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Abstract 

 

In this paper, a new genetic algorithm is proposed for designing 2-D FIR filters with the objective of being relevant 

and tractable. The key point of our approach stems in the capacity of our GA to adapt the genetic operators during 

the genetic life while remaining simple and easy to implement. It hybridizes the use of conventional and dedicated 

processes. The first are capable of covering a wide range of optimization problems without being sufficient. The 

second includes the filter design specificities and takes feedback from the current state of the genetic search. We 

demonstrate the method efficiency on various cases of filter design. 

 

Keywords– 2-D FIR digital filters, adaptive GA approach, real-valued chromosomes. 

 

1. Introduction 

 

In recent years, with the rapid improvement in computer technology, two dimensional (2-D) digital signal 

processing has become more important. Therefore, the design problem of 2-D digital filters has been receiving a 

great deal of attention.  Digital filters can be classified into two groups, i.e., finite impulse response (FIR) filters 

and infinite impulse response (IIR) filters. Since FIR digital filters are inherently stable and they can have linear 

phase, they are often preferred over IIR filters. These 2-D FIR filters have many important applications, e.g., in 

radar and sonar signal processing and in image processing. In this area, it can be used to remove the effects of 

some degradation mechanisms or enhance the image to facilitate identification. The linear-phase filter is important 

in DSP applications such as image processing, where phase information must not be altered. The problem of filter 

design is to find a realization of the filter which meets each of the requirements to a sufficient degree to make it 

useful. The techniques for designing 2-D FIR digital filters have been developed extensively for several years [1]. 

The results of most of these techniques are given in the form of the impulse response of a 2-D filter, so the 

designed filter is suitable for a direct convolution realization. The classic methods are based on approximating 

some specified frequency response, the least-square (LS) or the minimax error criteria are usually used. By using 

the LS error criterion, one gets an overshoot of the frequency response at the pass band and the stop band edges 

caused by Gibbs phenomenon [2]. 

There are different methods [1,3] to find the coefficients from frequency specifications: Window design 

method, frequency transformation method, frequency sampling method, weighting least squares design, equiripple 

design. Filters generated using these approaches often contain many small ripples in the pass band, since such a 

filter minimizes the peak error. In the window and frequency sampling methods, it remains difficult to control 

cutoff frequencies of the pass-band and stop-band with accuracy. With the windowing method, truncating the 

Fourier series causes a phenomenon called the "Gibbs effect" a spike occurs wherever there is a discontinuity in 

the desired magnitude of the filter. The frequency transformation method preserves most of the characteristics of 

the one-dimensional filter, particularly the transition bandwidth and ripple characteristics [4]. These approaches 

are considered as not efficient enough for practical implementations. New design approaches [2,5] have been 

investigated, and more interesting results have been obtained without being completely satisfactory ; the authors 

deal only with very specific cases and do not argue that these methods give good results for all cases. 

The popular weight least square (WLS) algorithm gives some improvements, and can acquire analytical 

solutions. At the opposite, it must calculate an inverse matrix which can be computationally problematic as soon 

as the filter's degree is very high.  

Some approaches have emerged for several years on the basis of dedicated evolutionary algorithms [6] and 
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particularly Genetic Algorithms (GAs). Studies related to the design of FIR filters by GAs have however been 

more confidential. One can find pioneer papers at the end of ninety. They are especially devoted to 1-D FIR filters 

and very often to the design of digital filters. Applications are more related to low order filters [7]. They however 

yielded solutions whose quality often significantly overcomes that obtained by methods previously applied. Design 

1-D FIR filter has been discussed in detail in [8]. The idea consists in including ripple error in the minimization 

algorithm. Results are promising. At the opposite, they can be very changeable especially when the filter dimension 

becomes large. 

Factually, the design of 2-D arbitrary FIR filter is more difficult as the searching space is larger [9-10]. GAs are 

good candidates because efficient solutions can be obtained even for complicated optimization problems involving 

large and complex searching spaces. However, despite these no discussing successes, applying GA for a dedicated 

problem is not always straightforward, and objectively their implementation and use face various problems. 

Diversity and elitism are the main factors to manage with GA. Population diversity enables the fruitful exploration 

of the search space [11]. Without enough diversity the search can be trapped prematurely in a local minimum, and 

without enough elitism, the search process becomes random and the algorithm cannot converge. Different 

approaches coming from the specialized literature still exist [12]. Niching approaches, the most popular being 

sharing and crowing methods, have been developed to counteract the convergence of the population to a single 

solution by maintaining a diverse population of individuals throughout its search. Many works [13] have also 

focused on parameter adaptation (mutation, crossover rates and population sizes) and on the proposals of new 

variants (intelligent crossover, elitist recombination…). All the ideas developed are very promising and have given 

interesting results. However, the amount of simultaneous parameterization and the tuning of several parameters 

can often necessary lead to extremely high computation costs without insuring of good results. In [14] we have 

presented the potential of several evolutionary algorithms for the 2-D FIR filters design and proposed a specific 

GA producing very interesting results compared to the state of the art. In this paper we propose a more advanced 

GA to improve both the run time and the result accuracies by adding more efficient mechanisms. This paper is 

organized as follows. Section 2 briefly describes the characteristics of digital filter design and its reformulation as 

a constrained minimization problem. Section 3 presents our genetic approach, and section 4 is dedicated to 

experimental results. Finally, Section 5 reports some concluding remarks.  

 

2. Problem formulation 

 

The design of digital filters, as with most engineering tasks, is a multistage, iterative process. The key stages 

are filter specification, coefficient calculation and structure realization. The set of filter coefficients has to meet 

performance specifications such as passband width and corresponding gain, width of the stopband and attenuation, 

band edge frequencies, and tolerable peak ripple in the passband and stopband. An attractive goal is to perform 

the optimization by several approaches in order to seek out the filter design method with the best results and the 

best performances.  

The transfer function of a 2-D FIR filter of dimension N1xN2 is given by [1, 2]:  

𝐻(𝑍1, 𝑍2) = ∑ ∑ ℎ(𝑛1, 𝑛2) ∗ 𝑍1
−𝑛1 ∗ 𝑍2

−𝑛2

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

                   (1) 

Where ℎ(𝑛1, 𝑛2) is its impulse response. 

The frequency response of a 2-D FIR digital filter with its impulse response ℎ(𝑛1, 𝑛2) is given by: 

𝐻(𝜔1, 𝜔2) = ∑ ∑ ℎ(𝑛1, 𝑛2) ∗ 𝑒−𝑗.(𝑛1𝜔1+𝑛2𝜔2) = 𝑀(𝜔1, 𝜔2) ∗ 𝑒𝑗.𝜃(𝜔1,𝜔2)                                                         (2)

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

 

𝑀(𝜔1, 𝜔2) the magnitude response of 𝐻(𝜔1, 𝜔2), is real-valued function. 

For its a symmetrical impulse response, the frequency response is given by:  
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𝐻(𝜔1, 𝜔2) = 𝑀(𝜔1, 𝜔2) ∗ 𝑒
−𝑗[

(𝑁1−1)
2

𝜔1+
(𝑁2−1)

2
𝜔2]

                                                                                                            (3) 

𝑀(𝜔1, 𝜔2) = |𝐹(𝜔1, 𝜔2)| 

𝐹(𝜔1, 𝜔2) = ∑ ∑ 𝑎(𝑘1, 𝑘2) ∗ cos(𝑘1𝜔1) ∗ cos (𝑘2𝜔2)

𝑃2

𝑘2=0

𝑃1

𝑘1=0

                                                                                          (4) 

𝑃1 =
(𝑁1−1)

2
   and  𝑃2 =

(𝑁2−1)

2
 

The objective is then the minimization of the sum-squared error over frequency points (m1xm2): 

𝐸 = ∑ ∑[𝐷(𝜔1𝑗 , 𝜔2𝑘) − 𝐹(𝜔1𝑗 , 𝜔2𝑘)]
2

𝑚2

𝑘=1

𝑚1

𝑗=1

                                                                                                                        (5) 

Where 𝐷 is the desired magnitude response and 𝐹 the actual magnitude response. 

𝐸𝑖 = ∑ ∑[𝐷(𝜔1𝑗 , 𝜔2𝑘) − 𝐶1(𝜔1𝑗) ∗ 𝐴𝑖 ∗ 𝐶2(𝜔2𝑘)𝑇]
2

𝑚2

𝑘=1

𝑚1

𝑗=1

                                                                                                (6) 

The main idea is to obtain a least-squares approximation to the given magnitude function, which leads to the 

optimal approximation in the Chebyshev sense. 

𝐶1(𝜔1𝑗) = [

1
1

cos (𝜔11)

cos (𝜔12)

⋯
⋯

cos (𝑃1. 𝜔11)

cos (𝑃1. 𝜔12)

⋮
1

⋮
cos (𝜔1𝑚1

)
⋮

…

⋮
cos (𝑃1. 𝜔1𝑚1

)

]                                                                                                          (7) 

𝐶2(𝜔2𝑘) = [

1
1

cos (𝜔21)

cos (𝜔22)

⋯
⋯

cos (𝑃2. 𝜔21)

cos (𝑃2. 𝜔22)

⋮
1

⋮
cos (𝜔2𝑚2

)
⋮
…

⋮
cos (𝑃2. 𝜔2𝑚2

)

]                                                                                                         (8) 

The matrix (𝐴𝑖) formed by the filter coefficients can be characterized as: 

𝐴𝑖 = [

𝑎00

𝑎10

𝑎01

𝑎11

⋯
⋯

𝑎0𝑝2

𝑎1𝑝2

⋮
𝑎𝑝10

⋮
𝑎𝑝11

⋮
…

⋮
𝑎𝑝1𝑝2

]                                                                                                                                             (9) 

𝑎𝑘1𝑘2
 is (𝑘1, 𝑘2)th filter coefficient. 

 

3. Our proposed approach 

 

In order to accelerate evolutionary process and reach an efficient solution with a reasonable execution time, several 

mechanisms have been incorporated in our GA devoted to FIR filter design: Firstly the use of an initial population 

presenting chromosomes close to acceptable solutions coming from last experiences obtained with standard 

approaches. Secondly, genetic operators, and particularly the mutation operator, that are completely adapted to the 

level of the genetic process and therefore limit the simultaneous tuning of several static parameters. Thirdly, a 

ranking selection scheme has been introduced in order to limit the promotion of extraordinary chromosomes, and 

then preventing premature convergences. To improve accuracy, the genetic exploration is driven by a fitness 

assignment strategy including the filter specificities. Driving GAs by this way is necessary. It is however not 

adaptable enough to continuously manage the trade-off between elitism and pressure preservation. Our algorithm 

is therefore reinforced by a mechanism involving a breaking process to reseed the population when necessary. The 
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selection process naturally promotes the best chromosomes. It integrates a function allowing the limitation of 

redundant chromosomes then promoting diversification. The GA is based on the assumption that it is generally 

difficult to pursue different optima in parallel within the theory of GAs but easier to focus attention on one optimum 

to pass from another one if better. 

 

 3.1. The genetic algorithm 

 

The GA is a real-coded genetic algorithm (RCGA). A chromosome solution is directly represented by a matrix 

of coefficients representing the filter itself. It means that for a filter of N1xN2 dimension, it is necessary to 

determine N1xN2 coefficients, the goal being to find them in order to minimize the sum-squared error 𝐸 over 

m1xm2 frequency points. The fitness function is defined as the inverse of the error 𝐸 presenting the goodness to be 

maximized. For a given shape filter, peak ripples are generally more present in certain regions than others making 

their attenuation more difficult. To face this situation, we suggest as novelty to weight the sum-squared error by a 

matrix  𝑊 of m1xm2 dimensions and therefore compensate this imbalance.  

The selected scheme is classically driven by the different operators of crossover, mutation, selection and 

reproduction as illustrated in Fig. 1. It however includes some major differences detailed later in the way of 

applying the successive operations. The 𝑛 chromosomes from generation 𝑡 produce 2𝑛 chromosomes via the 

crossover operator. In this scheme, there is no need to fix a crossover rate. A copy of the parent and children 

population is kept. Parents and children are put together and submitted to the mutation operator. Each chromosome 

component has a 𝑃𝑀 probability to be mutated. The 𝑃𝑀 value is calculated for each chromosome individually as 

well as the level of mutation and is dependent on the genetic advance of the algorithm. An enlarged population of 

4𝑛 chromosomes is then submitted to the selection operator that discards the redundant and worse chromosomes 

to obtain a population of size 𝑛. When this process generates less than 𝑛 chromosomes, the population is completed 

with new chromosomes generated from the last population having submitted a large mutation. 

 

 
Fig.1. Genetic process 

 

 

3.2. Genetic operations and dedicated mechanisms to improve convergence 

 

Some researchers put considerable efforts into finding parameter values which give reasonable performance 

for a wide range of problems. Specific problems however require dedicated parameters stressing the need for 

additional mechanisms allowing good parameter tuning methods. Our algorithm hybrid the two approaches.  

Crossover is the primary operator in the GAs and is the key to the success of GAs.  The operator generates two 

children 𝑝𝑜𝑝𝑘
𝐶ℎ𝑖𝑙𝑑 from two parents 𝑖 and 𝑗 according to the following rule: 

{
𝑝𝑜𝑝𝐶ℎ𝑖𝑙𝑑1 = (𝑝𝑜𝑝𝑖 − 𝑝𝑜𝑝𝑗) ∗ 𝜆𝑐1 + 𝑝𝑜𝑝𝑖

𝑝𝑜𝑝𝐶ℎ𝑖𝑙𝑑2 = (𝑝𝑜𝑝𝑗 − 𝑝𝑜𝑝𝑖) ∗ 𝜆𝑐2 + 𝑝𝑜𝑝𝑗                                                                                                                      (10) 

where 𝑝𝑜𝑝𝑖   (𝑝𝑜𝑝𝑗) presents the individual 𝑖 (𝑗), 𝜆𝑐1 and 𝜆𝑐2 are random number between 0 and 1. Crossover 

enables the generation of new chromosomes without introducing any new genetic features into the population at 

the gene level.  

Mutation operator arbitrarily alters the gene value according to a predetermined probability. Mutation operator 

introduces diversity and reflects features which are not presented in the current population. We suggest a non-

uniform adaptive mutation directly applicable to each chromosome of the population. The mutation rate is limited 

for the best chromosomes and encouraged for the worse. For a given chromosome, 𝑃𝑀 is applied to each gene.  
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𝑃𝑀 = {

𝑘1∗(𝑓𝑚𝑎𝑥 − 𝑓)

(𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑔)
𝑓 ≥ 𝑓𝑎𝑣𝑔

𝑘2 𝑓 < 𝑓𝑎𝑣𝑔

                                                                                                                                     (11) 

Where 𝑓𝑚𝑎𝑥 and 𝑓𝑎𝑣𝑔 are the maximum and average fitness values in the current population, respectively, and 𝑓 is 

the fitness value of the current chromosome. 𝑘1 and 𝑘2 are weighing parameters with 𝑘1 and 𝑘2 ≤ 1.  We propose 

a novelty that lies in the conditions of use thereof, i.e., where the population evolves in a normal manner and that 

the population is diverse. The simple idea consists of restarting a process of evolution that has stalled by refreshing 

more chromosomes. 𝑃𝑀 is increased one time via the 𝑘1 and 𝑘2 values each time the population tends to get stuck 

in a local optimum and decreased when the population is scattered in the search space. The level of mutation also 

takes feedback from the current state of the search and modifies the chromosomes accordingly. We suggest 

adopting a two-case version described as follows: 

𝑝𝑜𝑝𝑛𝑒𝑤 = {
𝑝𝑜𝑝𝑜𝑙𝑑 ∗ (1 + 𝜆𝑚1)        𝑖𝑓 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛

𝑝𝑜𝑝𝑜𝑙𝑑 ∗ (1 + 𝜆𝑚2)           𝑒𝑙𝑠𝑒             
                                                                                                         (12) 

Where 𝜆𝑚1, 𝜆𝑚2 are parameters depending on the genetic state (𝜆𝑚1 ≫ 𝜆𝑚2). 

Our selection scheme aims at improving the quality of the current population by giving chromosomes of higher 

quality a higher probability to be inserted into the next population without reducing the population diversity:  

𝑃𝑖 = 𝑓𝑖 ∑ 𝑓𝑗                                                                                                                                                                           (13)

𝑛

𝑗=1

⁄  

where 𝑓𝑗 is the fitness value of the 𝑗𝑡ℎ chromosome. 

The scheme includes the genetic materials and prevents very fit individuals from gaining dominance early at 

the expense of less fit ones. The algorithm starts with the best chromosome called current. This chromosome is 

automatically selected and firstly compared to the second called inspected via the fitness function.  If there is no 

match between them, the second becomes current and the procedure continues. Otherwise, the comparison is done 

via a gene metric to avoid discarding two chromosomes having similar fitness values while being genetic different. 

Inspected is discarded if there is no match between them in this space. In this case the first chromosome is still 

current. The comparison is then done with the third chromosome which becomes inspected. The procedure 

continues until the whole population is inspected.  

 

{

𝑖𝑓 Δ𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑐ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑐ℎ𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) ≥ 𝑓𝜀 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒  𝑒𝑙𝑠𝑒

𝑖𝑓 Δ𝑔𝑒𝑛𝑒(𝑐ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑐ℎ𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) ≥ 𝑔𝜀 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒  𝑒𝑙𝑠𝑒  

𝑑𝑖𝑠𝑐𝑎𝑟𝑑  𝑐ℎ𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑                                                                

                                                                                            (14) 

𝑐ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (𝑐ℎ𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑) stands for chromosome current as  Δ𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑟𝑒𝑠𝑝.  Δ𝑔𝑒𝑛𝑒) stands for distance in the fitness 

space, and 𝑓𝜀 (𝑟𝑒𝑠𝑝. 𝑔𝜀) is a predefined threshold. The second calculation is processed only when current and 

inspected fit very well in the fitness space. This speeds up the process. 

 

3.3. Breaking processes to prevent premature convergence 

 

There exists no manageable model for controllable selection pressure. Premature convergence is then naturally 

possible. It has to be detected and corrected. The correction is done via a breaking mechanism capable of refreshing 

the active population without losing its current advance. The detection consists of identifying an evolution process 

that has stalled materialized by the presence of a lot of similar chromosomes within the population.  

According to a given metric, one way aims at calculating or estimating the percentage of similar chromosomes 

within the population and reseeding the population accordingly. There is the possibility to work directly on the 

fitness space by comparing the best chromosome and the average fitness function. In both cases, the reseeding is 

submitted to the level of the genetic advance.  
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{

𝑖𝑓 Δ𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑓(𝑐ℎ𝑏𝑒𝑠𝑡), 𝑓(𝑐ℎ𝑎𝑣𝑒)) ≤ ∆𝑓𝑚𝑖𝑛        𝑎𝑛𝑑                  

𝑓(ch𝑏𝑒𝑠𝑡) ≤ 𝑓𝑒𝑛𝑑  𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑒   𝑒𝑙𝑠𝑒                 
𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒                                                         

                                                                                   (15) 

Where ∆𝑓𝑚𝑖𝑛and 𝑓𝑒𝑛𝑑 are the different thresholds and 𝑓(𝑥) the fitness of chromosome 𝑥. 

 

4. Experimental results 

 

The objective of this section is to assess the contribution of the different mechanisms introduced in the GA. 

The mechanisms “Initialization”, “Weighting function”, “Adaptive mutation”, “Selection with diversification” and 

“Breaking process” are respectively named M1, M2, ..,M5.  

By hybridizing their use, different algorithm versions (see Table 1) have been implemented. Our advanced GA is  

GA1. 

 

Table 1. Details of the different GAs 

  M1 M2 M3 M4 M5 

GA1 Yes Yes Yes Yes Yes 

GA2 Yes Yes Yes  Yes 

GA3 Yes Yes  Yes Yes 

GA4 Yes Yes Yes   

GA5 Yes Yes  Yes  

GA6 Yes Yes    

 

Six of them have been selected to concentrate the discussion on three attributes as the role of the remaining is 

obvious. The GAs have been applied to various classical filters including high-pass, low-pass, band-pass and band-

cut filters of different orders with the same parameter set. The number of frequency points (m1xm2) has been put 

to 20x20. Numerical results (See Table 2) are detailed only for the 7x7 low pass filter and Fig. 5 illustrates the 

results of other filters. The population size 𝑃𝑠 has been fixed to 100, a maximum number of genetic generations to 

1500 and an implicit probability of crossover to 100%.  

The initial chromosomes were generated by considering solutions obtained by more conventional approaches 

mutated via elementary statistics. The parameters 𝑓𝜀, 𝑔𝜀, and 𝑓𝑒𝑛𝑑were respectively fixed to 0.00001, 0.0001, and 

0.008. ∆𝑓𝑚𝑖𝑛 = 0.07 ∗ 𝑓𝑖𝑡𝑎𝑣𝑒, 𝑓𝑖𝑡𝑎𝑣𝑒 being the fitness average of the whole population. The parameters 𝑘1 and 𝑘2 

have been respectively fixed to (0,001) and (0,01) for the normal genetic advance and increased to 0,1 and 0,3 

when a sign of premature convergence has been detected. The parameters 𝜆𝑚1 and 𝜆𝑚2 have been put to 0.5 ∗

𝑟𝑎𝑛𝑑𝑛 and 0.05 ∗ 𝑟𝑎𝑛𝑑𝑛. The weight matrix 𝑊 is composed of two values: c0=1 in the passband and c1=5/8 

outside. 

 

Table 2. Results obtained for a low-pass filter 

 Error 
Peak 

Error 
Width CPU Ite 

GA1 0.0092 0.0803 very small 49.74s 298 

GA2 0.0116 0.0874 very small 61.83s 371 

GA3 0.0200 0.1055 Middle 75.63s 458 

GA4 0.0193 0.1092 Small 59.62s 359 

GA5 0.0709 0.8597 Middle 247.86s 1500 

GA6 0.0212 0.1086 Middle 205.42s 1380 

FT 0.0566 0.1668 Middle < 2s  

FS 0.0551 0.2203 Very small < 2s  

W 0.0400 0.4920 Large < 2s  

 

We clearly see that GA1 produces better results than the classic methods and the other versions for almost all 

attributes. GA5 is less relevant than all the others. According to the “Error” attribute that is directly linked to the 
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fitness function, GA1 is the most efficient. We should notice the particular role of the couple “Adaptive mutation 

rate” and “Breaking process”. From two errors [0,0116; 0,0874] obtained with GA2, we move to [0,0709; 0,8597] 

for GA5. The added value of the “Breaking mechanism” taken alone can be seen from the GA5 to GA3 version. 

The “Adaptive mutation” affords a significant contribution denoted by analyzing the GA4 performances. The 

“Selection with diversification” mechanism has no effect by itself as proved by the GA5 results. It however 

contributes to the performances when included with the other mechanisms. For GA1, we can observe than both the 

performances and CPU time is improved. Only a small number of genetic iterations (298) is needed to reach the 

smallest errors (0,0092 for the average error and 0,0803 for the peak error).  Fig. 2 shows the frequency responses 

of the different versions and Fig. 3 shows those of the classic methods. 

 

 
Fig.2.1. Adaptive GA1 

 
Fig.2.2. Adaptive GA2 

 
Fig.2.3. Adaptive GA3 

 
Fig.2.4. Adaptive GA4 

 
Fig.2.5. Adaptive GA5 

 
Fig.2.6. Standard GA6 

 
Fig.3.1. Frequency 

transformation method 

 
Fig.3.2. Frequency 

sampling method 

 
Fig.3.3. Windowing 

method 

 
Fig.4. Fitness evolution 

for GA2 

 

Except for GA5, the peak errors of the adaptive GAs can be considered significantly better than those of classic 

methods. Adaptive GA1 has the best response for the passband region. The filters constructed using the Gas, the 

frequency transformation and frequency sampling methods have sharper transition band responses than that 

produced by the windowing method. For the stopband region, our GA1 produces a better response.  We can observe 
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specifically (Fig. 2,3) that the different versions of GAs have similar magnitude responses for the stopband regions. 

The frequency sampling method produces a filter whose response is a bit worse than the others. Supports of the 

filters designed by these algorithms are respected except for those designed by classic methods (frequency 

transformation method and windowing) and GA5. We can observe that GAs are more time consuming than the 

classical ones. In Fig. 4, the effect of the couple “Breaking process” and “Adaptive mutation” is pointed out. We 

can observe a “sort of landing process”. Each time a sign of premature convergence is detected, the population is 

reseeding that affects the fitness average without losing the best chromosome. This speeds up the genetic advances 

and improves the final convergence. The contribution of the adaptive selection can be evaluated via the comparison 

between GA1 and GA2. GA1 is better within most of attributes that underlines its interesting role. We can note that 

the diversification selection does not prevent the breaking process but shortens the population reseeding as the 

population is more diverse per nature. GA1 has been used for designing different filters under various 

specifications. Fig. 5 shows the frequency responses for three cases. We should note that the error in the designed 

filter response from the specified one is very small which promotes the role of adaptive GAs for 2-D FIR filter 

design. 

 

 
Fig.5.1. Band-pass 9*9 

 
Fig.5.2. Band-cut 7*7 

 

5. Conclusion 

 

This paper presents the optimal design methods of 2-D FIR digital filter based on GAs. By minimizing a 

quadratic measure of the error in the frequency band, real-valued solutions are evolved to get the filter coefficients. 

Our adaptive GA can produce filters with good response characteristics while greatly reducing the error criteria 

and CPU time. Future work will focus on the possibility of hybridizing the GA with other classic mathematical 

and genuine heuristic techniques. 
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