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Abstract

An orientation of a graph G is a digraph D obtained from G by replacing each edge by exactly one of the
two possible arcs with the same endvertices. For each v € V(G), the indegree of v in D, denoted by d(v), is
the number of arcs with head v in D. An orientation D of G is proper if dj,(u) # d,(v), for all uv € E(G).
The proper orientation number of a graph G, denoted by Y(G), is the minimum of the maximum indegree
over all its proper orientations. It is well-known that Y(G) < A(G), for every graph G. In this paper, we

first prove that ¥ (G) < L(A(G) + \/A(G)) /2J +1if G is a bipartite graph, and ¥ (G) < 4 if G is a tree.

We then prove that deciding whether Y(G) < A(G) — 1 is an NP-complete problem. We also show that
it is NP-complete to decide whether Y(G) < 2, for planar subcubic graphs G. Moreover, we prove that it
is NP-complete to decide whether Y(G) < 3, for planar bipartite graphs G with maximum degree 5.

Keywords: proper orientation, graph colouring, bipartite graph, hardness.

1. Introduction

In this paper, all graphs are simple, that is without loops and multiple edges. We follow standard
terminology as used in [1].

An orientation D of a graph G is a digraph obtained from G by replacing each edge by just one of the
two possible arcs with the same endvertices. For each v € V(G), the indegree of v in D, denoted by dj,(v),
is the number of arcs with head v in D. We use the notation d~(v) when the orientation D is clear from
the context. The orientation D of G is proper if d~(u) # d~(v), for all uv € E(G). An orientation with
maximum indegree at most k is called a k-orientation. The proper orientation number of a graph G, denoted
by Y(G), is the minimum integer k£ such that G admits a proper k-orientation. This graph parameter was
introduced by Ahadi and Dehghan [2]. It is well-defined for any graph G since one can always obtain a
proper A(G)-orientation (see [2]). In other words, X (G) < A(G). Note that every proper orientation of a
graph G induces a proper vertex colouring of G. Thus, Y(G) > x(G) — 1. Hence, we have the following
sequence of inequalities: w(G) —1 < x(G) —1 < Y (G) < A(G).

These inequalities are best possible in the sense that, for a complete graph K, w(K) — 1= x(K) - 1=
7(K ) = A(K). However, one might expect better upper bounds on some parameters by taking a convex
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combination of two others. Reed [3] showed that there exists ¢y > 0 such that x(G) < €y w(G)+(1—€9)A(G)
for every graph G and conjectured the following.

. A(@)+1+w(G)
Conjecture 1 (Reed [3]). For every graph G, x(G) < {f-‘ .

If true, this conjecture would be tight. Johannson [4] settled Conjecture 1 for w(G) = 2 and A(G)
sufficiently large.
Likewise, one may wonder if similar upper bounds might be derived for the proper orientation number.

Problem 1.

(a) Does there exist a positive ¢, such that ¥ (G) < €1 -w(G) + (1 — 1)A(G)?
(b) Does there exist a positive ey such that ¥ (G) < ez - x(G) + (1 — e2)A(G)?

Observe that both questions are intimately related. Indeed if the answer to (a) is positive for €, then
the answer to (b) is also positive for ¢;. On the other hand, if the answer to (b) is positive for ez, then the
answer to (a) is also positive for €, = €y - €2 by the above-mentioned result of Reed.

In Section 2, we answer Problem 1 positively in the case of bipartite graphs by showing that: if G is

bipartite, then Y (G) < {A(GHQA(G) + 1. We also argue that this bound is tight for A(G) € {2, 3}.

In Section 3, we prove that X (T') < 4, for every tree T'. Moreover, we show that X (T') < 3 if A(T) < 6,
and X (T) < 2 if A(T) < 3. We also argue that all these bounds are tight.

In Section 4, we study the computational complexity of computing the proper orientation number of
a bipartite graph. In their seminal paper, Ahadi and Dehghan proved that it is NP-complete to decide
whether Y(G) = 2 for planar graphs G. We first improve their reduction and show that it is NP-complete to
decide whether Y(G) < 2, for planar subcubic graphs G. Moreover, we prove that deciding whether Y(G) <
A(G) — 1 is an NP-complete problem for general graphs G. Finally, we show that it is also NP-complete to
decide whether Y(G) < 3 for planar bipartite graphs G with maximum degree 5.

Due to space limitation, we omit the proofs of these results.

2. General upper bound

Theorem 1. Let G be a bipartite graph and let k be a positive integer. If A(G) > 2k + 7vl+28k+1, then
X (G) <A(G) — k.

Sketch of proof. In order to prove this theorem, we describe an algorithm (see Algorithm 1) that produces a
proper (A(G) — k)-orientation. Let G = (X UY, E) be a bipartite graph as in the statement of Theorem 1.
The algorithm consists of two phases.

The first phase (lines 1 to 8 in Algorithm 1) produces an orientation, not necessarily proper, of the edges
of G in such a way that the indegree of each vertex in X is at most k and the indegree of each vertex in Y
is at most A(G) — k. It proceeds as follows. We first orient all edges zy € E(G) from z to y, where x € X
and y € Y. Then we define k£ matchings as described subsequently.

Let G; = G, and let M7 be a matching in G; that covers all vertices of maximum degree. For each i €
{2,...,k}, let G; be the graph obtained from G;_1 by removing the edges in M;_1, that is G; = G;—1\ M;_1,
and let M; be a matching in G; that covers all vertices of degree A(G;). Such a M; exists since it is well known
that every bipartite graph H has a proper A(H)-edge-colouring. Clearly, we have A(G;) = A(G;—1) — 1,
for each i € {2,3,...,k}. Let M := Ule M;. Observe that if a vertex has degree A(G) — k + j in G,
where j € {1,2,...,k}, then it is incident to at least j edges in M. Hence, for all j € {1,2,...,k} and for
each vertex y in Y of degree A(G) — k + j in G, we reverse the orientation of exactly j edges in M incident
to y. This ends the first phase.

The second phase reverses the orientation of some edges in E(G) \ M, step by step, in order to obtain
a (A(G) — k)-orientation. This orientation is proper under the assumption of Theorem 1. O



Algorithm 1: Proper Orientation of Bipartite Graphs

Input: Bipartite graph G = (X UY, E) and k € Ns.t. A(G) > 2k + 7%8’““.
Output: Proper (A(G) — k)-orientation for G.
Gl +— G
Orient all edges in G from X to Y
fori=1,...,k do
L M; «— matching of G; saturating all vertices of degree A(G;)
Giy1 +— G — M;

6 M« UL, M;

7 foreach y € Y do

8 L reverse the orientation of max{0;dg(y) — A(G) + k} edges of M incident to y
9 X +— X

10 for { =A(G)—k—1,...,2do

U oA W N

11 while 3z € X s.t. |[N<y(z)| > € —d (x) and |[N=¢(z)| < ¢ —d (x) do
12 Y <— set of £ — d~(x) vertices of highest indegree in N<,(x)

13 foreach y € Y do

14 L Reverse the orientation of xy (i.e. re-orient zy towards x)

15 X+ X\ {z}

. o A(G)++/A(G)
Theorem 2. If G is a bipartite graph, then Y (G) < LZJ + 1.

Sketch of proof. By Theorem 1, for every k € N, if A(G) > 2k + Y8 " then X (G) < A(G) — k. In order
to obtain a good upper bound for Y(G), we must find the largest positive integer k£ such that the condition
of Theorem 1 holds for a given graph G.

Solving the inequality for k, we obtain that k£ < % VA Gince k s integer, we conclude that
X(G) < AG) - {A(G)_Q ”A(G)-‘ + 1, and the result follows. O
Note that if G is bipartite and A(G) € {2,3,4}, then the bound of Theorem 2 is equal to the trivial

upper bound Y (G) < A(G). For A(G) = 1 and A(G) = 2, this bound is tight due to the paths with 2
and 4 vertices, respectively. In addition, there exists a bipartite graph G with A(G) = 3 and ¥ (G) = 3.

3. Trees

Theorem 3. If T is a tree, then the following statements hold:

(1) if A(T) <3, then X (T) < 2;
(2) if A(T) <6, then X (T) < 3;
(3) X(T) < 4.

Sketch of proof. We prove the three statements by using similar arguments. For ¢ € {1,2,3}, we con-
sider a minimal counter-example M; to statement (i) with respect to the number of vertices, and derive
a contradiction that implies that no counter-example exists. Since M; is a minimal counter-example, we
have Y(MZ) > i+ 1, but Y(T) <1+ 1, for any proper subtree T' of M;. We use the latter fact to derive a
proper (i + 1)-orientation of M;, which contradicts ¥ (M;) > i + 1. O



The three statements of the theorem are tight in the following sense: there is a tree with maximum
degree 4 and proper orientation number 3, and a tree with maximum degree 7 and proper orientation
number 4.

4. NP-completeness

Ahadi and Dehgan [2] showed that it is NP-complete to decide whether Y(G) < 2 for planar graphs G
by using a reduction from the PLANAR 3-SAT problem. We first improve this result by showing that it
is NP-complete to decide whether the proper orientation number of planar subcubic graphs is at most 2.

Theorem 4. The following problem is NP-complete:
INPUT : A planar graph G with A(G) = 3 and §(G) = 2.
QUESTION : ¥ (G) < 2%

Sketch of proof. We show a reduction from the problem of deciding whether a planar 3-SAT formula is
satisfiable. It is known that the PLANAR 3-SAT problem is NP-complete [5].

Let ¢ = (X, €) be an instance of this problem, where X = {x1,...,z,} is the set of variables and € =
{C1,...,Cp,} is the set of clauses. Using the variable and clause gadgets depicted in Figures 1(a) and 1(b),
respectively, we construct a planar graph G(¢) such that X (G’(¢)) < 2 if, and only if, ¢ is satisfiable. [

1 1 =1 2 2 2
a; b x z; a; b x;
L
J
=m—1 m M m 7T +1 +1
z" a; b} T el b
5 5
5 9 .10 6
5% S 8
(a) Gadget associated to variable z;. (b) Gadget associated to
clause Cj.

Figure 1: The variable and clause gadgets.

Recall that X (G) < A(G), for any graph G. On the other hand, the following theorem shows that, for
any integer k > 3, it is already NP-complete to determine whether ¥ (G) < k, for graphs G with A(G) = k.

Theorem 5. Let k be an integer such that k > 3. The following problem is NP-complete:
INPUT : A graph G with A(G) =k and §(G) =k — 1.
QUESTION : X (G) <k —17

Finally, we show that it is NP-complete to decide whether Y(G) < 3, for planar bipartite graphs G.

Theorem 6. The following problem is NP-complete:
INPUT : A planar bipartite graph G with A(G) = 5.
QUESTION : ¥ (G) < 3%

Sketch of proof. We show a reduction from the problem of deciding whether a planar monotone 3-SAT
formula is satisfiable. This problem was recently shown to be NP-complete [6]. The idea of our reduction is
roughly the same as in Theorems 4 and 5. 0
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