the following model

Zi = Xi + Yi, i = 1, . . . , n, (1)

where the Xi’s are independent identically distributed (i.i.d.) nonnegative variables with unknown
density f and unknown survival function SX where SX(x) = P[X > x]. The Yi’s are also i.i.d.
nonnegative variables with known density g and survival function SY . We denote by h the density
of the Zi’s and SZ its survival function. Moreover the Xi’s and the Yi’s are assumed to be
independent. Our target is the estimation of the density f along with the survival function SX of
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2 G. MABON

the Xi’s when the Zi’s are observed. We want to emphasize that the estimation of the survival
function SX does not rely on the estimation of the density. A particular strategy is established.
Thus we are going to show that the assumption of nonnegativity of the random variables is of huge
importance for the estimation strategy.

1.2. Bibliographical context. The assumptions imply that, in Model (1), h(x) = (f ? g)(x)
where (ϕ?ψ)(x) =

∫
ϕ(x−u)ψ(u) du denotes the convolution product of two arbitrary functions ϕ

and ψ. This setting matches the setting of convolution models which is classical in nonparametric
statistics. Groeneboom and Wellner (1992) have introduced the problem of one-sided errors in the
convolution model under monotonicity of the cumulative distribution function (c.d.f.). They derive
nonparametric maximum likelihood estimators (NPMLE) of the c.d.f. Some particular cases have
been tackled as uniform or exponential deconvolution by Groeneboom and Jongbloed (2003) and
Jongbloed (1998) who propose NPMLE of the c.d.f. of the Xi’s, which have explicit expressions.
For other cases van Es et al. (1998) circumvent the lack of explicit expression for the NPMLE by
proposing an isotonic inverse estimator. More recently, van Es (2011), in the uniform deconvolution
problem, proposes a density estimator and an estimator of the c.d.f. using kernel estimators and
inversion formula. All these works are focused on deriving the asymptotic normality of monotonic
estimators which are not always explicit. Here we adopt a very different point view since we are
concerned by adaptive estimators of the survival and density functions. We do not focus on the
monotonicity of our estimators but it can be noted that monotonic tranformation of estimators
defined in Chernozhukov et al. (2009) can be applied. Those techniques do not degrade theoretical
results. In this paper, our method subsumes the existing ones and in this way unifies the approach
to tackle the problem of nonnegative variables in the convolution model in a global setting.

Model (1) is also related to the field of mixture models. We cite Roueff and Rydén (2005) and
Rebafka and Roueff (2015) who estimate mixtures of Exponential and Gamma, which are included
in the present framework. Rebafka and Roueff (2015) use Legendre polynomials to derive their
estimators and obtain a procedure relative to a basis of square-integrable functions on a compact
interval A. The drawback of this method is that in practice this estimation interval depends on
the data. In a direct problem, data bring information on supports, but this is more difficult in an
inverse problem. We do not have this constraint in our method thanks to the Laguerre basis which
is a basis of square-integrable functions on R+. Besides we will show that for the mixture gamma
case, we can derive excellent convergence rates for our estimators.

More generally the problem of nonnegative variables appears in actuarial or insurance models.
Recently, in a financial context, some papers as Jirak et al. (2014) or Reiß and Selk (2013) have
addressed the problem of one-sided errors. The first authors are interested in the optimal adaptive
estimation in nonparametric regression when the errors are not assumed to be centered anymore,
and typically with Exponential density.

Concerning the convolution literature, the problem of recovering the signal distribution f when
it is observed with an additive noise with known error distribution, has been extensively studied.
In this context, the noise is more likely to be centered and thus not one-sided. Rates of convergence
and their optimality for kernel estimators have been studied in Carroll and Hall (1988), Stefanski
(1990), Stefanski and Carroll (1990), Fan (1991) and Efromovich (1997). For the study of sharp
asymptotic optimality, we can cite Butucea (2004), Butucea and Tsybakov (2008a,b). For the
most part, the adaptive bandwidth selection in deconvolution models has been addressed with
a known error distribution, see for example Pensky and Vidakovic (1999) for wavelet strategy,
Delaigle and Gijbels (2004) for bandwidth selection, Comte et al. (2006) for projection strategies
with penalization, or Meister (2009) and references therein. Concerning the estimation of the
c.d.f. in the convolution model, some papers can be found as Zhang (1990), Fan (1991), Hall and
Lahiri (2008), Dattner et al. (2011), Dattner and Reiser (2013), Dattner et al. (2016). They all
present pointwise estimation procedures since the distribution function is not square-integrable on
R. Note that the assumption is not so strong for survival functions on R+. The last two papers
consider the pointwise estimation of the c.d.f. when the error distribution is unknown under the
assumption that the tail of the characteristic function of the measurement error distribution has
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a certain decay: polynomial or exponential. These estimators reach the optimal rates under the
condition that the target function belongs to a Sobolev space.

All these works suppose that the variablesXi’s and Yi’s are distributed on the real line. Therefore
they are still valid when the variables are distributed on the nonnegative real line and we will
provide some convergence rates of these estimators and compare them with our estimators to show
that a more specific solution performs better.

1.3. General strategy. Let us describe now our specific method for the estimation of the density
and survival functions when the random variables X and Y in Model (1) are R+-supported. We
assume all along the paper that g belongs to L2(R+) and either f ∈ L2(R+) when the estimation
of f is under study, or SX ∈ L2(R+), when we want to recover the survival function. In both cases,
we use a penalized projection method (see Birgé and Massart (1997)). The idea is to expand the
density function f on an appropriate orthonormal basis on L2(R+), (ϕk)k≥0,

f(x) =
∑
k≥0

bk(f)ϕk(x)

where bk(f) represents the k-th component of f in the orthonormal basis and to estimate the m
first ones b0(f), . . . , bm−1(f). To deal with the particularity of nonnegative variables we introduce
the Laguerre basis defined by

k ∈ N, x ≥ 0, ϕk(x) =
√

2Lk(2x)e−x with Lk(x) =

k∑
j=0

(−1)j
(
k

j

)
xj

j!
. (2)

This basis has already been used to estimate a nonnegative function f in Comte et al. (2015).
These authors consider a regression model defined by Yi = f ? g(ti) + εi where Yi is observed, ti
are deterministic times of observation, εi is subgaussian and g is known. We can also cite Vareschi
(2015) in a similar context with unknown g. For R+-supported functions, the convolution product
writes

h(x) =

∫ x

0
f(u)g(x− u) du (3)

and what makes the Laguerre basis relevant, in the previous works and in ours, is the relation∫ x

0
ϕk(u)ϕj(x− u) du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x)) . (4)

(see formula 22.13.14 in Abramowitz and Stegun (1964)). From this property, by decomposing f , g
and h on the Laguerre basis, we are able to define a linear transformation of the coefficients of the

density function f to obtain those of h. More precisely, if we denote by ~hm and ~fm m-dimensional
vectors with coordinates bk(f) and bk(h), k = 0, 1, . . . ,m− 1 respectively, we prove

~hm = Gm
~fm (5)

where Gm is a lower triangular invertible matrix depending on the coefficients of g. As g is known,
so is Gm. Thus we can recover the m first coefficients of f , from those of g which are known and
those of h which can be estimated from the Zi’s since bk(h) = E[ϕk(Z1)]. We then derive the
same reasoning for the survival function estimation. Let us point out that we do not integrate the
estimator of f to obtain an estimator of SX . Our idea is to directly project SX on the Laguerre
basis. This enables us to obtain directly the expansion of SX on the Laguerre basis and thus
its estimator. To our knowledge this a new strategy for the survival function estimation in a
deconvolution setting.

1.4. Outline of the paper. The estimators are precisely defined and illustrated in Section 2.
We develop in Section 3 a study of the mean integrated squared error of the estimators of the

density and survival function. We discuss the resulting rates of convergence of these two estimators.
For that we introduce subspaces of L2(R+), called Laguerre-Sobolev spaces with index s > 0 which
are defined in Bongioanni and Torrea (2009). This enables us to determine the order of the squared
bias terms. This, together with variance order, provides rates of convergence of the estimators of
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f belonging to a Laguerre-Sobolev space. We also obtain rates of convergence for estimators of
survival function.

In Section 4, we establish a data driven choice by penalization of the dimension m in our
two models and oracle inequalities. For the estimation of the density and survival functions, the
methods rely mostly on the fact that we are able to build nested models since the first m − 1

coordinates ~hm and ~fm are the same as those of ~hm−1 and ~fm−1. Finally we illustrate these
procedures with some simulations and compare our results to those of Comte et al. (2006) in the
case of the density estimation.

To sum up this paper is organized as follows. In Section 2, we give the notations, specify the
statistical model and estimation procedures for f and SX . In Section 3, we present upper bounds
of the L2 integrated risk and derive the corresponding rates of convergence. In Section 4, we
propose a new adaptive procedure by penalization for the density and survival functions. Besides
the theoretical properties of the adaptive estimators are studied. In Section 5, we study of the
adaptive estimators through simulation experiments. Numerical results are then presented and
compared to the performances in a more classical deconvolution setting using a Fourier approach.
The results show that our procedure works significantly better than Fourier methods for estimating
R+-supported functions. In the concluding Section 6 we give further possible developments or
extensions of the method. All the proofs are postponed to Section 7.

2. Statistical model and estimation procedure

2.1. Notations. For two real numbers a and b, we denote a∨ b = max(a, b) and a∧ b = min(a, b).
For two functions ϕ, ψ : R → R belonging to L1(R) ∩ L2(R), we denote ‖ϕ‖ the L2 norm of ϕ
defined by ‖ϕ‖2 =

∫
R |ϕ(x)|2dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by 〈ϕ,ψ〉 =∫

R ϕ(x)ψ(x)dx. Let d be an integer, for two vectors ~u and ~v belonging to Rd, we denote ‖~u‖2,d
the Euclidean norm defined by ‖~u‖22,d = t~u~u where t~u is the transpose of ~u. The scalar product

between ~u and ~v is 〈~u,~v〉2,d = t~u~v = t~v~u. We introduce the spectral norm of a matrix A: %2 (A) =
λmax

(
tAA

)
where λmax (A) is the largest eigenvalue of A in absolute value. We denote by ‖A‖F =∑

i,j a
2
ij the Frobenius norm of a matrix A.

2.2. Laguerre basis. The Laguerre polynomials Lk defined by (2) are orthonormal with respect
to the weight function x 7→ e−x on R+. In other words,

∫
R+ Lk(x)Lk′(x)e−x dx = δk,k′ where δk,k′

is the Kronecker symbol. Hence (ϕk)k≥0 is an orthonormal basis of L2(R+). We remind that the
Laguerre basis verifies the following inequality for all integer k

sup
x∈R+

|ϕk(x)| = ‖ϕk‖∞ ≤
√

2. (6)

We also introduce the space Sm = Span{ϕ0, . . . , ϕm−1}.

2.3. Projection estimator of the density function. For a function p in L2(R+), we denote

p(x) =
∑
k≥0

bk(p)ϕk(x) where bk(p) =

∫
R+

p(u)ϕk(u) du.

Thus if f, g ∈ L2(R+), f and g admit an expansion on the Laguerre basis. Since X and Y
are independent and nonnegative variables, we have a convolution relation between h, f and g.
Plugging into (3) the decomposition on the Laguerre basis of f and g, the following equality holds

h(x) =

∞∑
k=0

∞∑
j=0

bk(f)bj(g)

∫ x

0
ϕk(u)ϕj(x− u) du. (7)

Now we decompose h on the Laguerre basis as
∑∞

k=0 bk(h)ϕk(x) and apply Equation (4) to (7).
We get for all x ∈ R+

∞∑
k=0

bk(h)ϕk(x) =

∞∑
k=0

ϕk(x)

(
2−1/2bk(f)b0(g) +

k−1∑
l=0

2−1/2 (bk−l(g)− bk−l−1(g)) bl(f)

)
.
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We finally obtain an infinite triangular system of linear equations. We can write for any m that
~hm = Gm

~fm where Gm is the lower triangular Toeplitz matrix with elements

[Gm]i,j =


2−1/2b0(g) if i = j,

2−1/2 (bi−j(g)− bi−j−1(g)) if j < i,

0 otherwise,

(8)

(see Comte et al. (2015)). As

b0(g) =

∫
R+

g(u)ϕ0(u) du =
√

2

∫
R+

g(u)e−u du =
√

2E[e−Y ] > 0.

Gm is invertible. The principle of a projection method for estimation is to reduce the question of
estimating f to the one of estimating fm the projection of f on Sm. Clearly

fm(x) =
m−1∑
k=0

bk(f)ϕk(x)

and bk(f) for k = 0, . . . ,m − 1 can be estimated by Equation (5) since G−1
m
~hm = ~fm. So, as

bk(h) = E[ϕk(Z1)], the projection of f on Sm can be estimated by

f̂m(x) =

m−1∑
k=0

b̂k(f)ϕk(x) with ~̂fm = G−1
m
~̂hm and b̂k(h) =

1

n

n∑
i=1

ϕk(Zi). (9)

Let us notice that if Y = 0 a.s. then g = δ0, and we have for any integer k bk(g) = ϕk(0) =
√

2.
This implies Gm = Im, with Im the identity matrix. Therefore if there is no additional noise, we
are able to estimate fm directly from the observations. It means that in Equation (9) we have
Zi = Xi and

Gm = Im and ~̂fm = ~̂hm. (10)

This projection estimator, in the direct problem, is not new but rather specific to the Laguerre
basis. For more details on projection estimators in the direct case for the estimation of density,
see Chap. 7 in Massart (2003).

2.4. Projection estimator of the survival function. We have to point out that in the case of
the projection estimation of the survival function, the estimation of the coefficients in the Laguerre
basis is slightly different from the previous estimators. Let us consider for example bk(SZ) the k-th
coefficient of SZ

bk(SZ) =

∫
R+

SZ(u)ϕk(u) du =

∫
R+

ϕk(u)

(∫ +∞

u
h(v) dv

)
du

=

∫
R+

(∫ v

0
ϕk(u) du

)
h(v) dv = E [Φk(Z1)]

with Φk a primitive of ϕk defined as Φk(x) =
∫ x

0 ϕk(u) du. We can notice that

Φk(x) =
√

2

∫ x

0

k∑
j=0

(−2)j
(
k

j

)
uj

j!
e−u du =

√
2

k∑
j=0

(−2)j

j!

(
k

j

)
γ(j + 1, x). (11)

where γ is the lower incomplete gamma function defined by formula 6.5.2. in Abramowitz and
Stegun (1964). In order to apply a similar method as for the density estimation, let us see how
convolution is modified for survival functions with the following Lemma

Lemma 2.1. If Z is drawn from Model (1), it holds that

SZ(z) = SX ? g(z) + SY (z), ∀z > 0.
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Proof. Let z ≥ 0, by definition SZ(z) = P(Z > z), and

SZ(z) = P(X + Y > z) =

∫∫
1x+y>z f(x)1x≥0 g(y)1y≥0 dx dy

=

∫ (∫ +∞

z−y
f(x) dx

)
g(y)1y≥01z−y≥0 dy +

∫ (∫ +∞

0
f(x) dx

)
g(y)1y≥01z−y≤0 dy

=

∫ z

0
SX(z − y)g(y) dy +

∫ +∞

z
g(y) dy

=

∫ z

0
SX(z − y)g(y) dy + SY (z) = SX ? g(z) + SY (z).

�

We can notice that we have one more term: the survival function of Y . Nevertheless similarly
to the density estimation the coefficients of SX , bk(SX) can also be represented as a solution of an
infinite triangular system of linear equations as follows

SZ(z)− SY (z) =
∑
k≥0

(bk(SZ)− bk(SY ))ϕk(z)

= 2−1/2
∞∑
k=0

ϕk(x)

(
bk(SX)b0(g) +

k∑
l=0

(
b(k−l)(g)− b(k−l−1)(g)

)
bl(SX)

)
.

Now let us define, SX,m the projection of SX on the space Sm

SX,m(x) =
m−1∑
k=0

bk(SX)ϕk(x).

Thus, with Gm defined by Equation (8) and Φk defined by (11), the projection estimator of SX,m
on the Laguerre basis is given by

ŜX,m(x) =
m−1∑
k=0

b̂k(SX)ϕk(x)

with ~̂SX,m = G−1
m

(
~̂SZ,m − ~SY,m

)
and b̂k(SZ) =

1

n

n∑
i=1

Φk(Zi), (12)

where ~SY,m is known since bk(SY ) = E [Φk(Y1)] and g is known.

Remark 1. It is worth mentioning that here we do not integrate the estimator of the density f̂m
to estimate the survival function.

3. Bounds on the L2 risk

In this section, we study the integrated risk of our estimators.

3.1. Upper bounds. Before stating any results, let us remind that

h(x) =

∫
f(u)g(x− u)1u≥01x−u≥0 du =

∫ x

0
f(u)g(x− u) du.

By Cauchy-Schwarz inequality, we have ∀x ∈ R+, h(x) ≤ ‖f‖‖g‖. Thus for f and g ∈ L2(R+),
it yields that ‖h‖∞ ≤ ‖f‖‖g‖ < ∞. Moreover, if ‖g‖∞ < ∞ then we can bound ‖h‖∞ by ‖g‖∞.
Since g is known in our model, it can be interesting to switch the two quantities in a simulation
setting for instance.

Proposition 3.1. If f and g ∈ L2(R+), with Gm defined by (8) and f̂m defined by (9), the
following result holds

E‖f − f̂m‖2 ≤ ‖f − fm‖2 +
2m

n
%2(G−1

m ) ∧ ‖h‖∞
n
‖G−1

m ‖2F. (13)
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This result can easily be applied to the estimation of the density when Y = 0:

Corollary 3.2. For f ∈ L2(R+), in the model without noise defined by (10) we get

E‖f − f̂m‖2 ≤ ‖f − fm‖2 + (2 ∧ ‖h‖∞)
m

n
. (14)

Finally, we derive the following upper bound for the projection estimator of the survival function.

Proposition 3.3. If SX and g ∈ L2(R+) and E[Z1] <∞, for Gm defined by (8) and ŜX,m defined
by (12), the following result holds

E‖SX − ŜX,m‖2 ≤ ‖SX − SX,m‖2 +
E[Z1]

n
%2(G−1

m ). (15)

Lemma 3.4. m 7→ %2(G−1
m ) is nondecreasing.

Remark 2. The terms of the right-hand side of Equations (13), (14) and (15) correspond to a
squared bias and variance term. Indeed the first one gets smaller when m gets larger and vice
versa for the other one thanks to Lemma 3.4.

3.2. Rates of convergence. In order to derive the corresponding rates of convergence of the

estimators f̂m and ŜX,m respectively defined by (9) and (12), we need to evaluate the smoothness

of the signal along with the order of %2
(
G−1
m

)
. In the first place, we assume that f belongs to a

Laguerre-Sobolev space defined as

W s(R+, L) =

f : R+ → R, f ∈ L2(R+),
∑
k≥0

ksb2k(f) ≤ L < +∞

 with s ≥ 0 (16)

where bk(f) = 〈f, ϕk〉. Bongioanni and Torrea (2009) have introduced Laguerre-Sobolev spaces
but the link with the coefficients of a function on a Laguerre basis was done by Comte and Genon-
Catalot (2015). Indeed, let s be an integer, for f : R+ → R and f ∈ L2(R+), we have that∑

k≥0

ksb2k(f) < +∞

is equivalent to the fact that f admits derivatives up to order s−1 with f (s−1) absolutely continuous

and for 0 ≤ k ≤ s − 1, x(k+1)/2
∑k+1

j=0

(
k+1
j

)
f (j)(x) ∈ L2(R+). For more details we refer to section

7 of Comte and Genon-Catalot (2015). Now for f ∈W s(R+, L) defined by (16),

‖f − fm‖2 =
∞∑
k=m

b2k(f) =

∞∑
k=m

b2k(f)ksk−s ≤ Lm−s.

Before deriving the order of the spectral norm of G−1
m , we can already give the rate of convergence

in the forward problem when we have no noise.

Proposition 3.5. In the model without noise defined by (10), suppose that f belongs to W s(R+, L)

defined by (16) and let mopt ∝ n1/(s+1), then the following holds

sup
f∈W s(R+,L)

E‖f − f̂mopt‖2 ≤ C1(s, L)n−s/(s+1)

where C1(s, L) is a positive constant.

Secondly in the deconvolution problem, we must evaluate the variance term of Equations (13)
and (15) which means assess the order of %2

(
G−1
m

)
and ‖G−1

m ‖2F. Let us notice that Equation (13)
also admits the following upper bound

E‖f − f̂m‖2 ≤ ‖f − fm‖2 +
(2 ∨ ‖h‖∞)

n

(
m%2(G−1

m ) ∧ ‖G−1
m ‖2F

)
. (17)

Now recall that we have the following equivalence between the spectral and Frobenius norms:

1√
m
‖G−1

m ‖F ≤ %
(
G−1
m

)
≤ ‖G−1

m ‖F (18)
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Now let us assess the order of these norms in function of m. Comte et al. (2015) show that under
the following conditions on the density g, we can recover the order of the Frobenius norm and the
spectral norm of G−1

m . First we define an integer r ≥ 1 such that

dj

dxj
g(x) |x=0=

{
0 if j = 0, 1, . . . , r − 2

Br 6= 0 if j = r − 1.

And we make the two following assumptions:

(C1) g ∈ L1(R+) is r times differentiable and g(r) ∈ L1(R+).
(C2) The Laplace transform defined by G(z) = E[e−zY ] of g has no zero with non negative real

parts except for the zeros of the form ∞+ ib.

Remark 3. A Gamma distribution of parameter p and θ verifies these (C1)-(C2) for r = p (r = 1
for an Exponential). On the contrary an Inverse Gamma distribution does not satify (C1) because
there exists no r such that the derivative is different from 0 in 0.

Lemma 3.6 (Comte et al. (2015)). If Assumptions (C1)-(C2) are true, then there exists a positive
constants C% and C ′% such that

C ′%m
2r ≤ %2

(
G−1
m

)
≤ C%m2r,

C ′%m
2r ≤ ‖G−1

m ‖2F ≤ C%m2r.

Thus under Assumptions (C1)-(C2) the spectral and Frobenius norms have the same order.
Gathering Equations (17) and (18) the minimum of the two norms is the Frobenius norm.

Proposition 3.7. Assume that f belongs to W s(R+, L) defined by (16), that Assumptions (C1)-

(C2) are fulfilled and let mopt ∝ n1/(s+2r), then

sup
f∈W s(R+,L)

E‖f − f̂mopt‖2 ≤ C2(s, L,C%)n
−s/(s+2r).

where C2(s, L,C%) is a positive constant.

Proposition 3.8. Assume that SX belongs to W s+1(R+, L) defined by (16), that Assumptions

(C1)-(C2) are fulfilled and let mopt ∝ n1/(s+2r+1), then

sup
SX∈W s+1(R+,L)

E‖SX − ŜX,m‖2 ≤ C3(s, L,C%)n
−(s+1)/(s+2r+1).

with C3(s, L,C%) is a positive constant.

Remark 4. We clearly see that in Propositions 3.5, 3.7 and 3.8 the value of m that permits to
compute the rate of convergence of the estimator depends on the regularity of the function under
estimation. So the solution of the best compromise between the squared bias and the variance
depends on unknown quantities L and s. That is why we consider the problem of data driven
selection of m. Our goal is then to find a procedure that does not require prior information on f
nor SX and whose risk automatically reaches the optimal rate.

Remark 5. Lower bounds in deconvolution problems on the real line have been studied in Fan
(1991) and Butucea and Tsybakov (2008a,b), yet those results cannot be extended to the setting of
this paper since we do not consider the same spaces of regularity. Otherwise we can cite Vareschi
(2015) who proves lower bounds in the context of a Laplace regression model. But this methodology
cannot be applied in our context.

Recently, Belomestny et al. (2016) have studied the problem of the lower bound in Laguerre
density estimation from direct observations. In their paper they explain that the difficulty lies in
the fact that the density alternative proposal is a density on R+, and particularly that this density
is indeed nonnegative. Due to this constraint, they are able to prove if s is an integer that the rate
n−s/(s+1) is nearly optimal up to a log factor.
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3.3. Some comparisons of convergence rates the Laguerre procedure and the Fourier
approach. In this section we want to emphasize that for at least certain classes of functions the
Laguerre procedure achieves better rates of convergence than the estimators computed with Fourier
method which are known to be optimal minimax if f belongs to a Sobolev class.
First let us introduce, the following space of Gamma mixtures :

MΓ(p, ~α, ~θ, ~λ) =

{
f =

p∑
i=1

λiγi, λi ≥ 0,

p∑
i=1

λi = 1 and γi ∼ Γ(αi, θi)

}
(19)

with ~α = (α1, . . . , αp), ~θ = (θ1, . . . , θp), and ~λ = (λ1, . . . , λp).

Now the important point of this subsection can be stated.

Lemma 3.9. In Model (1), let f belongs to MΓ(p, ~α, ~θ, ~λ) defined by (19) then

a) if g ∼ Γ(q, µ), we get

E‖f − f̂m‖2 ≤
p∑
i=1

λiC(αi, θi)

∣∣∣∣θi − 1

θi + 1

∣∣∣∣2mm2(αi−1) + (2 ∨ ‖h‖∞)C%
m2q

n
,

b) if g ∼ β(a, b) with b > a ≥ 1, we get that

E‖f − f̂m‖2 ≤
p∑
i=1

λiC(αi, θi)

∣∣∣∣θi − 1

θi + 1

∣∣∣∣2mm2(αi−1) + (2 ∨ ‖h‖∞)C%
m2a

n
,

For this family of densities, we obtain a more specific upper bound on the MISE than the previous
section. Indeed if f belongs to (19) then the bias decays exponentially and not polynomially.
For the Laguerre deconvolution, these distributions can be seen as supersmooth functions. The
bias term is obtained by explicit computations of the coefficients of Gamma type density in the
Laguerre basis (see proof in Section 7). Since the bias decays faster than when f ∈W s(R+, L) and
the variance has the same order as in the previous section (Gamma density satisfies (C1)-(C2)),
the upper bound for the asymptotic MISE will be smaller. We can deduce that for X ∼ Exp(1)
(f ∈ MΓ(1, 1, 1, 1)), the bias is null. The rate of convergence, in this particular case of inverse
problem, reaches the parametric rate in the Laguerre setting.

Corollary 3.10. Under the Assumption of Lemma 3.9 , then

a) if g ∼ Γ(q, µ), for mopt = c log n/ log ρ with c ≥ 1 and ρ = maxi |λi− 1|/|λi + 1| ∈ (0, 1) we
get

sup
f∈MΓ(p,~α,~θ,~λ)

E‖f − f̂mopt‖2 ≤ C
(log n)2q

n
.

b) if g ∼ β(a, b) with b > a ≥ 1, for mopt = c log n/ log ρ with c ≥ 1 and ρ = maxi |λi −
1|/|λi + 1| ∈ (0, 1) we get

sup
f∈MΓ(p,~α,~θ,~λ)

E‖f − f̂mopt‖2 ≤ C ′
(log n)2a

n
.

where C and C ′ are positive constants.

Remark 6. In deconvolution problems, the minimax rates of convergence over Sobolev classes are
well understood. The degree of ill-posednees depends on the regularity of the Fourier transforms
of densities f and g. So two cases are distinguished : Fourier transform decays exponentially
(supersmooth case) and Fourier transform decays polynomially (ordinary smooth case). In this
context, the problem has been studied by Fan (1993) who proved lower bounds for Lp-norms when
f and g are ordinary smooth, Butucea (2004) when the signal f is supersmooth and the noise
is ordinary smooth, Butucea and Tsybakov (2008a,b) when both the signal and the noise are
supersmooth.
A Gamma distribution of parameter (p, µ) belongs a Sobolev space of parameter (p− 1)/2. Thus
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in Fourier deconvolution, the minimax rate of convergence is n−(2p−1)/(2q+2p−1) when Y ∼ Γ(q, µ).
For comparison, Corollary 3.10 proves an upper bound on the risk with Laguerre procedure of
order (log n)2q/n. Likewise when Y is a Beta distribution of parameter a and b with b > a ≥ 1,

the minimax rate is n−(2p−1)/(2a+2p−1) to be compared to (log n)2a/n with Laguerre procedure.
Formulas of the estimators in the Fourier setting are given in Section 5.

Thus for the Fourier procedure we find classical rates of convergence of the deconvolution setting
which are slower. In the context of nonnegative variables of Gamma type, we recover faster upper
bounds on the MISE with the Laguerre method than with a Fourier procedure. We can extend
those results to the case of Exponential and Gamma mixtures. This context fits especially fields
of survival analysis and duration models.

To conclude, we have illustrated that there exist some distributions that can be estimated faster
with the Laguerre procedure than the Fourier procedure. Indeed we can distinguish, as in the
Fourier setting, supersmooth (bias decays exponentially) and ordinary smooth (bias decays poly-
nomially) densities. For the Gamma type functions, we can see that they are supersmooth for the
Laguerre method but they are not for the Fourier method and the Sobolev spaces associated to
the problem. This illustration also shows that Laguerre-Sobolev and Sobolev spaces are different.
One is not included in the other. On the other hand we cannot deny that there are surely some
distributions in the framework of Model (1) which can be better estimated with the Fourier pro-
cedure. Nonetheless we are not able to explicitly compute other coefficients than those of Gamma
type densities. In any case the Fourier method is more general and then can be applied when the
r.v. are distributed on R or R+.

In the next section we provide a procedure to select the dimension which provides the squared
bias/variance compromise whatever the underlying true density and noise distributions.

4. Model selection

The aim of this section is to provide an integer m that enables us to compute an estimator of
the unknown density or survival function with the L2 risk as close as possible to the oracle risk

infm E‖f − f̂m‖2 or infm E‖SX − ŜX,m‖2. We follow the model selection paradigm (see Birgé and
Massart (1997), Birgé (1999), Massart (2003)) and choose the dimension of projection spaces m
as the minimizer of a penalized criterion.

4.1. Adaptive density estimation. We add the two following assumptions:

(A1) M(1)
n =

{
1 ≤ m ≤ d1,m%

2
(
G−1
m

)
≤ n

log n

}
, where d1 < n may depend on n.

(A2) ∀b > 0,
∑

m∈M(1)
n

%2
(
G−1
m

)
e−bm < C(b) <∞ with C(b) uniformly independent of n.

We define the penalty as

pen1(m) =
κ1

n

(
2m%2

(
G−1
m

)
∧ log(n) (‖g‖∞ ∨ 1)‖G−1

m ‖2F
)

where κ1 is a numerical constant see our comment after Theorem 4.1.

Theorem 4.1. If f and g ∈ L2(R+), ‖g‖∞ < ∞, let us suppose that (A1)-(A2) are true. Let

f̂m̂1
be defined by (9) and

m̂1 = arg min
m∈M(1)

n

{
−‖f̂m‖2 + pen1(m)

}
with pen1 defined by (4.1), then there exists a positive numerical constant κ0 such that κ1 ≥ κ0

then

E‖f − f̂m̂1
‖2 ≤ 4 inf

m∈M(1)
n

{
‖f − fm‖2 + pen1(m)

}
+
C

n
, (20)

where C depends on ‖f‖ and ‖g‖.
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The constant κ0 can be estimated from the proof, but in practice, values obtained from the theory
are generally too large. Thus the constant is calibrated by simulations. Once chosen, it remains
fixed for all simulation experiments.

The oracle inequality (20) establishes a non asymptotic oracle bound. It shows that the squared
bias variance tradeoff is automatically made up to a multiplicative constant. We have shown in
Section 3 that the rates of convergence in deconvolution problems are intricate and depend on the
regularity types of the function f under estimation and the noise density g. As shown in Section 3,
the best compromise between squared bias and variance orders in Equation (13) yields to a certain
value of m function of n and depending on unknown quantities, and thus cannot be implemented.
That is why Equation (20) is of high interest: rates of convergence are reached without requiring
to be specified in the framework.

An oracle inequality can still be achieved by considering an estimator of ‖h‖∞ based on the data
with a dimension of order log n. Yet we do not state this result for sake of clarity.

Remark 7. Note it is common in the literature to assume that the distributions belong to a
certain semi-parametric model which is not the case in this paper. In the deconvolution setting
with a Fourier approach, papers as Comte et al. (2006) for instance, assume that the Fourier
transform of the target and error densities have a particular decay behavior. Here this is replaced
the spectral norm of the matrix G−1

m . We can notice that if %2
(
G−1
m

)
= O(mα) then for any

α, Assumption (A2) is true. It is satisfied for instance for Gamma distributions. Similarly if

%2
(
G−1
m

)
= O(mαeλm

β
) then it is enough that β < 1 to ensure (A2). If Assumption (A2) is

relaxed then an adaptive procedure can still be obtained with the associated penalty pen(m) =
κ log(n)(2m%2

(
G−1
m

)
∧ ‖h‖∞‖G−1

m ‖2F)/n.

4.2. Adaptive survival function estimation. In this particular framework, we make the two
following assumptions:

(B1) M(2)
n =

{
1 ≤ m ≤ d2,

%2
(
G−1
m

)
log n

n
≤ C

}
, where d2 < n may depend on n and C > 0.

(B2) 0 < E[Z3
1 ] <∞.

We define the penalty as

pen2(m) =
κ2E[Z1]

n
%2
(
G−1
m

)
log n (21)

Theorem 4.2. If SX and g ∈ L2(R+), let us suppose that (B1)-(B2) are true. Let ŜX,m̂2
be

defined by (12) and

m̂2 = arg min
m∈M(2)

n

{
−‖ŜX,m‖2 + pen2(m)

}
with pen2 defined by (21), then there exists a positive numerical constant κ′0 such that κ2 ≥ κ′0
then

E‖SX − ŜX,m̂2
‖2 ≤ 4 inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
,

where C is a constant depending on E[Z3
1 ].

We can also notice that in the penalty associated with this procedure a logarithmic term appears
while it was not in the upper bound of Equation (15). Such logarithms often appear in adaptive
procedures.

Comments after Theorem 4.1 still hold. This oracle inequality shows that the squared bias
variance tradeoff is automatically made. Asymptotically, this ensures that the rates of convergence
are reached up to a log n factor. To our knowledge this the first time that a global adaptive
procedure of the survival function is considered. This result rests upon the particularity of the
Laguerre basis which enables to extend the adaptive estimation of the density function to the
survival function.

Nevertheless this estimation cannot be computed directly since the penalty depends on the
expectation of Z. A solution is to prove an oracle inequality for a random penalty associated to
(21) which is made in the next corollary.
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Corollary 4.3. If SX and g ∈ L2(R+), let us suppose that (B1)-(B2) are true. Let ŜX,m̃2
be

defined by (12) and

m̃2 = arg min
m∈M(2)

n

{
−‖ŜX,m‖2 + p̂en2(m)

}
(22)

p̂en2(m) =
2κ2Z̄n
n

%2
(
G−1
m

)
log n where Z̄n =

1

n

n∑
i=1

Zi, (23)

then there exists a positive numerical constant κ2 such that

E‖SX − ŜX,m̃2
‖2 ≤ 4 inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n

where C is a constant depending on E[Z1], E[Z3
1 ] and Var[Z1].

5. Illustrations

The whole implementation is conducted using R software. The integrated squared errors ‖f −
f̂m̂1
‖2 and ‖SX − ŜX,m̃2

‖2 are computed via a standard approximation and discretization (over
300 points) of the integral on an interval of R respectively denoted by If and IS . Then the mean

integrated squared errors (MISE) E‖f− f̂m̂1
‖2 and E‖SX− ŜX,m̃2

‖2 are computed as the empirical
mean of the approximated ISE over 500 simulation samples.

5.1. Simulation setting. The performance of the procedure is studied for the seven following dis-
tributions for X. All the densities are normalized with unit variance except the Pareto distribution
which has infinite variance.

. Exponential E(1), If = [0, 5], IS = [0, 10].

. Gamma distribution : 2 · Γ(4, 1
4), If = [0, 10], IS = [0, 5].

. Gamma distribution : 2√
20
· Γ(20, 1

2), If = [0, 13], IS = [0, 5].

. Rayleigh distribution with σ2 = 2/(4− π), f(x) =
x

σ2
e−

x2

2σ2 , If = [0, 5], IS = [0, 25].

. Weibull, X/
√

Γ(1 + 4/3)− Γ(1 + 2/3)2, f(x) = k
λ

(
x
λ

)k−1
e−(x/λ)k

1x≥0, with k = 3
2 and

λ = 1, If = [0, 5], IS = [0, 5].

. Mixed Gamma distribution : X = W/
√

2.96, with W ∼ 0.4Γ(2, 1/2) + 0.6Γ(16, 1/4),
If = [0, 5], IS = [0, 10].

. Chi-squared distribution with 10 degrees of freedom, χ2(10)/
√

20, If = [0, 10], IS = [0, 10].
. Pareto distribution with shape parameter α = 2 and scale parameter xm = 1, If = [0, 5],
IS = [0, 10].

Exponential and Weibull distributions are often used in survival and failure analysis. The Gamma
distribution is also often used in insurance modelization. The Rayleigh distribution arises in wind
velocity analysis for instance.

In the simulation, the variance σ2 of the error distribution g takes the values 0, 1/10 and 1/4.
The case where the variance σ2 is null, which corresponds to the case Y = 0, is used as a benchmark
for the quality of the estimation in the model with noise. We are not aware of any other specific
global method of deconvolution on the nonnegative real line. In that case for the density function,
we use our procedure with Gm = Im. Concerning the survival function, we simply compute the
empirical estimator Sn(x) = n−1

∑n
i=1 1{Xi > x} (since Y = 0) which reaches the parametric rate

of convergence.
We then choose a Gamma distribution for the error distribution which verifies (C1)-(C3) for

r = 2:

. Gamma noise: Γ(2, 1√
20

) and Γ(2, 1√
8
).

Thus the first Gamma distribution has a variance 1/10 and the second 1/4. We refer to Equation
(25) for the computation of the matrix Gm.
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5.2. Practical implementation of the estimators. The adaptive procedure is then imple-
mented as follows:

. For m ∈Mn = {m1, . . . ,mn}, compute −‖f̂m‖2 + pen1(m).

. Choose m̂ such that m̂ = arg minm∈Mn

{
−‖f̂m‖2 + pen1(m)

}
.

. And compute f̂m̂(x) =
∑m̂−1

k=0 b̂k(f)ϕk(x).

The procedure is given for the density estimation. For the survival case the three steps are the same
with the right quantities associated to the problem and described in Section 4.2. Besides, the penal-
ties are chosen according to Theorem 4.1 and Corollary 4.3. The constant calibrations were done
with intensive preliminary simulations. We take κ1 = 0.03 and κ2 = 0.065. It can be noted that the
values of κ1 and κ2 are much smaller than what comes in theory. For the case of direct observations,
we take the calibration constant equal to 0.1. We consider the two following model collections

M(1)
n =

{
m ∈ J1, n− 1K, 1 ≤ m ≤ bn1/5c

}
and M(2)

n =
{
m ∈ J1, n− 1K, 1 ≤ m ≤ b(n log n)1/4c

}
for the density and survival function estimation.

In order to measure the performances of our procedure (density estimation), we also compute
the MISE obtained when using Fourier deconvolution approach. More precisely, we apply the
procedure of Comte et al. (2006). It corresponds to a projection method with a R-supported sinus
cardinal basis or kernel. Besides this procedure is minimax optimal if f belongs to a Sobolev class
in the case of a known ordinary smooth error distribution. We therefore compute the following
estimator and penalty. Let g∗ be the Fourier transform of g defined as g∗(x) =

∫
eiuxg(u) du. For

a Gamma distribution of parameter p and θ, its Fourier transform is g∗(u) = (1 − iuθ)−p. We
compute

f̂Fo,m(x) =
1

2π

∫ πm

−πm
e−ixu

n−1
∑n

j=1 e
iuZj

g∗(u)
du pen

(1)
Fo (m) =

κ
(1)
Fo

2πn

∫ πm

−πm

du

|g∗(u)|2

We select m by minimizing −‖f̂Fo,m‖2 + pen
(1)
Fo (m). If Y = 0, we set g∗ ≡ 1 and pen

(2)
Fo (m) =

κ
(2)
Fom/n The model collection is {m/10 : m ∈ N, 1 ≤ m ≤ 50} . After calibration we find κ

(1)
Fo =

41 and κ
(2)
Fo = 5. We consider two different penalties since in the case of the model without noise,

the estimator f̂Fo,m of fm can be computed directly without approximating the integral.

Both procedures (Laguerre and Fourier) are fast.

5.3. Simulation results. The results are given in Tables 1 and 2. For both tables, the values of
the MISE are multiplied by 100 for each case and computed from 200 simulated data. In Table
1 the abbreviations Lag and Fou correspond respectively to the Laguerre method and Fourier
method of Comte et al. (2006). First we see that the risk decreases when the sample size increases.
Likewise, the risk increases when the variance of the noise increases. If Y = 0 i.e. σ2 = 0, we
see that the Laguerre procedure in the direct problem has better performances than the Fourier
procedure. For instance, when n = 2000 the MISE in the Fourier setting is at least twice larger
than the Laguerre for the Gamma, Rayleigh, mixed Gamma and Chi-squared distributions between
the Laguerre and Fourier methods. For the Exponential density estimation, the ratio of the MISE
of Fourier divided by Laguerre is equal to 15 in average and for the Weibull distribution is equal
to 60 in average. If σ2 equals 1/10 or 1/4, we can make the same kind of remarks in favor of the
Laguerre procedure.

Let us concentrate on the Pareto distribution. This distribution contrarily to the others does
not have a density close to the Laguerre basis. In the model without noise, we see that the Fourier
procedure is better. For small sample size the risks are very close. When the sample size increases,
the risk of the Laguerre estimator decreases very slowly while the risk of the Fourier estimator is
divided by two. On the other hand, in the deconvolution setting the Laguerre procedure performs
better than the Fourier method especially for σ2 = 1/4.
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σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

Exponential Lag 0.874 0.118 2.669 0.247 2.436 0.799
Fou 3.950 3.234 6.002 3.359 11.23 3.889

Gamma Lag 0.243 0.048 1.277 0.125 2.921 0.292
Γ(4, 1/4) Fou 0.585 0.076 2.027 0.250 8.497 0.860
Gamma Lag 0.332 0.035 0.576 0.054 0.912 0.088
Γ(20, 1/2) Fou 0.521 0.059 1.917 0.245 2.728 1.092
Rayleigh Lag 0.287 0.044 1.297 0.128 2.887 0.304

Fou 0.498 0.073 1.546 0.248 7.523 0.797
Weibull Lag 0.467 0.062 1.505 0.151 3.924 0.427

Fou 7.004 6.611 8.751 6.839 14.23 7.421
Mixed Gamma Lag 0.705 0.083 1.235 0.126 3.237 0.306

Fou 1.548 0.817 7.392 0.817 1.499 0.814
Chi-squared Lag 0.357 0.037 1.102 0.122 2.506 0.263

Fou 0.542 0.069 1.887 0.250 8.135 0.844
Pareto Lag 10.72 10.78 11.94 10.66 13.72 10.82

Fou 12.42 6.542 18.70 9.387 30.06 26.28

Table 1. Results of simulation: MISE E
(
‖f − f̂m̂‖2

)
× 100 averaged over 500

samples. σ2 denotes the level of variance of the noise. σ2 = 0 corresponds to the
model without noise (Y = 0). The noise is Γ(2, 1√

20
) with σ2 = 1

10 and Γ(2, 1√
8
)

with σ2 = 1
4 respectively.

Thus the results point out the relevance of a specific method for nonnegative variables in a
deconvolution problem.

σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

Exponential 0.262 0.022 0.122 0.014 0.134 0.012
Gamma 0.263 0.024 0.688 0.203 1.363 0.233
Rayleigh 0.813 0.115 0.878 0.199 1.336 0.297
Chi-squared 0.310 0.027 1.313 0.117 1.445 0.679

Table 2. Results of simulation: MISE E
(
‖SX − ŜX,m̃2

‖2
)
× 100 averaged over

500 samples. σ2 denotes the level of variance of the noise. σ2 = 0 corresponds to
the model without noise (Y = 0). The noise is Γ(2, 1√

20
) with σ2 = 1

10 and Γ(2, 1√
8
)

with σ2 = 1
4 respectively.

In Table 2, the first two columns correspond to the estimation with the empirical estimator
of the survival function if we observe directly the data. The estimation is very good: this was
expected since the estimator converges to the true function with rate

√
n. Yet for the estimation

of the Exponential distribution we note that the penalization procedure always beats the empirical
estimator Sn. It is also the case for the density estimation. It is explained by the fact that the
Exponential density with parameter 1 corresponds to the first function of the basis. We notice
that the risk decreases when the sample size increases. For the Exponential distribution, it is
divided by 10, by 3.5 for the Gamma distribution, by 4.5 for the Rayleigh distribution, by 13 for
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the Chi-squared distribution. And risk increases when the variance of the noise increases.

We also illustrate the results with some figures. Figure 1 and 2 display the results of the data
driven estimation respectively for the mixed Gamma and the Gamma 2√

20
·Γ(20, 1

2) for the Laguerre

and Fourier methods. We can observe some oscillations near the origin for the Laguerre procedure,
while for the Fourier method we can see that the estimators are a little bit shifted from the true
density. For both methods the sample size n needs to be large enough to estimate the two modes
of the mixed Gamma.
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Figure 1. Estimation of the mixed Gamma density with Laguerre method (top
left for n = 200 and top right n = 2000) and with Fourier method (bottom left for
n = 200 and bottom right n = 2000), with σ2 = 1/10.

6. Concluding remarks

This paper deals with the estimation of densities and survival functions on R+ in a deconvolution
setting with a known error distribution and, as a particular case, to that of direct estimation. First
we have considered a projection estimator and then the adaptive estimation of the density f of
the Xi’s in a deconvolution setting and deduced a procedure when there is no additional noise.
Secondly we have tackled the problem of the adaptive estimation of the survival function which
is new to our knowledge, in a global estimation setting on R+. Moreover we have illustrated the
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performances of our Laguerre procedure and compared it, when it is possible to the performances
of the Fourier procedure described in Comte et al. (2006). The Laguerre procedure outperforms
the previous one in the simulations. These results show that the Laguerre procedure is worthy of
interest when the variables are nonnegative.

Assuming that error distribution to be known is often not realistic in applications. Nevertheless
this would require additional information on the error distribution. In the deconvolution literature
with unknown error distribution it is assumed that we have access to a preliminary sample of the
noise, see for instance Neumann (1997). Thanks to this preliminary observation we could estimate
the coefficients of the matrix Gm since we could provide unbiased estimators of the coefficients of
the matrix which are the coefficients of the density g on the Laguerre basis. Vareschi (2015), in a
Laplace regression model, considers this problem ; he assumes that a pertubation of the coefficients
of the matrix Gm are observed instead of preliminary sample drawn from g. At last, in our model

we would need to control the deviation of the spectral norm of Ĝ−1
m around G−1

m .

0 2 4 6 8 10 12

−
0.

1
0.

1
0.

3
0.

5

0 2 4 6 8 10 12

−
0.

1
0.

1
0.

3
0.

5

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2. Estimation of the Gamma density 2√
20
·Γ(20, 1

2) with Laguerre method

(top left for n = 200 and top right n = 2000) and with Fourier method (bottom
left for n = 200 and bottom right n = 2000), with σ2 = 1/10.

7. Proofs

7.1. Proof of results of Section 3.

Proof of Proposition 3.1. According to the Pythagorean theorem, we have

‖f − f̂m‖2 = ‖f − fm + fm − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.
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The first term corresponds to the bias term of Equation (13). Let us study the second term: using
the decomposition on the orthonormal Laguerre basis, we have

‖fm − f̂m‖2 =
m−1∑
k=0

(
bk(f)− b̂k(f)

)2
.

First we apply (6) and get

E‖fm − f̂m‖2 = E‖G−1
m (~̂hm − ~hm)‖22,m ≤ %2(G−1

m )E‖~̂hm − ~hm‖22,m

≤ %2(G−1
m )E

 m∑
j=1

(
1

n

n∑
i=1

ϕj(Zi)− E[ϕj(Z1)]

)2


≤ %2(G−1
m )

n

m∑
j=1

E[ϕ2
j (Z1)] ≤ %2(G−1

m )
2m

n
.

Secondly, we can notice that

E‖G−1
m (~̂hm − ~hm)‖22,m = E

m∑
k=1

 m∑
j=1

[
G−1
m

]
k,j

(bj−1(h)− b̂j−1(h))

2

= E
m∑
k=1

m∑
j′=1

m∑
j=1

[
G−1
m

]
k,j

(bj−1(h)− b̂j−1h))
[
G−1
m

]
k,j′

(bj′−1(h)− b̂j′−1(h))

=

m∑
k=1

m∑
j′=1

m∑
j=1

[
G−1
m

]
k,j

[
G−1
m

]
k,j′

E
[
(bj−1(h)− b̂j−1(h))(bj′−1(h)− b̂j′−1(h))

]
,

and since bj−1(h)− b̂j−1(h) = (1/n)
∑n

i=1(ϕj−1(Zi)− E[ϕj−1(Zi)]), it yields that

E‖G−1
m (~̂hm − ~hm)‖22,m

=
1

n

m∑
k=1

m∑
j=1

Var
[[

G−1
m

]
k,j
ϕj−1(Z1)

]
≤ 1

n
E

 m∑
j=1

[
G−1
m

]
k,j
ϕj−1(Z1)

2
≤ ‖h‖∞

n

m∑
k=1

∫
R+

 m∑
j=1

[
G−1
m

]
k,j
ϕj−1(u)

2

du

≤ ‖h‖∞
n

m∑
k=1

∑
1≤j,j′≤m

[
G−1
m

]
k,j

[
G−1
m

]
k,j′

∫
R+

ϕj−1(u)ϕj′−1(u) du

≤ ‖h‖∞
n

m∑
k=1

m∑
j=1

[
G−1
m

]2
k,j

=
‖h‖∞
n
‖G−1

m ‖2F.

In the end we get: E‖f − f̂m‖2 ≤ ‖f − fm‖2 +
2m

n
%2(G−1

m ) ∧ ‖h‖∞
n
‖G−1

m ‖2F. �

Proof of Proposition 3.3. As in the previous proof, we can write that

‖SX − ŜX,m‖2 = ‖SX − SX,m‖2 + ‖SX,m − ŜX,m‖2.

We can notice that

‖SX,m − ŜX,m‖2 =

∥∥∥∥ ~̂SX,m − ~SX,m

∥∥∥∥2

2,m

=

∥∥∥∥G−1
m

(
~̂SZ,m − ~SZ,m

)∥∥∥∥2

2,m
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Then we repeat the same scheme as in the proof of Proposition 3.1 and we get

E‖SX,m − ŜX,m‖2 ≤
1

n
%2(G−1

m )
m−1∑
j=0

E[Φ2
j (Z1)].

Yet
m−1∑
j=0

Φ2
j (Z1) =

m−1∑
j=0

(∫
ϕj(u)10≤u≤Z1 du

)2

=
m−1∑
j=0

〈ϕj ,1.≤Z1〉2 ≤ ‖1.≤Z1‖2R+ = Z1

(24)

which implies E
[∑m−1

j=0 Φ2
j (Z1)

]
≤ E[Z1].

In the end: E‖SX − ŜX,m‖2 ≤ ‖SX − SX,m‖2 +
E[Z1]

n
%2(G−1

m ). �

Proof of Lemma 3.4. To see that the spectral norm grows with the dimension m, recall that for a
matrix A of dimension m the spectral norm can be written as %2(A) = max‖~u‖2,m=1 ‖A~u‖22,m. Now

consider ~um = arg max‖~u‖22,m=1 ‖Tm~u‖2,m with Tm a lower triangular matrix and Tm a submatrix

of Tm+1. We put ~vm+1 = (~um 0) = (u1, . . . , um, 0) thus ‖~vm+1‖22,m+1 = 1. Then we get

‖Tm+1~vm+1‖22,m+1 = ‖Tm~um‖2 +

m∑
i=1

(
[Tm+1]m+1,i ui

)2
≥ %2(Tm).

It yields
%2(Tm+1) = max

‖~v‖22,m+1=1
‖Tm+1~v‖22,m+1 ≥ %2(Tm).

�

Proof of Lemma 3.9. According to Proposition 3.1, we have for squared integrable density f and
gon R+

E‖f − f̂m‖2 ≤ ‖f − fm‖2 +
2m

n
%2(G−1

m ) ∧ ‖h‖∞
n
‖G−1

m ‖2F.

First we want to give an upper bound for the squared bias :

‖f − fm‖2 = ‖~f − ~fm‖2m =
∑
k≥m

b2k(f)

Let us compute the coefficients when f belongs to MΓ(p, ~α, ~θ, ~λ) defined by (19)

bk(f) =

∫
R+

θpup−1e−θu
√

2e−uLk(2u) du =
√

2θp
k∑
j=0

(
k

j

)
(−2)j

j!

∫
R+

up+j−1e−(1+θ)u du

=

√
2θp

(1 + θ)p

k∑
j=0

(
k

j

)
(−2)j

(1 + θ)j
(p+ j − 1)!

j!
=

√
2θp

(1 + θ)p
dp−1

dxp−1

[
xp−1(1− x)k

] ∣∣∣
x=2/(1+θ)

.(25)

It leads to

‖f − fm‖2 =
∑
k≥m

(
p∑
i=1

λibk(γi)

)2

≤
∑
k≥m

p∑
i=1

λi(bk(γi))
2 ≤

p∑
i=1

λiC(αi, θi)

∣∣∣∣θi − 1

θi + 1

∣∣∣∣2mm2(αi−1).

At least for the variance if g ∼ Γ(q, µ) then it satisfies Assumptions (C1)-(C2) with r = q
which implies that ‖G−1

m ‖2F � %2(G−1
m ) � m2q. So we have

E‖f − f̂m‖2 ≤
p∑
i=1

λiC(αi, θi)

∣∣∣∣θi − 1

θi + 1

∣∣∣∣2mm2(αi−1) + (2 ∨ ‖h‖∞)C%
m2q

n
,

To obtain b), let us notice that Beta distributions with parameter a and b with b > a also satisfy
Assumptions (C1)-(C2) but with r = a. �
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7.2. Proof of Theorem 4.1. First for m ∈M(1)
n , let us define the associated subspaces Smd1 ⊆ Rd1

Smd1 =
{
~tm ∈ Rd1 /~tm = t(b0(t), b1(t), . . . , bm−1(t), 0, . . . , 0)

}
.

This space is defined to give nested models. When we increase the dimension from m to m+ 1 we
only compute one more coefficient. Then for any ~t ∈ Rd1 , we define the following contrast for the
density estimation

γn(~t) = ‖~t‖22,d1 − 2〈~t,G−1
d1
~̂hd1〉2,d1 .

Let us notice that for ~tm ∈ Smd1 , thanks to the null coordinates of ~tm and the lower triangular form
of Gd1 and Gm, we have

〈~tm,G−1
d1
~̂hd1〉2,d1 = 〈~tm,G−1

m
~̂hm〉2,m = 〈~tm, ~̂fm〉2,m.

So we clearly have that

~̂fm = arg min
~tm∈Smd1

γn(~tm).

Now let m, m′ ∈M(1)
n , ~tm ∈ Smd1 and ~sm′ ∈ Sm

′
d1

. Denote m∗ = m ∨m′. Notice that

γn(~tm)− γn(~sm′) = ‖~tm − ~f‖22,d1 − ‖~sm′ − ~f‖22,d1 − 2〈~tm − ~sm′ ,G−1
d1

(~̂hd1 − ~hd1)〉2,d1
and due to orthonormality of Laguerre basis, for any m we have the following relations between
the L2 norm and the Euclidean norms,

‖f̂m − f‖2 = ‖ ~̂fm − ~f‖22,d1 +
∞∑
j=d1

(bj(f))2 and ‖fm − f‖2 = ‖~fm − ~f‖22,d1 +
∞∑
j=d1

(bj(f))2 (26)

We set νn(~t) = 〈~t,G−1
d1

(~̂hd1 − ~hd1)〉2,d1 for ~t ∈ Rd1 .

According to the definition of m̂, for any m in the model collectionM(1)
n , we have the following

inequality

γn( ~̂fm̂) + pen1(m̂) ≤ γn(~fm) + pen1(m).

It yields that

‖ ~̂fm̂ − ~f‖22,d1 − ‖~fm − ~f‖22,d1 − 2νn( ~̂fm̂ − ~fm) ≤ pen1(m)− pen1(m̂)

which implies

‖ ~̂fm̂ − ~f‖22,d1 ≤ ‖~fm − ~f‖22,d1 + 2νn( ~̂fm̂ − ~fm) + pen1(m)− pen1(m̂).

Let us notice that νn( ~̂fm̂ − ~fm) = ‖ ~̂fm̂ − ~fm‖2,d1νn

 ~̂fm̂ − ~fm

‖ ~̂fm̂ − ~fm‖2,d1

 and due to the relation

2ab ≤ a2/4 + 4b2, we have the following inequalities

‖ ~̂fm̂ − ~f‖22,d1 ≤ ‖~fm − ~f‖22,d1 + 2‖ ~̂fm̂ − ~fm‖2,d1 sup
~t∈B(m,m̂)

νn(~t) + pen1(m)− pen1(m̂)

≤ ‖~fm − ~f‖22,d1 +
1

4
‖ ~̂fm̂ − ~fm‖22,d1 + 4 sup

~t∈B(m,m̂)

ν2
n(~t) + pen1(m)− pen1(m̂)

where B(m, m̂) =
{
~tm∨m̂ ∈ Sm∨m̂d1

, ‖~tm∨m̂‖2,d1 = 1
}

. Now notice that

‖ ~̂fm̂ − ~fm‖22,d1 ≤ 2‖ ~̂fm̂ − ~f‖22,d1 + 2‖~fm − ~f‖22,d1
we then have

‖ ~̂fm̂− ~f‖22,d1 ≤ ‖~fm− ~f‖
2
2,d1 +

1

2
‖ ~̂fm̂− ~f‖22,d1 +

1

2
‖~f− ~fm‖22,d1 +4 sup

~t∈B(m,m̂)

ν2
n(~t)+pen1(m)−pen1(m̂)
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which implies

‖ ~̂fm̂ − ~f‖22,d1 ≤ 3‖~f − ~fm‖22,d1 + 2pen1(m) + 8 sup
~t∈B(m,m̂)

ν2
n(~t)− 2pen1(m̂).

Using Equation (26), we have

‖f̂m̂−f‖2−
∞∑
j=d1

(bj(f))2 ≤ 3

‖f − fm‖2 − ∞∑
j=d1

(bj(f))2

+2pen1(m)+8 sup
~t∈B(m,m̂)

ν2
n(~t)−2pen1(m̂)

which implies

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 2pen1(m) + 8 sup
~t∈B(m,m̂)

ν2
n(~t)− 2pen1(m̂) (27)

Now let p1 be a function such that for any m, m′, we have : 4p1(m,m′) ≤ pen1(m) + pen1(m′).

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 4pen1(m) + 8

[
sup

~t∈B(m,m̂)

ν2
n(~t)− p1(m, m̂)

]
+

≤ 3‖f − fm‖2 + 4pen1(m) + 8
∑

m′∈M(1)
n

{
sup

~t∈B(m,m′)

ν2
n(~t)− p1(m,m′)

}
+

We now use the following result which ensures the validity of Theorem 4.1.

Proposition 7.1. Under the assumptions of Theorem 4.1, there exists a constant C1 > 0 depending
on ‖h‖∞ such that for

p1(m,m′) =
κ1

n
min

(
2(m ∨m′)%2

(
G−1
m∨m′

)
, log n (‖g‖∞ ∨ 1)‖G−1

m∨m′‖
2
F

)
,

we have

E

{ sup
~t∈B(m,m′)

ν2
n(~t)− p(m,m′)

}
+

 ≤ C1

n
.

In the end:

E‖f − f̂m̂‖2 ≤ 4 inf
m∈M(1)

n

{
‖f − fm‖2 + pen1(m)

}
+
C1

n
,

as soon as κ1 ≥ 294. �

Proof of Proposition 7.1. To prove Proposition 7.1, we apply a Talagrand inequality. So we need
to determine H, M1 and v defined as

sup
~tm∗∈B(m,m′)

‖〈~tm∗ ,G−1
d1
~ϕd1(.)〉2,d1‖∞ ≤M1, E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|

]
≤ H,

sup
~tm∗∈B(m,m′)

Var
[
〈~tm∗ ,G−1

d1
~ϕd1(Z1)〉2,d1

]
≤ v.

where m∗ = m ∨m′.



ADAPTIVE DECONVOLUTION ON THE NONNEGATIVE REAL LINE 21

• Let us start with the empirical process, first let us notice that

E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|2
]

= E

 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈~tm∗ ,G−1
d1

(
1

n

n∑
i=1

(~ϕd1(Zi)− E [~ϕd1(Zi)])

)
〉2,d1

∣∣∣∣∣
2


= E

 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈~tm∗ ,G−1
m∗

(
1

n

n∑
i=1

(~ϕm∗(Zi)− E [~ϕm∗(Zi)])

)
〉2,m∗

∣∣∣∣∣
2


We now apply Cauchy-Schwarz inequality and get

E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|2
]

≤ E

 sup
~tm∗∈B(m,m′)

∥∥~tm∗∥∥2

2,m∗

∥∥∥∥∥G−1
m∗

(
1

n

n∑
i=1

(~ϕm∗(Zi)− E [~ϕm∗(Zi)])

)∥∥∥∥∥
2

2,m∗


≤ %2

(
G−1
m∗
)
E

m∗−1∑
j=0

(
1

n

n∑
i=1

(ϕj(Zi)− E [ϕj(Zi)])

)2


≤
%2
(
G−1
m∗
)

n

m∗−1∑
j=0

Var (ϕj(Z1)) ≤
%2
(
G−1
m∗
)

n

m∗−1∑
j=0

E
[
ϕ2
j (Z1)

]
≤ 2m∗

n
%2
(
G−1
m∗
)
.

Moreover as in proof of Proposition 3.1, we can notice that

E

∥∥∥∥∥G−1
m∗

(
1

n

n∑
i=1

(~ϕm∗(Zi)− E [~ϕm∗(Zi)])

)∥∥∥∥∥
2

2,m∗

 ≤ (‖h‖∞‖ ∨ 1)‖G−1
m∗‖2F

n

≤
(‖g‖∞‖ ∨ 1)‖G−1

m∗‖2F
n

.

We then set H :=

√
2m∗

n
%2
(
G−1
m∗
)
∧

(‖g‖∞‖ ∨ 1)‖G−1
m∗‖2F

n
.

• Now for the term of variance, let ~tm∗ ∈ B(m,m′). By definition we have the following equalities

E
[∣∣∣〈~tm∗ ,G−1

d1
~ϕd1(Z1)〉2,d1

∣∣∣2] = E
[∣∣〈~tm∗ ,G−1

m∗ ~ϕm∗(Z1)〉2,m∗
∣∣2]

= E

∣∣∣∣∣∣
m∗−1∑
j=0

bj(t)
m∗−1∑
k=0

[
G−1
m∗
]
jk
ϕk(Z1)

∣∣∣∣∣∣
2 =

∫
R+

∣∣∣∣∣∣
∑

0≤k,j≤m∗−1

bj(t)
[
G−1
m∗
]
jk
ϕk(u)

∣∣∣∣∣∣
2

h(u) du.
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which implies

E
[∣∣∣〈~tm∗ ,G−1

d1
~ϕd1(Z1)〉2,d1

∣∣∣2]
≤ ‖h‖∞

∫
R+

∑
0≤j,j′,k,k′≤m∗−1

bj(t)bj′(t)
[
G−1
m∗
]
jk

[
G−1
m∗
]
j′k′

ϕk(u)ϕk′(u) du

≤ ‖g‖∞
∑

0≤j,j′,k,k′≤m∗−1

bj(t)bj′(t)
[
G−1
m∗
]
jk

[
G−1
m∗
]
j′k′

δk,k′

≤ ‖g‖∞
∑

0≤j,j′,k≤m∗−1

bj(t)bj′(t)
[
G−1
m∗
]
jk

[
G−1
m∗
]
j′k

≤ ‖g‖∞ t~tm∗G
−1
m∗

tG−1
m∗
~tm∗ ≤ ‖g‖∞%2

(
G−1
m∗
)
‖~tm∗‖22,m∗ ≤ ‖g‖∞%2

(
G−1
m∗
)
.

So we set v := ‖g‖∞%2
(
G−1
m∗
)
.

• Now applying Cauchy-Schwarz inequality

sup
~tm∗∈B(m,m′)

sup
x∈R+

∣∣∣〈~tm∗ ,G−1
d1
~ϕd1(x)〉2,d1

∣∣∣ = sup
~tm∗∈B(m,m′)

sup
x∈R+

∣∣〈~tm∗ ,G−1
m∗ ~ϕm∗(x)〉2,m∗

∣∣
≤ sup
~tm∗∈B(m,m′)

sup
x∈R+

∥∥~tm∗∥∥2,m∗

∥∥G−1
m∗ ~ϕm∗(x)

∥∥
2,m∗

≤ sup
x∈R+

∥∥G−1
m∗ ~ϕm∗(x)

∥∥
2,m∗

≤ sup
x∈R+

√
t~ϕm∗(x) tG−1

m∗G
−1
m∗ ~ϕm∗(x) ≤

√√√√%2
(
G−1
m∗
)

sup
x∈R+

m∗−1∑
j=0

ϕ2
j (x) ≤

√
2m∗%2

(
G−1
m∗
)
.

We take M1 =
√

2m∗%2
(
G−1
m∗
)
.

• We can now apply Talagrand’s inequality (see Appendix 8.1).
i) First case : 2m∗%2

(
G−1
m∗
)
∧ ‖g‖∞‖G−1

m∗‖2F = 2m∗%2
(
G−1
m∗
)
.

For ξ2 = 1/2 with K1 = 1/6, Talagrand’s inequality implies

∑
m′∈M(1)

n

E

{ sup
~t∈B(m,m′)

|νn(~t)|2 − 4
2m∗%2

(
G−1
m∗
)

n

}
+


≤ C

∑
m′∈M(1)

n

‖g‖∞%2
(
G−1
m∗
)

n
e
−K1

m∗
‖g‖∞ +

m∗%2
(
G−1
m∗
)

n2
e−c1

√
n.

Yet under Assumption (A2), we have

∑
m′∈M(1)

n

‖g‖∞%2
(
G−1
m∗
)

n
e
−K1

m∗
‖g‖∞ ≤ C

n
.

Moreover according to Assumptions (A1) and (A2), we also have

∑
m′∈M(1)

n

m∗%2
(
G−1
m∗
)

n2
e−c1

√
n ≤

∑
m′∈M(1)

n

e−c1
√
n

n
≤ C

n
.

ii) Second case : 2m∗%2
(
G−1
m∗
)
∧ ‖g‖∞‖G−1

m∗‖2F = ‖g‖∞‖G−1
m∗‖2F.
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For ξ2 = a/K1 log n with a = 72/K1, Talagrand’s inequality implies

∑
m′∈M(1)

n

E

{ sup
~t∈B(m,m′)

|νn(~t)|2 − 2(1 +
a

K1
log n)

(‖g‖∞‖ ∨ 1)G−1
m∗‖2F

n

}
+


≤ C

∑
m′∈M(1)

n

‖g‖∞%2
(
G−1
m∗
)

n
exp

(
−a log(n)

‖G−1
m∗‖2F

%2
(
G−1
m∗
))

+
m∗%2

(
G−1
m∗
)

C2(ξ2)n2
exp

−2K1

7
√

2
C(ξ2)

√
a

K1

√
log(n)n

(‖g‖∞ ∨ 1)
√
‖G−1

m∗‖2F
√
n
√

2m∗%2
(
G−1
m∗
)
 . (28)

The first summand of Equation (28) implies that

∑
m′∈M(1)

n

‖g‖∞%2
(
G−1
m∗
)

n
exp

(
−a log(n)

‖G−1
m∗‖2F

%2
(
G−1
m∗
))

≤
∑

m′∈M(1)
n

‖g‖∞%2
(
G−1
m∗
)

n
exp (−a log(n)) (Equivalence between norms)

≤
∑

m′∈M(1)
n

‖g‖∞%2
(
G−1
m∗
)

n

1

na
≤

∑
m′∈M(1)

n

‖g‖∞
1

na
(Assumption (A1))

= |M(1)
n |
‖g‖∞
na

=
‖g‖∞
na−1

≤ ‖g‖∞
n

since a > 2.

Now let us bound the second summand of Equation (28). Assumption (A1) gives thatm∗%2
(
G−1
m∗
)
≤

n/ log n, yet

%
(
G−1
m∗
)
≥
√

2/a0(g) = 1/E[e−Y ] ≥ 1,

where we use that the operator norm is greater than the spectral radius. Then it implies that
m∗ ≤ m∗%2

(
G−1
m∗
)
. This remark combined with the equivalence between norms (see Eq. (18))

yields

−n
(‖g‖∞ ∨ 1)

√
‖G−1

m∗‖2F
√
n
√

2m∗%2
(
G−1
m∗
) ≤ − n√

2n

(‖g‖∞ ∨ 1)√
m∗

≤ − 1√
2

n
√

log n√
n
√
n
≤ −
√

log n√
2

.

Secondly we have −C(ξ2) = −
(√

1 +
a

K1
log n− 1 ∧ 1

)
≤ −1, which implies that C(ξ2) = 1 since

C(ξ2) ≤ 1 by definition. This condition is verified as soon as n ≥ eK1/a, in other words for n ≥ 2.
Then we get that

exp

−2K1

7
√

2
C(ξ2)

√
a

K1

√
log(n)n

(‖g‖∞ ∨ 1)
√
‖G−1

m∗‖2F
√
n
√

2m∗%2
(
G−1
m∗
)
 ≤ exp

(
−2K1

7
√

2

√
a

K1
log n

1√
2

)

≤ exp

(
−
√
aK1

7
log n

)
≤ 1

n
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since a = 72/K1. Thus, invoking again Assumption (A1), the second summand of Equation (28)
can be bounded as follows

∑
m′∈M(1)

n

m∗%2
(
G−1
m∗
)

C(ξ2)n2
exp

−2K1

7
√

2
C(ξ2)

√
log(n)n

(‖g‖∞ ∨ 1)
√
‖G−1

m∗‖2F
√
n
√

2m∗%2
(
G−1
m∗
)


≤
∑

m′∈M(1)
n

m∗%2
(
G−1
m∗
)

C(ξ2)n2

1

n
≤

∑
m′∈M(1)

n

1

C(ξ2)n2
=
|M(1)

n |
C(ξ2)n2

=
1

C(ξ2)n
≤ 1

n
.

In the end we have the desired result. �

Proof of Remark 7. We have to prove that Proposition 7.1 is still valid although Assumption (A2)
is no longer true. We set ξ2 = 2 log n/K1, H2 = 2m∗%2

(
G−1
m∗
)
/n, v = 2m∗%2

(
G−1
m∗
)
, M1 =√

2m∗%2
(
G−1
m∗
)
. Under (A2), we have

∑
m′∈M(1)

n

v

n
exp

(
−K1ξ

2n
H2

v

)
=

∑
m′∈M(1)

n

2m∗%2
(
G−1
m∗
)

n

1

n2
≤

∑
m′∈M(1)

n

2

n2
≤ 2|M(1)

n |
n2

≤ 2

n
.

For C(ξ2) defined in Lemma 8.1, we get

∑
m′∈M(1)

n

M2
1

K1C2(ξ2)n2
exp

(
−2K1

7
√

2

C(ξ2)ξnH

M1

)

=
∑

m′∈M(1)
n

m∗%2
(
G−1
m∗
)

K1C2(ξ2)n2
exp

(
−2K1

7
√

2
C(ξ2)ξ

√
n

)

≤ C2

∑
m′∈M(1)

n

m∗%2
(
G−1
m∗
)

n2
exp

(
−C1

√
n log n

)

≤ C3|M(1)
n |

n
exp

(
−C1

√
n log n

)
≤ C3

n
.

�

7.3. Proof of Theorem 4.2 and Corollary 4.3. For any ~t ∈ Rd2 , we define the following
contrast for the survival function estimation

δn(~t) = ‖~t‖22,d2 − 2〈~t,G−1
d2

(
~̂SZ,d2 − ~SY,d2

)
〉2,d2

and we also have

〈~tm,G−1
d2

(
~̂SZ,d2 − ~SY,d2

)
〉2,d2 = 〈~tm,G−1

m

(
~̂SZ,m − ~SY,m

)
〉2,m = 〈~tm, ~̂SX,m〉2,m

which yields that

~̂SX,m = arg min
~tm∈Smd2

δn(~tm).
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7.3.1. Proof of Theorem 4.2. The beginning of the proof is the same as the proof of Theorem 4.1
with the quantities associated to the survival function estimation. Then we start from Equa-

tion (27) with νn(~t) replacing the following empirical process ζn(~t) := ζ
(1)
n (~t) + ζ

(2)
n (~t) where,

ζ(1)
n (~t) := 〈~t,G−1

d2

(
1

n

n∑
i=1

(
~Φd2(Zi)1Zi≤

√
n − E

[
~Φd2(Zi)1Zi≤

√
n

]))
〉2,d2

ζ(2)
n (~t) := 〈~t,G−1

d2

(
1

n

n∑
i=1

(
~Φd2(Zi)1Zi>

√
n − E

[
~Φd2(Zi)1Zi>

√
n

]))
〉2,d2 .

So we have the following inequality

‖ŜX,m̂ − SX‖2 ≤ 3‖SX − SX,m‖2 + 2pen2(m)

+ 16

(
sup

~t∈B(m,m̂)

(ζ(1)
n (~t))2 + sup

~t∈B(m,m̂)

(ζ(2)
n (~t))2

)
− 2pen2(m̂). (29)

Now let q be a function such that for any m, m′, we have : 4q(m,m′) ≤ pen2(m) + pen2(m′).

‖ŜX,m̂ − SX‖2 ≤ 3‖SX − SX,m‖2 + 4pen2(m) + 16

[
sup

~t∈B(m,m̂)

(ζ(1)
n (~t))2 − q(m, m̂)

]
+

+ 16 sup
~t∈B(m,m̂)

(ζ(2)
n (~t))2

≤ 3‖SX − SX,m‖2 + 4pen2(m) + 16
∑

m′∈M(2)
n

{
sup

~t∈B(m,m′)

(ζ(1)
n (~t))2 − q(m,m′)

}
+

+ 16 sup
~t∈B(m,m̂)

(ζ(2)
n (~t))2.

We now use the following result which ensures the validity of Theorem 4.2.

Proposition 7.2. Under the assumptions of Theorem 4.2, then there exists a universal constant

C > 0 such that for q(m,m′) = κ2%
2
(
G−1
m∨m′

)
E[Z1]

log n

n

(i) E

{ sup
~t∈B(m,m′)

(ζ(1)
n (~t))2 − q(m,m′)

}
+

 ≤ C

n

(ii) E

[
sup

~t∈B(m,m̂)

(ζ(2)
n (~t))2

]
≤ E[Z3

1 ]

n
.

Finally, E‖ŜX,m̂ − SX‖2 ≤ 4 inf
m∈M(2)

n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
. �

Proof of Proposition 7.2. To prove (i), we apply a Talagrand inequality. So we need to determine
H, M1 and v.



26 G. MABON

• Let us start with the empirical process, first let us notice that

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)
n (~tm∗)|2

]

= E

 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈~tm∗ ,G−1
d2

(
1

n

n∑
i=1

(
~Φd2(Zi)1Zi≤

√
n − E

[
~Φd2(Zi)1Zi≤

√
n

]))
〉2,d2

∣∣∣∣∣
2


= E

 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈~tm∗ ,G−1
m∗

(
1

n

n∑
i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))
〉2,m∗

∣∣∣∣∣
2
 .

We now apply Cauchy-Schwarz inequality and get

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)
n (~tm∗)|2

]

≤ E

 sup
~tm∗∈B(m,m′)

∥∥~tm∗∥∥2

2,m∗

∥∥∥∥∥G−1
m∗

(
1

n

n∑
i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))∥∥∥∥∥
2

2,m∗


≤ E

∥∥∥∥∥G−1
m∗

(
1

n

n∑
i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))∥∥∥∥∥
2

2,m∗

 .
It follows that, with Equation (24)

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)
n (~tm∗)|2

]

≤ %2
(
G−1
m∗
)
E

m∗−1∑
j=0

(
1

n

n∑
i=1

(
Φj(Zi)1Zi≤

√
n − E

[
Φj(Zi)1Zi≤

√
n

]))2


≤ %2
(
G−1
m∗
)m∗−1∑
j=0

Var
(

Φj(Z1)1Z1≤
√
n

)

≤
%2
(
G−1
m∗
)

n

m∗−1∑
j=0

E
[
Φ2
j (Z1)1Z1≤

√
n

]
≤
%2
(
G−1
m∗
)

n
E
[
Z11Z1≤

√
n

]
.

We then set H :=

√
%2
(
G−1
m∗
)

n
E [Z1].

• Now for the term of variance, let ~tm∗ ∈ B(m,m′)

E
[∣∣∣〈~tm∗ ,G−1

d2
~Φd2(Z1)1Z1≤

√
n〉2,d2

∣∣∣2] = E
[∣∣∣〈~tm∗ ,G−1

m∗
~Φm∗(Z1)1Z1≤

√
n〉2,m∗

∣∣∣2]
≤ E

[
sup

~tm∗∈B(m,m′)

∥∥~tm∗∥∥2

2,m∗

∥∥∥G−1
m∗
~Φm∗(Z1)1Z1≤

√
n

∥∥∥2

2,m∗

]

≤ E
[∥∥∥G−1

m∗
~Φm∗(Z1)1Z1≤

√
n

∥∥∥2

2,m∗

]
≤ %2

(
G−1
m∗
)
E
[
Z11Z1≤

√
n

]
.

So we set v := E [Z1] %2
(
G−1
m∗
)
.

• First notice again

sup
~tm∗∈B(m,m′)

sup
x∈R+

〈~tm∗ ,G−1
d2
~Φd2(x)1x≤

√
n〉2,d2 = sup

~tm∗∈B(m,m′)

sup
x∈R+

〈~tm∗ ,G−1
m∗
~Φm∗(x)1x≤

√
n〉2,m∗
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Now applying Cauchy-Schwarz inequality and using Equation (24) again

sup
~tm∗∈B(m,m′)

‖〈~tm∗ ,G−1
d2
~Φd2(x)1x≤

√
n〉2,d2‖∞

≤ sup
x∈R+

∥∥∥G−1
m∗
~Φm∗(x)1x≤n

∥∥∥
2,m∗

≤ sup
x∈R+

√
t~Φm∗(x) tG−1

m∗G
−1
m∗
~Φm∗(x)1x≤

√
n

≤

√√√√%2
(
G−1
m∗
)

sup
x∈R+

m∗−1∑
j=0

Φ2
j (x)1x≤

√
n ≤

√√
n%2

(
G−1
m∗
)
.

We take M1 =
√√

n%2
(
G−1
m∗
)
.

We apply Talagrand’s inequality for ξ2 = 2
K1

log(n). We get

E

{ sup
~t∈B(m,m′)

|ζ(1)
n (~t)|2 − κ2%

2
(
G−1
m∗
)
E[Z1]

log n

n

}
+


≤ 4

K1

E[Z1]%2
(
G−1
m∗
)

n
e−K1ξ2 +

98n%2
(
G−1
m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√
2

√
E[Z1]n1/4

which implies that∑
m′∈M(2)

n

E

{ sup
~t∈B(m,m′)

|ζ(1)
n (~t)|2 − κ2%

2
(
G−1
m∗
)
E[Z1]

log n

n

}
+


≤

∑
m′∈M(2)

n

4

K1

E[Z1]%2
(
G−1
m∗
)

n
e−K1ξ2 +

98
√
n%2

(
G−1
m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√
2

√
E[Z1]n1/4

.

Thus we have under Assumption (B1)∑
m′∈M(2)

n

%2
(
G−1
m∗
)

n
e−K1ξ2 ≤

∑
m′∈M(2)

n

%2
(
G−1
m∗
)

n

1

n2
≤ |M

(2)
n |
n2

≤ 1

n
.

And ∑
m′∈M(2)

n

√
n%2

(
G−1
m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√
2

√
E[Z1]n1/4

≤
∑

m′∈M(2)
n

C
√
n

(log n)2n
e
− 2K1C(ξ)ξ

7
√
2

√
E[Z1]n1/4

≤ C

n
.

So for q(m,m′) = κ2%
2
(
G−1
m∗
)
E[Z1]

log n

n
we just showed that

∑
m′∈M(2)

n

E

{ sup
~t∈B(m,m′)

|ζ(1)
n (~t)|2 − κ2%

2
(
G−1
m∗
)
E[Z1]

log n

n

}
+

 ≤ C

n
.

Now we prove (ii). We have, using (A2),

E

[
sup

~t∈B(m,m̂)

|ζ(2)
n (~tm∗)|2

]

= E

 sup
~t∈B(d2,d2)

∣∣∣∣∣〈~t,G−1
d2

(
1

n

n∑
i=1

(
~Φd2(Zi)1Zi>

√
n − E

[
~Φd2(Zi)1Zi>

√
n

]))
〉2,d2

∣∣∣∣∣
2


≤
%2
(
G−1
d2

)
n

E
[
Z11Z1>

√
n

]
≤ E[Z3

1 ]

n
.

In the end we have the desired result. �
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7.3.2. Proof of Corollary 4.3. The beginning of the proof is the same as the proof of Theorem 4.2
except that we consider m̃2 (defined by Equation (22)) instead of m̂2 and p̂en2 (defined by Equa-
tion (23)) instead of pen2. Starting from Equation (29) we have

‖ŜX,m̂ − SX‖2 ≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

(
sup

~t∈B(m,m̂)

(ζ(1)
n (~t))2 + sup

~t∈B(m,m̂)

(ζ(2)
n (~t))2

)
− 2p̂en2(m̃2)

≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

(
sup

~t∈B(m,m̂)

(ζ(1)
n (~t))2 + sup

~t∈B(m,m̂)

(ζ(2)
n (~t))2

)
− 2pen2(m̃2) + 2pen2(m̃2)− 2p̂en2(m̃2)

≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

{
sup

~t∈B(m,m̂)

(ζ(1)
n (~t))2 − q(m, m̃2)

}
+

+ 2pen2(m) + 16 sup
~t∈B(m,m̂)

(ζ(2)
n (~t))2 + 2

{
pen2(m̃2)− p̂en2(m̃2)

}
+
.

We now apply the following Proposition which ensures the validity of Corollary 4.3

Proposition 7.3. Under the Assumptions of Corollary 4.3, the following holds

E
[
p̂en2(m)

]
= 2pen2(m) and E

[{
pen2(m̃2)− p̂en2(m̃2)

}
+

]
≤ C

n
.

Finally, E‖SX − ŜX,m̃2
‖2 ≤ inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
. �

Proof of Proposition 7.3. First let us notice the following

E [p̂en2(m)] = 2κ2E
[
Z̄n
] %2

(
G−1
m

)
log n

n
= 2κ2E [Z1]

%2
(
G−1
m

)
log n

n
= 2pen2(m).

For the second inequality, let us introduce the following favorable set:

Λ =
{∣∣E[Z1]− Z̄n

∣∣ ≤ E[Z1]/2
}
,

which yields

E
[{

pen2(m̃2)− p̂en2(m̃2)
}

+

]
= E

[{
2κ2

(E[Z1]

2
− Z̄n

)
%2
(
G−1
m̃2

) log n

n

}
+

1Λ

]
+ E

[{
2κ2

(E[Z1]

2
− Z̄n

)
%2
(
G−1
m̃2

) log n

n

}
+

1Λc

]
.

Yet on the set Λ, E[Z1]/2− Z̄n ≤ 0 which yields

E
[{

pen2(m̃2)− p̂en2(m̃2)
}

+

]
= E

[
2κ2

(E[Z1]

2
− Z̄n

)
%2
(
G−1
m̃2

)
1Λc

]
log n

n

≤ E
[
2κ2

∣∣E[Z1]− Z̄n
∣∣ %2

(
G−1
m̃2

)
1Λc

] log n

n
.

Now we apply Cauchy-Schwarz

E
[∣∣E[Z1]− Z̄n

∣∣1Λc
]
≤
√
E
∣∣E[Z1]− Z̄n

∣∣2√P [Λc] =
√

Var
[
Z̄n
]√

P
[∣∣E[Z1]− Z̄n

∣∣ ≥ E[Z1]

2

]
.

We apply Markov inequality then Rosenthal inequality

E
[∣∣E[Z1]− Z̄n

∣∣1Λc
]
≤
√
Var [Z1]√

n

√√√√E
[∣∣E[Z1]− Z̄n

∣∣2]
E[Z1]2

≤
√
Var [Z1]

E[Z1]n
.
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Moreover under Assumption (B1)

E
[{

pen2(m̃2)− p̂en2(m̃2)
}

+

]
≤ C

n
E
[
%2
(
G−1
m̃2

) log n

n

]
≤ C ′

n

which ends the proof. �

8. Appendix

Lemma 8.1. (Talagrand’s inequality) Let Y1, . . . , Yn be i.i.d. variables and

rn(f) =
1

n

n∑
k=1

(
f(Yk)− E [f(Yk)]

)
for f belonging to some countable set F of uniformly bounded measurable functions. Then for
ξ2 > 0,

E

[{
sup
f∈F
|rn(f)|2 − 2(1 + 2ξ2)H2

}
+

]
≤ 4

K1

(
v

n
e−K1ξ2

nH2

v +
98M2

1

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√
2

nH
M1

)

with constants C(ξ2) = (
√

1 + ξ2 − 1) ∧ 1 and K1 =
1

6
, M1, H and v are such that

sup
f∈F
‖f‖∞ ≤M1, E

[
sup
f∈F
|rn(f)|

]
≤ H, sup

f∈F
Var(f(Y1)) ≤ v.

acknowledgements

The author would like to thank Fabienne Comte for her fruitful advice and suggestions and Valen-
tine Genon-Catalot for her comments which improved this work.

References

Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing
edition.

Belomestny, D., Comte, F., and Genon-Catalot, V. (2016). Nonparametric Laguerre estimation
in the multiplicative censoring model. To appear in Electronic Journal of Statistics. preprint
hal-01252143.
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Birgé, L. and Massart, P. (1997). From model selection to adaptive estimation. In Festschrift for
Lucien Le Cam, pages 55–87. Springer.

Bongioanni, B. and Torrea, J. L. (2009). What is a Sobolev space for the Laguerre function
systems? Studia Math., 192(2):147–172.

Butucea, C. (2004). Deconvolution of supersmooth densities with smooth noise. Can. J. Stat.,
32(2):181–192.

Butucea, C. and Tsybakov, A. (2008a). Sharp optimality in density deconvolution with dominating
bias I. Theory Proba. Appl., 52(1):24–39.

Butucea, C. and Tsybakov, A. (2008b). Sharp optimality in density deconvolution with dominating
bias II. Theory Proba. Appl., 52(2):237–249.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Am.
Stat. Assoc., 83(404):1184–1186.

Chernozhukov, V., Fernández-Val, I., and Galichon, A. (2009). Improving point and interval
estimators of monotone functions by rearrangement. Biometrika, 96(3):559–575.



30 G. MABON

Comte, F., Cuenod, C.-A., Pensky, M., and Rozenholc, Y. (2015). Laplace deconvolution and its
application to dynamic contrast enhanced imaging. J. R. Stat. Soc., Ser. B.

Comte, F. and Genon-Catalot, V. (2015). Adaptive Laguerre density estimation for mixed Poisson
models. Electron. J. Stat., 9:1112–1148.

Comte, F., Rozenholc, Y., and Taupin, M.-L. (2006). Penalized contrast estimator for adaptive
density deconvolution. Can. J. Stat., 3(34):431–452.

Dattner, I., Goldenshluger, A., and Juditsky, A. (2011). On deconvolution of distribution functions.
Ann. Statist., 39(5):2477–2501.

Dattner, I. and Reiser, B. (2013). Estimation of distribution functions in measurement error
models. J. Stat. Plann. Inference , 143(3):479 – 493.

Dattner, I., Reiß, M., and Trabs, M. (2016). Adaptive quantile estimation in deconvolution with
unknown error distribution. Bernoulli, 22(1):143–192.

Delaigle, A. and Gijbels, I. (2004). Bootstrap bandwidth selection in kernel density estimation
from a contaminated sample. Ann. Inst. Stat. Math., 56(1):19–47.

Efromovich, S. (1997). Density estimation for the case of supersmooth measurement errors. J.
Am. Stat. Assoc., 92:526–535.

Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems.
Ann. Statist., 19(3):1257–1272.

Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvolution
problem. Ann. Statist., 21(2):600–610.

Groeneboom, P. and Jongbloed, G. (2003). Density estimation in the uniform deconvolution model.
Stat. Neerl., 57(1):136–157.

Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric maximum
likelihood estimation, volume 19 of DMV Seminar. Birkhäuser Verlag, Basel.
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